-
夏枯草消瘤合剂由中药夏枯草、牡蛎、生地黄、莪术、苍术、白术组成,是中医肿瘤学专家钱伯文教授的经验方。方中诸药配伍,以达化痰软坚,活血化瘀,补养气血的功效。其临床实验研究已证实,该药配合一线化疗方案治疗中晚期非小细胞肺癌患者,有助于提高患者的生存治疗和减少化疗所产生的毒副作用[1]。由该方制成的合剂在我院临床使用多年,前期研究对于组方中化学成分的研究仍限于迷迭香酸、咖啡酸的稳定性研究[2]。尽管方中一些单味药的化学成分已有报道[3-18],但是整个复方制剂的化学成分未见报道。由于组分的复杂性,复方的成分分析比单味药更具有挑战性,明确夏枯草消瘤方色谱图中各个色谱峰归属对于该复方的质量控制及体内深入研究具有重要意义。
高效液相-高分辨飞行时间质谱(HPLC-TOF/MS)串联技术对于中药复杂体系中化学成分分析和鉴定非常有效。其灵敏度高、操作简便、耗时短,可以在短时间获得化合物准确的相对分子质量,通过与所建立的已知化学成分数据库比对,可以快速的对被测成分进行分析鉴别[19-20]。因此,本文采用HPLC-TOF/MS技术,首次对夏枯草消瘤方中化学成分进行鉴别,并且对各成分进行药材归属,以进一步阐明夏枯草消瘤方的化学物质基础。
-
Agilent 1100系列高效液相色谱仪(美国安捷伦公司),配有在线脱气机、四元泵、自动进样器、柱温箱和二级管阵列检测器;Agilent 6220高分辨飞行时间质谱仪(美国安捷伦公司),配有标准电子喷雾离子源(ESI);分析软件为 MassHunter 数据采集在线工作站和Qualiative Analysis 离线分析软件。
-
咖啡酸(批号:110885-200102,纯度>98.5%)、迷迭香酸(批号:111871-201505,纯度>98.5%)对照品,均购自中国食品药品检定研究院,甲醇和甲酸为色谱纯(Fisher,USA),其余试剂均为分析纯,水为纯水。
夏枯草、生地黄、莪术、麸炒苍术、麸炒莪术、牡蛎、煅牡蛎均由上海中医药大学附属岳阳中西医结合医院中药房提供(见表1)。药材及饮片均经第二军医大学药学院生药学教研室黄宝康教授鉴定。
表 1 药材信息
药材名称 批号 药材来源 夏枯草 180207 上海康桥药业有限公司 生地黄 180302 上海同济堂药业有限公司 莪术 180306 上海虹桥中药饮片有限公司 麸炒白术 2018031001 上海上药华宇药业有限公司 麸炒苍术 180407 上海虹桥中药饮片有限公司 牡蛎 2017102006 上海上药华宇药业有限公司 煅牡蛎 180301 上海同济堂药业有限公司 -
分别精密称取咖啡酸、迷迭香酸对照品3.22、5.68 mg置10 ml量瓶中,加甲醇稀释定容,配成浓度分别为322、568 μg/ml的母液,精密吸取母液 1 ml 置于 10 ml 量瓶,加甲醇定容后,即得对照品溶液。
-
精密称取夏枯草4.2 g、牡蛎8.4 g、煅牡蛎8.4 g、地黄4.2 g、莪术4.2 g、白术(麸炒)2.1 g、苍术(麸炒)2.1 g,以上七味,充分润湿,分别加8倍量与4倍量水煎煮两次,每次煮沸后于85 ℃保温20 min,煎液滤过,合并滤液,滤液浓缩至相对密度1.10以上(80 ℃),离心,取上清液;精密吸取夏枯草消瘤方溶液上清液5 ml,置于50 ml容量瓶中,加甲醇定溶,摇匀,经0.22 μm微孔滤膜滤过,取续滤液,即得夏枯草消瘤方样品溶液。
-
色谱柱:ACE C18(3.0 mm×150 mm),流动相A相为甲醇,B相为水(含0.1%甲酸),梯度洗脱:0~5 min:5%A,5~10 min:5%~15%A,10~30 min:15%~45%A,30~40 min:45%~70%B,40~50 min:70%~90%B;进样量2 μl,流速为0.4 ml/min;柱温为25 ℃;运行时间为50 min。
-
采用ESI离子源,正、负离子模式均进行检测,雾化器为高纯氮气,具体参数如下:正离子模式:毛细管电压3500 V,干燥器温度350 ℃,干燥器流速10L/min,雾化器压力40 psig,碎片电压160 V;参比离子m/z121.9856,1033.9881;扫描范围m/z100-1200。测定样品之前,使用调谐液校准质量轴,以保证质量精度误差小于1×10-6。
