-
红景天为景天科大花红景天[Rhodiola crenulata(Hook.f.et Thoms.)H. Ohba]的干燥根和根茎[1],是一种多年生草本或亚灌木植物。大部分生长于海拔3 500~5 000 m的石灰岩、花岗岩地冰川、山梁草地或山谷岩石上,享有“高原人参”、“雪山仙草”之美称,被当代医学界誉为“东方神草”,被全球医药界喻为“黄金植物”[2],己被前苏联科学家确定为植物适应原[3]。目前的研究表明,红景天具有抗应激、抗疲劳、抗氧化、抗癌、抗抑郁、保护肝肾、增强机体免疫力和神经保护等作用[4-7]。
目前,国内外对红景天多集中于其药效研究,体内药物含量测定和生物利用度研究又多以大鼠为研究对象。在以往研究的大鼠试验中,不同给药途径和不同剂量下,红景天苷绝对生物利用度(Fabs)结果为32.1%~98%[8-11],范围之大可能和红景天苷在体内的主动转运有关。而主要参与分子主动转运的钠依赖性葡萄糖转运体介导(SGLT1)在肠黏膜中所占的比例极其有限。在有限的肠道转运介导下,剂量不同可能会导致生物利用度研究结果不同。当口服红景天苷剂量大于24 mg/kg时,大鼠肠道出现了饱和吸收过程,且证明此饱和过程与SGLT1相关[12]。由于肠道中SGLT1占比有限,若给药剂量过高,可能会导致药物肠道重吸收较差,进而体现为生物利用度降低。因此,为了更加科学地考察体内生物利用度,合适剂量的选择尤为重要。
关于测定比格犬体内红景天苷含量的分析方法研究报道较少。Mao等[8]建立了测定犬血浆中红景天苷含量的HPLC法,线性范围为0.83~520 μg/ml(r=0.992 6),最低定量下限为0.83 μg/ml。因定量限较高,不足以满足其体内药动学分析。陈帅等[13]应用UHPLC-MS/MS法,采用柱前衍生化的样品处理同时测定了比格犬血浆中的红景天苷和酪醇含量。其中,红景天苷的定量下限为0.02 μmol/L,质量浓度相当于6.01 ng/ml。该方法的样品处理方式为先用乙腈蛋白沉淀法去除基质中的蛋白组分,上清溶液经碱化后孵育进行衍生化,最后用甲基叔丁基醚进行液液萃取,氮气吹干复溶后进样。虽检测限满足体内药动学分析,在批量处理样品时条件苛刻且步骤复杂。且以上研究均未对红景天苷在比格犬体内绝对生物利用度进行评估。
本实验旨在建立准确、快速、灵敏的LC-MS/MS法测定比格犬血浆中红景天苷含量,并对其绝对生物利用度进行研究。血浆样品预处理采用蛋白沉淀,并将验证后的方法应用于临床前药动学研究,包括生物利用度研究,为支持临床药动学试验设计提供依据。
-
Triple quad 5500型三重四极杆串联质谱仪,配备电喷雾电离源(加拿大AB Sciex公司);岛津液相色谱系统(包括DGU-20A3R型脱气机、LC-30AD型二元液相泵、SIL-30AC型自动进样器和CTO-20A型柱温箱,日本岛津公司)。Elma sonic P 300H超声波清洗器(德国埃尔玛公司);XPR6UD5和XPE205型电子分析天平(瑞士梅特勒公司)。
红景天苷(海军军医大学药学院药物分析教研室,含量99.0%,批号:20180901);天麻素(内标,上海同田生物技术有限公司,含量:98.9% 批号:4031921)。甲醇、乙腈、甲酸(均为色谱纯,Sigma-Aldrich公司);超纯水(自制,Millipore纯水仪)。
-
Symmetry RP18色谱柱(Waters公司,100 mm×4.6 mm, 3.5 μm);柱温:40 ℃;流动相:0.1%甲酸溶液,流动相B:含0.1%甲酸和20%乙腈的甲醇溶液;等度洗脱比例为35%流动相B;流速0.4 ml/min,进样量:2 μl。
-
离子源为电喷雾电离源;负离子方式检测;源喷射电压为−4500 V;去溶剂温度为550 ℃;雾化器压力(GS1): 75 psi;辅助气压力(GS2): 60 psi;气帘气体压力为35 psi;入口电压(EP): −10 V;碰撞室出口电压(CXP): −14 V;扫描方式为多反应监测,扫描时间为100 ms。雾化气、气帘气、碰撞气由氮气发生器产生;采用多反应监测(MRM)模式,离子监测通道为:m/z 299.1→118.9(红景天苷),m/z 285.1→122.9(天麻素)。红景天苷和天麻素去簇电压分别为−70和−40 eV,碰撞能量分别为−19和−17 eV。
-
分别精密称取红景天苷对照品2份,用40%乙腈水溶液溶解并定容,获得质量浓度均为0.2 mg/ml的红景天苷储备液2份,分别用于配制标准系列样品和质控样品工作液。按照一定的比例混合,用40%乙腈水溶液稀释,获得红景天苷浓度为:0.2、0.4、2、8、32、80、180 μg/ml的标准系列样品工作液和浓度为0.2、0.6、10、160 μg/ml的质控样品工作液。于4 ℃保存,备用。
-
精密称取天麻素对照品一份,用40%乙腈水溶液溶解并定容,获得质量浓度为0.1 mg/ml的天麻素储备液一份。以40%乙腈水溶液稀释内标储备液获得4 000 ng/ml的内标工作溶液,于4 ℃保存,备用。
-
取标准系列溶液或储备液50 μl至1.5 ml EP管中,加入比格犬空白血浆950 μl,涡旋10 s,获得红景天苷浓度为10、20、100、400、1 600、4 000、9 000、10 000 ng/ml的标准系列样品以及浓度为10、30、500和8 000 ng/ml质控样品。标准系列样品每日新鲜配制,质控样品于−20或−70 ℃保存,备用。
-
精密吸取血浆50 μl,置于Axygen 96孔深孔板中,加入内标50 μl,涡旋1 min,加入450 μl甲醇,涡旋3 min,3000 r/min离心10 min,取出上清液300 μl,氮气吹干,加入10%乙腈200 μl,涡旋3 min后,取2 μl进行LC-MS/MS分析。
-
动物实验部分在上海新冈实验动物场完成。比格犬,体重6~8 kg,雌雄各半;年龄24~30周,给药前禁食12 h,自由饮水,给药后4 h统一进食。
比格犬口服组(n=6,雌雄各半)给予红景天苷原料药15 mg/kg,分别于给药前0.5 h内和给药后即刻、15、30、45 min及1、1.5、2、3、4、5、6、8、10、16、24 h经前肢静脉取血1 ml置于肝素钠抗凝试管中,离心10 min (3 000 r/min,4 ℃)分离血浆,−70 ℃保存待测。
比格犬静脉注射组(n=6,雌雄各半)给予红景天苷原料药1.5 mg/kg,分别于给药前0.5 h内和给药后即刻、2、5、10、20、30、45 min及1、1.5、2、3、4、6、8、12 h经前肢静脉取血1 ml置于肝素钠抗凝试管中,离心10 min(3000 r/min, 4 ℃)分离血浆,−70 ℃保存待测。
-
将所建立并经过验证的方法应用于红景天苷动物药动学研究。所得的血浆浓度-时间数据采用Phoenix WinNonlin 8.1 (美国Pharsight公司)软件,以非房室模型计算药动学参数。绝对生物利用度(Fabs)计算方法见公式(1):
$$ {F_{{\rm{abs }}}}(\text{%} ) = \frac{{{\rm{AU}}{{\rm{C}}_{0 - \infty ({\rm{ po) }}}} \times {\rm{ Dos}}{{\rm{e}}_{{\rm{iv }}}}}}{{{\rm{ AU}}{{\rm{C}}_{0 - \infty ({\rm{ iv }})}} \times {\rm{ Dos}}{{\rm{e}}_{{\rm{po }}}}}} \times 100\;\text{%} $$ (1) 式中:AUC0−∞ (po)为口服给药后AUC0−∞统计值;AUC0−∞ (iv)为静脉注射后AUC0−∞统计值;Dosepo为口服剂量;Doseiv为静脉注射剂量。
-
分别取6个不同来源的比格犬空白血浆样品以及用相应比格犬空白血浆配制的定量下限(LLOQ)样品进行LC-MS/MS分析测定,考察不同来源空白血浆中的内源性物质是否干扰待测物及内标的测定。
结果表明,比格犬空白血浆中的内源性物质不干扰红景天苷的测定,同时内标不干扰待测物的测定,待测物对内标也无影响。
-
在选定的条件下,红景天苷和内标峰形良好,红景天苷的保留时间约为1.6 min,内标的保留时间约为1.2 min,内源性杂质不干扰测定。空白血浆、红景天苷及内标、红景天苷及内标加入空白血浆中的色谱图、比格犬口服1.5 h样品中红景天苷及内标色谱图见图1。
-
取“1.4”项下制备的标准含药血浆样品50 μl,按照“1.5”项下血浆样品前处理方法操作,以每个待测物浓度为横坐标,待测物与内标物的峰面积比值为纵坐标,采用加权(W= 1/X2)最小二乘法进行回归运算,求得的直线回归方程即为标准曲线,相关系数r均>0.998 6。比格犬血浆样品中红景天苷浓度在10~1 0000 ng/ml与峰面积比线性良好,最低定量浓度为10 ng/ml。典型标准曲线方程为:Y = 0.003 48X+0.000 397(r=0.999 1)。
-
取比格犬LLOQ血浆样品(红景天苷质量浓度为10 ng/ml)进行6份样本分析,连续测定3 d并分别根据当日标准曲线求得每份样本的测得浓度。求得该质量浓度红景天苷的日内精密度分别为8.3%,日间精密度为7.3%,准确度(RE)为6.0%。实验结果表明,LC-MS/MS法测定比格犬血浆中红景天苷的定量下限为10 ng/ml。
-
取比格犬低、中、高3个浓度质控样品,按照“1.5”项下操作,每个浓度进行6样本分析并在连续3 d内测试,分别根据当日标准曲线计算每份样本的测得浓度并根据QC样品结果计算本方法日内、日间精密度和准确度。
红景天苷质控(QC)样品的精密度与准确度结果见表1。待测物低、中、高质控样品的日内和日间精密度和准确度均符合生物样品测定相关要求。待测物低、中、高质控样品的日内和日间精密度和准确度均符合生物样品测定相关要求。
表 1 红景天苷精密度和准确度试验结果
浓度(ng/ml) 日内(n=6) 日间(n=18) 准确度(RE/%) 精密度(RSD/%) 准确度(RE/%) 精密度(RSD/%) 10 8.3 10.0 7.3 6.0 30 9.7 −2.0 6.0 −1.3 500 3.3 −3.0 3.4 −0.2 8 000 3.8 −3.5 2.7 −1.5 -
分别取6个不同来源比格犬空白血浆和一份空白溶血血浆50 μl,不加内标溶液(用50 μl 40%乙腈替代内标工作溶液),按照“1.5”项下操作,40 ℃氮气下吹干,加入200 μl由流动相配制的相对应的低、高浓度对照质控溶液和内标溶液,涡流后离心5 min,取2 μl进行LC-MS/MS分析,获得相应峰面积(A)。同时,另取去离子水50 μl代替比格犬空白血浆,按上述方法操作获得相应峰面积(B)。以每一浓度两种处理方法的峰面积比值计算基质效应,公式为A/B×100%,并以分析物和内标的基质效应比值计算内标归一化的常规基质效应和溶血血浆基质效应。