-
根据国内外专业数据库中科院化学专业数据库、Pubmed、Chemspider等,以及国内外相关研究文献,收集了夏枯草消瘤合剂方中六味中药化学成分名称及分子式共760个。采用安捷伦“formula-database generator”软件(含各元素精确质量数),根据各成分碳、氢、氧的个数,计算精确相对分子质量、M+H和M-H准分子离子峰相对分子质量的相应的化学成分数据库。
-
夏枯草消瘤方样品溶液的总离子流图见图1。其中图1A为正离子160 V模式,图1B为负离子160 V模式,图1C为负离子260 V模式。
-
实验中利用已有的2个对照品,在负离子模式、碎片电压160 V条件下,无偏差的鉴别出咖啡酸、迷迭香酸,对照品总离子流图见图2。
-
正离子模式下以图1中2号峰疣孢酚为例,说明夏枯草消瘤方色谱峰的鉴别过程。保留时间为24.032 min,色谱图中的准分子离子为267.1591。利用Qualiative Analysis数据分析软件的计算功能计算精确质量数的可能元素组成(5×10−6),并比对数据库中已知化合物的质荷比,初步确定元素组成为C15H22O4,为疣孢酚的(M+H)+。计算该准分子离子的核素分布情况,从图3A可以看出同位素分布的理论值(方框所示)与实际值(方框内峰所示)吻合良好,确定此峰为疣孢酚。同理可得负离子模式下图1中18号峰,地黄苷D的解析过程(图3B)。
-
根据飞行时间质谱测得精确的相对分子质量,比对所建立的数据库,应用Qualiative Analysis 质谱分析软件计算分子组成,将理论值与实测值进行比对,结合上述对照品鉴别结果及相关文献报道,对夏枯草消瘤合剂中药材在正、负离子模式下所得色谱图中色谱峰进行分析,初步鉴别出37个化学成分,结果见表2、表3。对于部分未见区分的同分异构体,后期可考虑调节碎片电压获得化合物的裂解规律进行区分。
表 2 夏枯草消瘤合剂中化学成分的正离子模式鉴别结果
序号 相对时间(min) 化合物 分子式 M+H 实验值(m/z) 理论值(m/z) 误差(×10–6) 来源 1 19.174 7-羟基异喹啉 C9H7NO [M+H]+ 146.060 8 146.052 8 –0.72 地黄. 2 24.032 Verrucarol C15H22O4 [M+H]+ 267.159 1 267.151 8 0.06 莪术 3 28.388 白术内酯Ⅱ C15H20O2 [M+H]+ 233.153 3 233.146 3 1.49 白术. 41) 30.653 芦丁 C27H30O16 [M+H]+ 611.160 8 611.153 4 –0.27 夏枯草 51) 30.703 槲皮素-3-O-β-D-葡萄糖苷 C21H20O12 [M+H]+ 465.102 9 465.095 5 –0.25 夏枯草 61) 33.713 伞形酮 C9 H6 O3 [M+H]+ 163.038 7 163.031 7 1.54 夏枯草 7 38.337 白术内酯Ⅲ C15H20O3 [M+H]+ 249.148 2 249.141 2 2.05 白术 81) 41.969 十四烷基柠檬酸 C20H36O7 [M+H]+ 389.252 9 389.246 1 1.31 白术 注:1)表示正负模式下测得 表 3 夏枯草消瘤合剂中化学成分的负离子模式鉴别结果
序号 相对时间(min) 化合物 分子式 M+H 实验值(m/z) 理论值(m/z) 误差(×10–6) 来源 91) 1.999 精氨酸 C6H14N4O2 (M-H)– 173.104 3 173.111 7 0.56 地黄 101) 2.109 葡萄糖酸 C6H12O7 (M-H)– 195.051 1 195.058 3 –0.23 夏枯草 11 2.789 苹果酸 C4H6O5 (M-H)– 133.014 3 133.021 5 –0.61 夏枯草 12 2.842 柠檬酸 C7H12O6 (M-H)– 191.019 5 191.027 0 1.04 夏枯草 13 3.305 二氢梓醇 C15H24O10 (M+CHO2)– 409.134 8 409.136 9 0.88 地黄 141) 4.441 梓醇 C15H22O10 (M+CHO2)– 407.118 8 407.121 2 2.01 地黄 15 4.724 尿嘧啶核苷 C9H12N2O6 (M-H)– 243.062 2 243.069 5 0.43 地黄 16 5.869 络氨酸 C9H11NO3 (M-H)– 180.066 4 180.073 9 1.28 地黄 17 9.186 鸟苷 C10H13N5O5 (M-H)– 282.084 1 282.091 7 1.12 地黄 181) 12.586 地黄苷D C27H42O20 (M+CHO2)– 731.225 6 731.226 9 –0.57 地黄 191) 14.46 丁香酸 C9H10O5 (M-H)– 197.045 3 197.052 8 1.48 地黄 20 14.562 益母草苷 C15H24O9 (M+Cl)– 383.111 1 383.642 0.88 地黄 21 18.189 原儿茶酸 C7H6O3 (M-H)– 137.024 5 137.031 7 –0.75 夏枯草 22 19.253 2, 3-二氢 -7-甲氧基-4 -甲基 -1H-1,
5 -苯并二氮卓 -2-酮C11H12N2O2 (M-H)– 203.082 5 203.089 9 0.52 苍术 23 21.839 地黄苦苷 C16H26O8 (M-H)– 345.155 3 345.162 8 0.41 地黄 24 22.327 咖啡酸 C9H8O4 (M-H)– 179.035 1 180.049 5 –0.9 白术 251) 27.255 异迷迭香酸苷 C24H26O13 (M-H)– 521.130 8 521.137 3 –1.42 夏枯草 42) 28.487 芦丁 C27H30O16 (M-H)– 609.146 1 609.153 4 0.08 夏枯草 52) 28.61 槲皮素-3-O-β-D-葡萄糖苷 C21H20O12 (M-H)– 463.088 1 463.095 5 0.26 夏枯草 261) 30.296 迷迭香酸 C18H16O8 (M-H)– 359.077 2 359.084 5 0.18 夏枯草 271) 38.237 异地黄苷 C31H40O15 (M-H)– 651.229 1 651.236 7 0.59 地黄 281) 52.394 表莪术酮 C15H28O2 (M-H)– 239.201 4 239.208 9 1.07 莪术 291) 52.687 肉豆蔻酸 C14H28O2 (M-H)– 227.201 7 227.208 9 –0.12 夏枯草 301) 52.748 熊果酸 C30H48O3 (M-H)– 455.353 455.306 3 0.17 夏枯草 311) 53.606 亚油酸 C18H32O2 (M-H)– 279.232 8 279.240 2 0.55 夏枯草 321) 53.911 软脂酸 C16H32O2 (M-H)– 255.233 4 255.240 2 –1.71 夏枯草 33 54.095 油酸 C18H34O2 (M-H)– 281.249 0 281.255 9 –1.43 夏枯草 341) 54.92 硬脂酸 C18H36O2 (M-H)- 283.264 5 283.271 5 –0.93 苍术 35 33.114 6-0-E阿魏酰基筋骨草醇 C25H32O12 (M-H)– 523.181 7 523.189 4 0.73 地黄 36 51.355 麝香草酚 C10H14O (M-H)– 149.097 1 149.104 5 0.28 夏枯草 37 54.305 11-十八烯酸- C18H34O2 (M-H)– 281.248 6 282.225 9 0.09 夏枯草 注:1)表示负模式下碎片电压160V和260V测得;2)表示正负模式下测得。 -