在比格犬常规血浆样品中,红景天苷低、高浓度经内标校正后的基质效应分别为96.3%和96.6%,相对标准差分别为8.4%和4.1%。溶血血浆样品中,低、高浓度经内标校正后的基质效应分别为99.4%和96.7%,相对标准差分别为5.0%和7.0%。
结果表明,待测物红景天苷在本试验选择的色谱和质谱条件下,可忽略基质效应的影响。
-
采用比格犬空白血浆配制的低、中、高3个浓度的血浆样品,按照“1.5”项下操作,每个浓度进行6样本分析。同时另取比格犬空白血浆50 μl,不加内标溶液(用50 μl 40%乙腈溶液替代内标工作溶液),其余按照“1.5”项下操作,于40 ℃氮气下吹干后,加入对应的低、中、高浓度对照质控溶液和内标溶液,涡流5 min,取2 μl进行分析,获得相应峰面积(n=3)。用提取后色谱峰面积与未经提取的色谱峰面积之比计算提取回收率。
比格犬血浆样品经蛋白沉淀处理后,红景天苷在低、中、高浓度的回收率分别为91.8%、94.3%和89.5%。
-
考察了红景天苷储备液和工作溶液室温6 h、比格犬血浆样品室温放置24 h、比格犬血浆样品−20 ℃/−70 ℃经历5次冷冻−解冻循环的稳定性以及比格犬血浆样品−20 ℃/−70 ℃经历22 d冷冻后的稳定性。全血样品室温/湿冰放置2 h、样品处理后自动进样器放置96 h。
结果表明,红景天苷储备液和工作溶液室温至少6 h、血浆样品中在室温放置24 h、−20 ℃/−70 ℃冻存22 d、在−20 ℃/−70 ℃存放条件下反复室温冻融5次,以及样品处理后,在自动进样器放置96 h,红景天苷能够保持良好的稳定性。自全血采集至分离待测血浆样本的室温/湿冰2 h内,红景天苷在全血中保持稳定。
-
本实验考察了血浆浓度超出定量上限的比格犬血浆样品,经空白比格犬血浆稀释后的准确度。取红景天苷的稀释质控样品(比格犬血浆样品红景天苷质量浓度为80 000 ng/ml),用空白比格犬血浆稀释20倍后,按“1.5”项下操作,进行6份样本分析。结果表明,比格犬血浆样品经空白比格犬血浆稀释20倍后测定不影响结果的准确度。
-
比格犬单剂量口服给药红景天苷15 mg/kg或静脉注射红景天苷1.5 mg/kg后,按“1.6”项下采集的各时间点血浆样品,并按照“1.5”项下操作,进行LC-MS/MS分析,测定红景天苷的比格犬血浆浓度。口服给药红景天苷15 mg/kg和静脉注射红景天苷1.5 mg/kg后的血药浓度-时间数据曲线分别见图2和图3。采用WinNonlin软件以非房室模型计算药动学参数(表2、表3)。
表 2 比格犬口服15 mg/kg红景天苷后血浆药动学参数(
$ \bar x $ ±s, n=6)参数 雄性犬 雌性犬 平均值 AUC0−t(ng·h/ml) 15 976±1 702 25 095±1 527 20 535±5 200 AUC0−∞(ng·h/ml) 16 005±1 703 25 211±1 692 20 608±5 266 MRT0−∞(t/h) 2.20±0.561 2.39±0.055 2.29±0.371 t1/2z(t/h) 1.02±0.108 1.61±0.845 1.31±0.628 CLz(L/h·kg) 0.945±0.105 0.597±0.039 0.771±0.203 Vz(L/kg) 1.39±0.232 1.35±0.613 1.37±0.415 cmax(ng/ml) 7 867±2 978 11 493±3 995 9 680±3 725 F(%) 34.2±4.9 55.2±7.4 43.9±11.2 表 3 比格犬静注1.5 mg/kg红景天苷后血浆药动学参数(
$ \bar x $ ±s, n=6)参数 雄性犬 雌性犬 平均值 AUC0-t(ng·h/ml) 4 735±1 050 4 557±415 4 646±721 AUC0-∞(ng·h/ml) 4 781±1 042 4 602±411 4 691±715 MRT0-∞(t/h) 1.010±0.064 1.030±0.048 1.020±0.052 t1/2z(t/h) 0.933±0.028 1.03±0.174 0.980±0.132 CLz(L/h·kg) 0.325±0.078 0.328±0.028 0.326±0.052 Vz(L/kg) 0.437±0.104 0.487±0.102 0.462±0.096 cmax(ng/ml) 9 000±1 526 9 620±2 037 9 310±1 645 本试验以比格犬单剂量静注给药红景天苷1.5 mg/kg后体内血药浓度-时间曲线下面积AUC0−∞为参比,计算比格犬单次口服给药红景天苷入血的绝对生物利用度。考虑到比格犬动物实验个体差异的特殊性,采用6条比格犬(雌雄各半)单剂量口服给药红景天苷15 mg/kg及6条比格犬(雌雄各半)单剂量静注给药红景天苷1.5 mg/kg后,血浆AUC0-∞的平均值进行比较,得到红景天苷在比格犬体内的绝对生物利用度为(43.9±11.2)%。
-
目前,对红景天苷的药动学研究多集中在小动物种属(大鼠、小鼠),仅有少量在比格犬上的研究,且绝对生物利用度未见文献报道。因此,本实验旨在建立一种快速、专属性强、灵敏度高的LC-MS/MS分析方法,并应用于比格犬体内红景天苷绝对生物利用度的考察。