对色谱条件的摸索,考察了甲醇-水、乙腈-水系统,发现甲醇的洗脱效果优于乙腈,且各色谱峰分离效果更好,加入0.1%甲酸可以改善峰型,并提高质谱响应,故采用甲醇-0.1%甲酸水为流动相。由于本组方含有药材较多,组方内所含成分比较复杂,因此选择大梯度洗脱,以期最大程度地得到其中的化合物保留。质谱检测比较了正、负离子两种扫描模式,由于组方中所含多种化合物响应模式各有不同,因此,选择正、负离子两种扫描模式同时进行监测。对于碎片电压的选择,本方中大部分化学成分在160 V时以准分子离子峰形式稳定存在,有少量化学成分在负离子模式下260V时以准分子离子峰形式稳定存在,图谱本底较低,因此选择160 V、260 V的碎片电压可以最大限度地对复方中的成分进行鉴别。
-
本研究运用 HPLC-TOF/MS 技术快速鉴别夏枯草消瘤合剂中37种化学成分,其中正离子模式碎片电压160 V条件下8个;负离子模式碎片电压160 V条件下28个,碎片电压260 V条件下19个;正负离子均有响应4个,负离子模式两种碎片电压下均有响应16个,并对成分进行了药材归属。该方法在传统的植物化学分离提取基础上对色谱峰进一步明确化,为夏枯草消瘤方的质量控制、体内的深入研究及临床应用奠定了良好的基础。
Identification of chemical constituents of Xiakucao Xiaoliu mixture by HPLC-TOF/MS
-
摘要:
目的 应用高效液相-高分辨飞行时间质谱(HPLC-TOF/MS)技术鉴别夏枯草消瘤方的化学成分。 方法 色谱分离采用ACE(3.0 mm×150 mm)色谱柱;流动相为甲醇(A)和0.1%甲酸水(B),梯度洗脱:0~5 min:5%A,5~10 min:5%~15%A,10~30 min:15%~45%A,30~40 min:45%~70%B,40~50 min:70%~90%B;进样量2 μl,流速为0.4 ml/min;柱温为25 ℃。质谱定性采用飞行时间质谱,采用ESI离子源,正、负离子模式共同监测,参比离子m/z 121.9856,1033.9881;扫描范围m/z 100-1200。 结果 共鉴别出夏枯草消瘤方中37种化学成分,正离子模式碎片电压160 V条件下8个;负离子模式碎片电压160 V条件下28个,碎片电压260 V条件下19个;正负离子均有响应4个,负离子模式两种碎片电压下均有响应16个,并对成分进行了药材归属。 结论 建立了一种基于HPLC-TOF/MS技术对夏枯草消瘤方的化学成分进行鉴别的有效方法,为其质量控制及体内的深入研究奠定了基础。 -
关键词:
- 夏枯草消瘤方 /
- 化学成分 /
- 鉴别 /
- 高效液相-高分辨飞行时间质谱
Abstract:Objective To identify the chemical constituents of Xiakucao Xiaoliu mixture by high performance liquid chromatography-high resolution time-of-flight mass spectrometry (HPLC-TOF/MS). Methods The chromatographic separation ACE (3.0mm×150 mm) column was used. The mobile phase was methanol (A) and 0.1% formic acid (B). The gradient elution was: 0-5 min, 5% A; 5-10 min, 5%-15% A; 10-30 min, 15%-45%A; 30-40 min, 45%-70%B; 40-50 min, 70%-90%B. The injection volume was 2 μl. The flow rate was 0.4 ml/min. The column temperature was 25°C. The mass spectrometry was characterized by time-of-flight mass spectrometry, using ESI ion source. The common monitoring was in positive and negative ion mode. The reference ion was m/z 121.9856, 1033.9881. The scanning range was m/z 100-1200. Results A total of 37 chemical constituents were identified in the Xiakucao Xiaoliu mixture, 8 in the positive ion mode fragment voltage of 160 V, 28 in the negative ion mode fragment voltage of 160 V, and 19 in the fragment voltage of 260 V. Both positive and negative ions had 4 responses. The negative ion mode has 16 responses under both fragment voltages. And the ingredients were medicinal. Conclusion An effective method for the identification of the chemical constituents of Prunella vulgaris L. by HPLC-TOF/MS was established, which laid a foundation for its quality control and in-depth study in vivo. -
丙戊酸钠是一种临床常用的抗癫痫药物,用于治疗全身和部分发作类型的癫痫,同时,丙戊酸钠也可用于治疗与双向情感障碍相关的躁狂发作[1]。丙戊酸钠中毒可能偶然发生,也可能是有意而为之,尤其是对有自残意图的患者[2]。急性丙戊酸钠中毒通常表现为中枢神经系统抑制、肝酶升高、血氨升高和电解质紊乱,如高钠血症等。严重过量使用丙戊酸钠的患者可出现低血压、心动过速、呼吸抑制、代谢性酸中毒、脑水肿等,如果不积极治疗,可进展为昏迷甚至死亡[3]。本文报道一例丙戊酸钠中毒患者的救治过程,为临床救治药物中毒患者中如何发挥临床药师的作用提供参考。
1. 病例概况
患者,女性,22岁,身高165 cm,体重55 kg。因“服用丙戊酸钠缓释片(0.5 g/片)60片4 h”入院。入院前4 h患者因情绪激动自服丙戊酸钠缓释片(0.5g/片)60片(准确计数)后依次出现少语,乏力,嗜睡,但无明显呕吐。
患者自2年前被诊断为双向情感障碍,长期服用抗抑郁药帕罗西汀20mg qd、丙戊酸钠缓释片0.5g qn,规律服药。否认高血压、糖尿病、心脏病、肝炎等慢性疾病,否认食物药物过敏史、无吸烟史,偶有饮酒。
急诊查体:血压145/91 mmHg,心率127次/min,体温37.4℃,呼吸频率20次/min,双肺呼吸音粗,未及明显干湿啰音。心律齐,腹软,未及明显包块,无明显肌紧张。四肢肌力正常,病理征未引出。
实验室检查:C反应蛋白2.47 mg/L,白细胞6.82×109/L,血小板388×109/L,淋巴细胞百分比0.52%,谷丙转氨酶12.7 U/L,结合胆红素2.0 μmol/L,血氨24 μmol/L,白蛋白41 g/L,血红蛋白133 g/L,血总淀粉酶106.8 U/L,血钾3.3 mmol/L,血肌酐63 μmol/L,乳酸3.8 mmol/L,尿隐血1+。肺部CT:两肺下叶炎症。
急查丙戊酸钠血药浓度307.8 mg/L。立即予以洗胃催吐,洗胃容量为20 000 ml,无明显药物碎屑洗出。同时给与纳洛酮促醒、呋塞米利尿、谷胱甘肽、异甘草酸镁保肝、奥美拉唑抑酸护胃等对症支持治疗后,转入ICU继续治疗。入院诊断:急性丙戊酸钠中毒,肺部感染,双向情感障碍。