在前期的方法考察中,血浆提取方法考察了蛋白沉淀法[沉淀试剂考察甲醇、乙腈、甲醇(含0.1%甲酸)和乙腈(含0.1%甲酸)]、液-液萃取法(萃取试剂考察乙酸乙酯、氯仿和异丙醇)。红景天苷在常规液液萃取溶剂中回收率较差。而蛋白沉淀法中基质效应较为明显,红景天苷及其内标天麻素在初始色谱条件下均表现出较强的基质抑制现象。
以往的研究中,并未见药典中针对生物分析方法验证所要求的特殊基质(溶血、高脂血等)基质效应的考察。因高脂血研究不适用于比格犬试验,固本次仅新增对溶血血浆中基质效应的考察。且前期发现在LC-MS/MS检测红景天苷浓度时,溶血血浆在提取后严重抑制了红景天苷的响应,使其无法准确定量。本实验最终采用甲醇作为沉淀试剂,蛋白沉淀后吹干的方式,对提取物进行浓缩,并使用10%乙腈溶液复溶,减少了进样过程中的溶剂效应,从而进一步改善了峰型。同时,通过对色谱柱的筛选和流动相成分的优化,使得原始方法中血浆的内源性共流出组分和待测物及内标在不同时间出峰,很大程度上避免了干扰现象,并显著改善了基质效应。
另外,结合以往对大鼠试验中对红景天苷生物利用度差异和剂量关系的研究,说明本试验在合理的给药剂量下,所呈现的生物利用度数值有着很高的可靠度和参考价值。在较低的给药剂量下,所建立的LC-MS/MS方法,定量范围为10~10 000 ng/ml,能充分满足本实验研究的需要。且此方法的专属性、准确度、精密度、基质效应、稳定性等均符合方法学要求,方法可靠,能够准确测定比格犬血浆中红景天苷的浓度,评价其在比格犬体内的药动学行为。
本研究填补了红景天苷在比格犬体内的绝对生物利用度研究的空白,为以后临床试验中推测人体内暴露量,考察生物利用度提供了参考数据,同时为临床选择给药途径提供了依据。
Absolute bioavailability of salidroside in Beagle dog
-
摘要:
目的 建立比格犬血浆中的红景天苷的HPLC-MS/MS测定方法,研究红景天苷在比格犬体内的绝对生物利用度。 方法 以天麻素为内标,血浆样品经蛋白沉淀后,经Symmetry RP18 (100 mm×4.6 mm, 3.5 μm)柱分离,使用体积分数0.1%甲酸溶液(A)-含0.1%甲酸和20%乙腈的甲醇溶液(B)作为流动相,进行等度洗脱(35% B),流速为0.4 ml/min,柱温40 ℃,进样量2 μl;通过电喷雾电离源(ESI),以多反应监测(MRM)模式进行负离子检测,红景天苷、天麻素的MRM离子对分别为m/z 299.1→118.9、m/z 285.1→122.9。比格犬分别以口服和静注两种给药方式给予红景天苷原料药,在不同时间点取血,样品采用HPLC-MS/MS法测定,研究红景天苷的药动学及绝对生物利用度。 结果 红景天苷的质量浓度在10~10 000 ng/ml内线性关系良好(r>0.998 6),最低定量浓度为10.0 ng/ml。方法回收率为89.5%~91.8%,日内精密度(RSD)<9.7%,日间精密度(RSD)<7.3%。单剂量口服15 mg/kg或静注1.5 mg/kg红景天苷原料药后,cmax分别为(9 680±3 725)和(9 310±1 645)ng/ml;tmax分别为(1.25±0.67)和(0.011±0.017)h,AUC0−t分别为(20 535.4±5 200.0)和(4 646.7±720.5)ng·h/ml,AUC0-∞分别为(20 607.9±5 266.2)和(4 691.6±715.2)ng·h/ml;t1/2分别为(1.31± 0.63)和(0.98 ± 0.13)h。 结论 该方法简便快速、灵敏可靠,可用于红景天苷体内过程研究。红景天苷在比格犬体内的绝对生物利用度为(43.9±11.2)%。 Abstract:Objective To develop a HPLC-MS/MS method for the absolute bioavailability study of salidroside in Beagle dogs. Methods Gastrodin was used as internal standard. Plasma samples were treated by protein precipitation and separated by Symmetry RP18 column (100 mm×4.6 mm, 3.5 μm). 0.1% formic acid in water(A) and 0.1% formic acid in acetonitrile: methanol (20 : 80, V/V) (B) were used as the mobile phase for isocratic elution with 35% mobile phase B. The flow rate was 0.4 ml/min. Column temperature was 40 ℃. Injection volume was 2 μl. By electrospray ionization source (ESI) and multi-reaction monitoring (MRM) mode, the MRM ion pairs of salidroside and gastrodin were identified as m/z 299.1→118.9 and m/z 285.1→122.9, separately. Blood