2. 治疗经过及临床药师建议
患者转入时嗜睡乏力,鼻导管吸氧。有文献报道,如果急性摄入丙戊酸钠超过200 mg/kg或血药浓度大于180 mg /L的患者,常导致中枢神经系统功能障碍,可能发生震颤、躁动、脑水肿等神经功能损伤[4]。考虑到患者丙戊酸钠血药浓度较高,临床医生开放中心静脉通路,行连续静脉-静脉透析-滤过治疗(CVVHDF),处理前急查丙戊酸钠血药浓度317.4 mg/L,CVVHDF模式,血流速度160 ml/min,脱水速度110 ml/h,透析液2000 ml/h。首次CVVHDF后,立即查丙戊酸钠血药浓度150.3 mg/L,仍然偏高,CVVHDF后约8 h查血药浓度为260.9 mg/L,药师建议行CVVHDF联合血液灌注加速药物的清除。
入院第2天,患者神志清,精神软,乏力状,气平,心律齐,血氨67 μmol/L,血红蛋白110 g/L,白蛋白34.8 g/L,余未见明显异常,针对血氨升高,使用注射用门冬氨酸鸟氨酸10 g qd,继续补液、护胃、保肝等治疗。并行血液灌流治疗3 h,低分子肝素体外抗凝,血流速度160 ml/min。血液灌流后查丙戊酸钠血药浓度97.7 mg/L。第3天,查丙戊酸钠血药浓度227.8 mg/L,血氨116.5 μmol/L,白蛋白28 g/L,总蛋白56 g/L,临床药师建议补充人血白蛋白,血总淀粉酶139.9 U/L,关注胰腺炎可能。患者诉入院以来没有大便,腹部听诊器检查提示肠鸣音较弱,临床药师结合患者血氨较高,建议医生使用乳果糖口服液,20 ml tid。患者精神状态可,神志清,精神软,考虑到患者服用丙戊酸钠剂量过大,组织器官可能存在药物蓄积,故继续行CVVHDF联合血液灌流治疗,方法同前。治疗后,测丙戊酸钠血药浓度73.5 mg/L。第4天,查血药浓度65 mg/L,血氨96 μmol/L,入院第5天血药浓度41 mg/L,血氨28 μmol/L,精神状态可,神志清,嗜睡情况明显好转,转出ICU。在住院期间,除白蛋白短暂降低,血氨升高外,肝肾功能未见明显异常,予以出院。
3. 讨论
近年来急诊各种药物过量患者呈现上升趋势,服用药物也越来越复杂。临床上能开展的血药浓度监测较少。而近年来开展的丙戊酸钠血药浓度监测逐渐应用于临床。目前测定丙戊酸钠血药浓度采用荧光免疫法,具有简便、快速,临床实用性强等特点[5]。
丙戊酸钠口服生物利用度接近100%,血浆蛋白结合率较高,血药浓度50 mg/L时蛋白结合率约为94%,血药浓度100 mg/L时,蛋白结合率为80%~85%,主要分布在细胞外液和肝、肾、肠、脑等组织,大部分经肝脏代谢,包括与葡萄糖醛酸共价结合和β氧化酶氧化等过程,后大部分经肾脏排泄。丙戊酸钠为小分子化合物,水溶性较强,蛋白结合率高,考虑到患者吞服丙戊酸钠缓释片剂量过大,且血药浓度较高,文献报道急性摄入丙戊酸钠过多,血药浓度大于180 mg/L常导致患者中枢神经系统功能障碍,如震颤、躁动、脑水肿等神经功能损伤,丙戊酸钠组织器官药物浓度高可能损伤肝、脑、肾等多种重要器官[4]。有文献报道大鼠口服丙戊酸钠半数致死量折算到人的半数致死量为0.13~0.16 g/kg[6],按照患者60 kg计算,半数致死剂量约为8~10 g,极限致死剂量为15 g左右,该患者服用丙戊酸钠缓释片总量达到30 g,具有积极抢救的意义。
过量服用丙戊酸钠虽无特效解毒剂,但亦无洗胃禁忌证。专家共识认为,对无特效解毒剂的急性重度中毒患者,即使已超过6 h仍可考虑洗胃[7],丙戊酸钠缓释片服药10 h可溶出80%左右[8],其说明书亦指出洗胃治疗在药物摄入后10~12 h内仍然有效果,故临床药师认为对该患者进行洗胃处理很合理且必要。
丙戊酸钠为强碱弱酸盐,水中溶解后呈弱碱性,pH7.5~9.0,加强利尿可促进丙戊酸钠的排出。临床药师结合丙戊酸钠理化性质、药动学特点,建议采用连续肾脏替代治疗(CRRT)和血液灌流相结合的方法清除药物。文献表明,血液透析和血液灌流可以加快丙戊酸的消除。在一项病例研究中,血液透析使丙戊酸半衰期从治疗前13 h减少到治疗后1.7 h,并在治疗4 h内表现出显著的临床改善[9]。当血清丙戊酸钠浓度降至50 ~ 100 mg /L (350 ~ 700 mmol/L)时,可停止体外治疗。