samples were collected at different time points after oral or intravenous administration of salidroside. The harvested plasma samples were analyzed by HPLC-MS/MS method to assess the pharmacokinetics and absolute bioavailability of salidroside. Results Excellent linearity(r>0.998 6) was found in the concentration range of 10−10 000 ng/ml for salidroside and the lowest quantitative concentration was 10 ng/ml. The recovery was 89.5%−91.8%. The intra-day precision (RSD) was less than 9.7%, and the inter-day precision (RSD) was less than 7.3%. After a single oral dose of 15 mg/kg or an intravenous injection of 1.5 mg/kg of salidroside, cmax was (9 680±3725) and (9 310±1 645) ng/ml; tmax was (1.25±0.67) and (0.011±0.017) h, AUC0−t was (20 535.4±5 200.0) and (4 646.7±720.5) ng·h/ml, AUC0−∞ was (20 607.9±5 266.2) and (4 691.6±715.2) ng·h/ml; t1/2 was (1.31±0.63) and (0.98±0.13) h, respectively. Conclusion The LC-MS/MS method established in this study was simple, rapid, sensitive and reliable. It meets the regulatory requirements of biological analysis for pharmacokinetic properties of salidroside in Beagle dogs. The absolute bioavailability of salidroside in Beagle dogs is (43.9±11.2)%. -
Key words:
- salidroside /
- HPLC-MS/MS /
- pharmacokinetics /
- absolute bioavailability
-
近年来,随着肿瘤、器官移植和获得性免疫缺陷综合征(AIDS)等导致的免疫功能低下人群的增加,侵袭性真菌感染(IFIs)的发病率和病死率逐年上升[1-2]。念珠菌、隐球菌和曲霉菌是IFIs最主要的致病菌,并且造成的病死率超过90%[3]。在念珠菌属中,白念珠菌(Candida. albicans)是院内血液感染最常见的致病菌原体,其在重症监护病房(ICU)患者中致病率超过17%,病死率高达40%[4-5]。临床上治疗IFIs的抗真菌药物主要包括:多烯类(两性霉素B)、核酸类(5-氟胞嘧啶)、唑类(氟康唑)和棘白菌素类(卡泊芬净)药物(图1)[6-7]。然而,由于临床上出现抗真菌药物严重的耐药性和毒副作用,IFIs的治疗效果相当有限。因此,迫切需要研发全新机制的抗真菌药物。
组蛋白乙酰化修饰(包括组蛋白乙酰化和去乙酰化)是表观遗传学研究的重要组成部分。组蛋白去乙酰化酶(HDACs)将组蛋白和其他蛋白上的赖氨酸末端乙酰基去除,对染色体重塑和基因的表达起着重要作用[8-9]。目前HDAC抑制剂主要集中于抗肿瘤研究方向,且已有多个上市药物应用于肿瘤的治疗。据研究报道,真菌中的HDACs,如烟曲霉[10]、白念珠菌[11-12]、酿酒酵母[13]和新生隐球菌的HDACs[14-15]参与了毒力相关的过程和形态变化。因此,抑制真菌HDACs可能是治疗IFIs的有效策略。
联合药物治疗是提高临床一线药物疗效并克服真菌耐药性的有效策略之一。真菌的耐药性涉及转录调节,其中染色体重塑和组蛋白修饰起主要作用。HDACs调节的组蛋白修饰在应激信号通路中起着至关重要的作用,这可能与真菌对各种环境(包括药物)的应激反应有关[16]。此外,已有研究报道,HDAC抑制剂与唑类药物联用具有协同增效作用[17-18]。例如,HDAC抑制剂MGCD290与氟康唑联用具有协同抗多种临床真菌分离株的作用[19]。
基于此,本研究首先对8个市售的HDAC抑制剂(图2)进行体外协同抗真菌活性测试,筛选结果显示化合物Rocilinostat与氟康唑联用具有优秀的体外协同抗耐药白念珠菌活性。后续考察其与不同唑类药物联用时对不同念珠菌属的体外协同抗真菌活性,以及对正常细胞的毒性作用,以期为抗真菌药物的研发提供依据。
1. 材料和方法
1.1 实验试剂与菌株
临床分离的6株唑类耐药白念珠菌(编号:9893,10061,10060,9173,4108和0304103),2株唑类耐药热带念珠菌(编号:5008,10086),1株光滑念珠菌(编号:9073)和1株耳道念珠菌(编号:0029)由海军军医大学附属长征医院提供。菌株活化首先从−80 ℃中挑取菌株冻存液至YEPD液体培养基活化24 h,然后取10 μl菌悬液至1 ml YEPD中,并在30 ℃、200 r/min下培养16 h后待用。HUVEC细胞来源于中国科学院上海细胞库,并在新鲜配置的DMEM完全培养基中培养。
YEPD液体培养基:取10 g酵母浸膏、20 g葡萄糖、20 g蛋白胨溶解于1 000 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,保存于4 ℃条件下备用。RPMI 1640培养基:取10 g RPMI 1640(Gibco)粉末、34.5 g吗啡啉丙磺酸、2 g NaHCO3、2.7 g NaOH溶解于1 000 ml三蒸水中,经0.22 μm的微孔滤膜过滤与灭菌后,置于4 ℃条件下保存和备用。DMEM完全培养基:按照89% DMEM基础培养基+10%胎牛血清+1%的双抗比例混匀制得,混匀后置于4 ℃条件下保存和备用。PBS缓冲液:10 × PBS 100 ml溶解于900 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,置于4 ℃条件下保存和备用。
1.2 仪器
THZ-92A气浴恒温振荡器(上海博迅医疗生物仪器股份有限公司)、MJ-150-I霉菌培养箱(上海一恒科学仪器有限公司)、LW100T生物显微镜(北京测维光电技术有限公司)、HDC-15K高速离心机(上海泰坦科技股份有限公司)、C170二氧化碳培养箱(BINDER GmbH)、infinite M200多功能酶标仪(Tecan Austria GmbH)、高压蒸汽灭菌锅、无菌洁净工作台。
1.3 棋盘式微量液基稀释法
本实验参照美国临床和实验室标准协会(CLSI)公布的M27-A3方案中微量液基稀释法进行。首先,收集活化好的真菌细胞,PBS洗3次后用RPMI 1640培养基制成浓度为1×103 CFU/ml的菌悬液。按照每孔100 μl接种菌悬液至无菌96孔板中,1~9列加入倍半稀释的HDAC抑制剂,A~F行加入倍半稀释的氟康唑,其中G行只加氟康唑,第10列只加化合物,第11列为不加药的阴性对照组,后将96孔板置于35 °C条件下孵育48 h。测定每孔在630 nm处的吸光度A,依据公式:抑制率(%)=(A阳性对照孔−A化合物孔)/(A阳性对照孔−A阴性对照孔)× 100%,计算各孔对应的抑制率。如果某一孔和其左边孔对应的抑制率均大于80%,则该孔对应的化合物和FLC浓度分别作为FIC化合物和FIC氟康唑,利用协同指数公式:FICI =(FIC化合物./MIC80 化合物)+(FIC氟康唑/MIC80 氟康唑),计算各化合物对应的FICI。
1.4 时间-生长曲线实验
收集活化好的白念珠菌0304103稀释在RPMI 1640培养液中,保持菌浓度为1×105 CFU/ml。取5 ml稀释的菌悬液和不同浓度的待测药物加入50 ml的离心管中, DMSO组作为空白对照组和32 μg/ml FLC作为阳性对照。随后将50 ml的离心管置于30 °C条件下振荡培养(200 r/min),在多个时间点吸取不同药物组的真菌混悬液(100 μl)于96孔板上,测量A630值并使用GraphPad Prism 7作图。
1.5 真菌细胞总HDAC酶活性测试实验
收集指数生长期的白念珠菌0304103细胞(湿重为100 mg),然后用3 mg snailase、12 μl 2-巯基乙醇和3 ml snailase反应缓冲液等新鲜配置的真菌裂解液来处理它们,以制备真菌原生质体。真菌原生质体分散在PBS(20 ml)中以获得混悬液,然后往96孔板每孔中加入100 μl的混悬液和不同浓度的化合物Rocilinostat,并在35 °C下培育12 h。接着往每个孔中加入30 μmol/L的HDAC底物,于37°C下孵育6 h。随后添加100 μl HDAC酶促终止溶液并在37°C下孵育2 h。最后,在每个孔中取出100 μl培养物添加到黑板中,用Ex=360 nm,Em=460 nm来监测荧光强度并记录下来用于计算HDAC酶的抑制率。
2. 结果
2.1 化合物Rocilinostat与氟康唑联用具有协同抗真菌活性
表1列出了HDAC抑制剂单独使用或与氟康唑联合使用的体外抗真菌活性筛选结果。MIC80为抑制80%真菌细胞生长的最低药物浓度。实验结果表明,8个HDAC抑制剂单独使用对耐药白念珠菌均无直接的抗真菌活性(MIC80>64 μg/ml);而化合物Rocilinostat(FICI=0.039)和伏立诺他(FICI=0.125)与FLC联用时均表现出良好的协同抗真菌活性。其中,化合物Rocilinostat的协同活性最佳,值得进一步研究。
表 1 单用HDAC抑制剂或者与氟康唑联用对白念珠菌0304103的体外抗真菌活性(μg/ml)抑制剂 抑制剂 氟康唑 FICI 单用 联用 单用 联用 伏立诺他 >64 4 >64 4 0.125 Rocilinostat >64 2 >64 0.5 0.039 T3516 >64 64 >64 64 2 T6016 >64 64 >64 64 2 T6421 >64 32 >64 32 1 T2157 >64 32 >64 32 1 T1726 >64 64 >64 64 2 T3358 >64 32 >64 64 1.5 注: FICI值≤ 0.5表示协同,FICI值> 4表示拮抗;0.5<FICI<4表示不相关。 2.2 Rocilinostat与氟康唑或伏立康唑联用对多种白念珠菌的抗真菌活性