在本例中,临床医生紧急开放中心静脉通路,行CVVHDF治疗,快速稳定降低患者血液中游离态丙戊酸钠浓度。经10 h CVVHDF治疗,丙戊酸钠血药浓度从317 mg/L降低至150 mg/L,8 h后血药浓度又反跳至261 mg/L。血液净化一次后丙戊酸钠血药浓度可能出现反跳现象[10],缘于组织器官药物浓度依然较大,药物重新分布导致血药浓度再次上升。临床药师考虑到丙戊酸钠蛋白结合率高,而CRRT主要用于高水溶性、小分子、低蛋白结合率的毒物清除,对结合态丙戊酸钠清除效果不佳,故建议在CRRT基础上联合血液灌流治疗,血液灌流主要用于高蛋白结合率、高脂溶性、相对分子质量较大的毒物,树脂灌流器对蛋白结合和脂溶性分子清除较好,经3 h血液灌流,丙戊酸钠血药浓度从261 mg/L降低至97.7 mg/L,清除效果较显著。在体内,丙戊酸钠以游离状态与相应受体结合产生药效,因丙戊酸钠血浆蛋白结合率高,血浆蛋白含量的改变可以显著影响游离丙戊酸钠浓度,进而影响药效或产生毒性不良反应[11]。有研究证实等量丙戊酸钠随血浆蛋白的增加,游离丙戊酸钠血药浓度呈下降趋势[12],当患者血浆白蛋白降低时适当补充白蛋白可以减小丙戊酸钠的毒副作用。
丙戊酸钠导致的血氨升高及相关的高氨血症性脑病时有报道[4],可表现为精神错乱、癫痫发作、嗜睡等,可进展为昏迷甚至死亡,临床应密切关注患者血氨变化。患者入院第二天血氨升高,达67 μmol/L,使用注射用门冬氨酸鸟氨酸10 g qd。本药可提供尿素和谷氨酰胺合成的底物,谷氨酰胺是氨的解毒产物,同时也是氨的储存及运输形式;鸟氨酸涉及尿素循环的活化和氨的解毒全过程;门冬氨酸参与肝细胞内核酸的合成,以利于修复被损伤的肝细胞[13]。入院第三天患者诉入院以来无大便,且血氨升至116.5 μmol/L,故临床药师建议口服乳果糖,乳果糖为渗透性轻泻剂,在小肠内不被水解吸收,其渗透性使水和电解质保留于肠腔,本药在结肠内被细菌分解成乳酸、醋酸,使肠内渗透压进一步升高,粪便容量增大,刺激肠蠕动,产生导泄作用。结肠内生成的乳酸和醋酸可以使肠腔pH值降低,形成不利于分解蛋白质的细菌生存、繁殖的酸性内环境,从而减少氨的产生,酸性环境还可使NH3转变为NH4+,解离状态的NH4+脂溶性小,肠道难以吸收而随粪便排出,当结肠内pH值从7.0降至5.0时,结肠黏膜不仅不吸收氨入血,反而从血液中向结肠排出氨[14]。乳果糖在治疗便秘的同时可以降低血氨。
-
表 1 药材信息
药材名称 批号 药材来源 夏枯草 180207 上海康桥药业有限公司 生地黄 180302 上海同济堂药业有限公司 莪术 180306 上海虹桥中药饮片有限公司 麸炒白术 2018031001 上海上药华宇药业有限公司 麸炒苍术 180407 上海虹桥中药饮片有限公司 牡蛎 2017102006 上海上药华宇药业有限公司 煅牡蛎 180301 上海同济堂药业有限公司 表 2 夏枯草消瘤合剂中化学成分的正离子模式鉴别结果
序号 相对时间(min) 化合物 分子式 M+H 实验值(m/z) 理论值(m/z) 误差(×10–6) 来源 1 19.174 7-羟基异喹啉 C9H7NO [M+H]+ 146.060 8 146.052 8 –0.72 地黄. 2 24.032 Verrucarol C15H22O4 [M+H]+ 267.159 1 267.151 8 0.06 莪术 3 28.388 白术内酯Ⅱ C15H20O2 [M+H]+ 233.153 3 233.146 3 1.49 白术. 41) 30.653 芦丁 C27H30O16 [M+H]+ 611.160 8 611.153 4 –0.27 夏枯草 51) 30.703 槲皮素-3-O-β-D-葡萄糖苷 C21H20O12 [M+H]+ 465.102 9 465.095 5 –0.25 夏枯草 61) 33.713 伞形酮 C9 H6 O3 [M+H]+ 163.038 7 163.031 7 1.54 夏枯草 7 38.337 白术内酯Ⅲ C15H20O3 [M+H]+ 249.148 2 249.141 2 2.05 白术 81) 41.969 十四烷基柠檬酸 C20H36O7 [M+H]+ 389.252 9 389.246 1 1.31 白术 注:1)表示正负模式下测得 表 3 夏枯草消瘤合剂中化学成分的负离子模式鉴别结果