为进一步考察Rocilinostat是否具广谱的抗真菌作用,挑选9株临床分离的念珠菌属菌株进行协同抗真菌活性测试。如表2所示,Rocilinostat与FLC联合使用时,对两株耐FLC的白念珠菌(C. albicans 9173,FICI=0.094; C. albicans 4108, FICI=0.5)和对FLC敏感的光滑念珠菌(C. glabrata 9073)表现出协同增效作用,而对热带念珠菌(C. tropicis)和耳道念珠菌(C. auris)没有协同抗真菌活性。当Rocilinostat与伏立康唑(VRC)联用时,对耐VRC的白念珠菌(C. albicans 10060, FICI=0.033)表现出优异的协同抗真菌活性 (表3)。
表 2 Rocilinostat与氟康唑单用或联用对多种念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 氟康唑 Rocilinostat 氟康唑 9893 >64 >64 64 64 2 10061 >64 >64 64 64 2 10060 >64 >64 64 64 2 9173 >64 >64 4 2 0.094 4108 >64 >64 32 32 0.5 10186 >64 >64 64 64 2 5008 >64 >64 64 8 1.125 9073 32 4 32 8 0.375 0029 64 32 >64 32 1 表 3 Rocilinostat与伏立康唑单用或联用对白念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 伏立康唑 Rocilinostat 伏立康唑 0304103 >64 >64 32 2 0.531 10061 >64 >64 32 0.125 0.502 10060 >64 >64 2 0.125 0.033 2.3 Rocilinostat与氟康唑联用有效抑制真菌的生长
为进一步考察化合物Rocilinostat的协同抗真菌活性,我们又开展了时间-生长曲线实验。从图3结果可以看出,高浓度的氟康唑或Rocilinostat单独使用对真菌生长无抑制作用,而Rocilinostat与不同浓度的氟康唑联用能够有效抑制真菌的生长,且呈浓度依赖趋势 (图3中抑制剂为Rocilinostat)。
2.4 Rocilinostat对真菌细胞的选择性作用
采用HUVEC(人脐静脉内皮细胞)对化合物Rocilinostat进行细胞毒性的评价。结果如表4显示,化合物Rocilinostat对正常细胞表现出低毒性,IC50值为52.17 μmol/L (22.60 μg/ml),相当于其发挥协同抗耐药真菌(C. albicans 0304103)活性MIC80值的44倍,表明Rocilinostat对真菌细胞具有较强的选择性作用。此外,我们还测试了化合物Rocilinostat对真菌总HDAC酶的抑制活性,结果表明,Rocilinostat对真菌HDAC酶抑制活性(IC50=0.41 μmol/L)优于泛HDAC抑制剂伏立诺他(IC50=1.03 μmol/L)。
表 4 Rocilinostat对正常细胞的毒性和真菌总HDAC酶活性IC50 (μmol/L)化合物 HUVEC 白念珠菌(总HDAC酶) Rocilinostat 52.17 0.41 伏立诺他 — 1.03 注: “—”表示没有测试。 3. 讨论
本研究从市售的8个HDAC抑制剂中筛选出协同活性最佳的化合物Rocilinostat。进一步研究发现Rocilinostat与氟康唑联用对白念珠菌和光滑念珠菌具有协同增效作用。此外,化合物Rocilinostat与伏立康唑联用对临床分离的耐药白念珠菌株同样具有优秀的抗真菌活性。更值得关注的是,化合物Rocilinostat对正常细胞表现出低毒性,其对真菌细胞具有很好的选择性。因此,HDAC抑制剂Rocilinostat可以作为一种低毒、有效的唑类抗真菌药物增效剂,为抗真菌药物的发展提供了新的研究基础。
-
表 1 红景天苷精密度和准确度试验结果
浓度(ng/ml) 日内(n=6) 日间(n=18) 准确度(RE/%) 精密度(RSD/%) 准确度(RE/%) 精密度(RSD/%) 10 8.3 10.0 7.3 6.0 30 9.7 −2.0 6.0 −1.3 500 3.3 −3.0 3.4 −0.2 8 000 3.8 −3.5 2.7 −1.5 表 2 比格犬口服15 mg/kg红景天苷后血浆药动学参数(
$ \bar x $ ±s, n=6)参数 雄性犬 雌性犬 平均值 AUC0−t(ng·h/ml) 15 976±1 702 25 095±1 527 20 535±5 200 AUC0−∞(ng·h/ml) 16 005±1 703 25 211±1 692 20 608±5 266 MRT0−∞(t/h) 2.20±0.561 2.39±0.055 2.29±0.371 t1/2z(t/h) 1.02±0.108 1.61±0.845 1.31±0.628 CLz(L/h·kg) 0.945±0.105 0.597±0.039 0.771±0.203 Vz(L/kg) 1.39±0.232 1.35±0.613 1.37±0.415 cmax(ng/ml) 7 867±2 978 11 493±3 995 9 680±3 725 F(%) 34.2±4.9 55.2±7.4 43.9±11.2 表 3 比格犬静注1.5 mg/kg红景天苷后血浆药动学参数(
$ \bar x $ ±s, n=6)参数 雄性犬 雌性犬 平均值 AUC0-t(ng·h/ml) 4 735±1 050 4 557±415 4 646±721 AUC0-∞(ng·h/ml) 4 781±1 042 4 602±411 4 691±715 MRT0-∞(t/h) 1.010±0.064 1.030±0.048 1.020±0.052 t1/2z(t/h) 0.933±0.028 1.03±0.174 0.980±0.132 CLz(L/h·kg) 0.325±0.078 0.328±0.028 0.326±0.052 Vz(L/kg) 0.437±0.104 0.487±0.102 0.462±0.096 cmax(ng/ml) 9 000±1 526 9 620±2 037 9 310±1 645 -
[1] 国家药典委员会. 中华人民共和国药典(一部)2015年版[S]. 北京: 中国医药科技出版社, 2015. [2] 许大艳. 红景天苷的合成研究[D]. 长春: 长春中医药大学, 2010. [3] KELLY G S. Rhodiola rosea: a possible plant adaptogen[J]. Altern Med Rev,2001,6(3):293-302. [4] 袁瑜, 张良, 李玉锋. 红景天活性成分及药理作用[J]. 食品与药品, 2007(5):54-57. doi: 10.3969/j.issn.1672-979X.2007.05.019 [5] 居瑞军, 李若婧, 周鹏, 等. 红景天苷注射剂的制备及其在大鼠体内药动学研究[J]. 中国药学杂志, 2012, 47(18):1497-1502. [6] NI J, LI Y M, LI W M, et al. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways[J]. Lipids Health Dis,2017,16(1):198. doi: 10.1186/s12944-017-0582-7 [7] FAN F F, YANG L, LI R, et al. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety[J]. Biomedecine Pharmacother,2020,129:110458. doi: 10.1016/j.biopha.2020.110458 [8] MAO Y, ZHANG X R, ZHANG X D, et al. Development of an HPLC method for the determination of salidroside in beagle dog plasma after administration of salidroside injection: application to a pharmacokinetics study[J]. J Sep Sci,2007,30(18):3218-3222. doi: 10.1002/jssc.200700273 [9] 郭娜. 红景天苷及其代谢产物酪醇在大鼠体内的药物代谢动力学研究[D]. 哈尔滨: 东北林业大学, 2012. [10] CHANG Y W, YAO H T, HSIEH S H, et al. Quantitative determination of salidroside in rat plasma by on-line solid-phase extraction integrated with high-performance liquid chromatography/electrospray ionization tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2007,857(1):164-169. doi: 10.1016/j.jchromb.2007.06.029 [11] QI T, GE B K, ZHAO L, et al. Cytosolic β-glucosidase inhibition and renal blood flow suppression are leading causes for the enhanced systemic exposure of salidroside in hypoxic rats[J]. RSC Adv,2018(8):8469-8483. [12] 何聿娴, 刘晓东, 王新廷, 等. 钠依赖性葡萄糖转运体介导红景天苷在大鼠肠中吸收[J]. 中国天然药物, 2009, 7(6):444-448. [13] 陈帅, 夏媛媛, 魏广力, 等. 柱前衍生化结合UHPLC-MS/MS法同时测定Beagle犬血浆中的红景天苷和酪醇[J]. 药学学报, 2017(2):119-124. -