序号 相对时间(min) 化合物 分子式 M+H 实验值(m/z) 理论值(m/z) 误差(×10–6) 来源 91) 1.999 精氨酸 C6H14N4O2 (M-H)– 173.104 3 173.111 7 0.56 地黄 101) 2.109 葡萄糖酸 C6H12O7 (M-H)– 195.051 1 195.058 3 –0.23 夏枯草 11 2.789 苹果酸 C4H6O5 (M-H)– 133.014 3 133.021 5 –0.61 夏枯草 12 2.842 柠檬酸 C7H12O6 (M-H)– 191.019 5 191.027 0 1.04 夏枯草 13 3.305 二氢梓醇 C15H24O10 (M+CHO2)– 409.134 8 409.136 9 0.88 地黄 141) 4.441 梓醇 C15H22O10 (M+CHO2)– 407.118 8 407.121 2 2.01 地黄 15 4.724 尿嘧啶核苷 C9H12N2O6 (M-H)– 243.062 2 243.069 5 0.43 地黄 16 5.869 络氨酸 C9H11NO3 (M-H)– 180.066 4 180.073 9 1.28 地黄 17 9.186 鸟苷 C10H13N5O5 (M-H)– 282.084 1 282.091 7 1.12 地黄 181) 12.586 地黄苷D C27H42O20 (M+CHO2)– 731.225 6 731.226 9 –0.57 地黄 191) 14.46 丁香酸 C9H10O5 (M-H)– 197.045 3 197.052 8 1.48 地黄 20 14.562 益母草苷 C15H24O9 (M+Cl)– 383.111 1 383.642 0.88 地黄 21 18.189 原儿茶酸 C7H6O3 (M-H)– 137.024 5 137.031 7 –0.75 夏枯草 22 19.253 2, 3-二氢 -7-甲氧基-4 -甲基 -1H-1,
5 -苯并二氮卓 -2-酮C11H12N2O2 (M-H)– 203.082 5 203.089 9 0.52 苍术 23 21.839 地黄苦苷 C16H26O8 (M-H)– 345.155 3 345.162 8 0.41 地黄 24 22.327 咖啡酸 C9H8O4 (M-H)– 179.035 1 180.049 5 –0.9 白术 251) 27.255 异迷迭香酸苷 C24H26O13 (M-H)– 521.130 8 521.137 3 –1.42 夏枯草 42) 28.487 芦丁 C27H30O16 (M-H)– 609.146 1 609.153 4 0.08 夏枯草 52) 28.61 槲皮素-3-O-β-D-葡萄糖苷 C21H20O12 (M-H)– 463.088 1 463.095 5 0.26 夏枯草 261) 30.296 迷迭香酸 C18H16O8 (M-H)– 359.077 2 359.084 5 0.18 夏枯草 271) 38.237 异地黄苷 C31H40O15 (M-H)– 651.229 1 651.236 7 0.59 地黄 281) 52.394 表莪术酮 C15H28O2 (M-H)– 239.201 4 239.208 9 1.07 莪术 291) 52.687 肉豆蔻酸 C14H28O2 (M-H)– 227.201 7 227.208 9 –0.12 夏枯草 301) 52.748 熊果酸 C30H48O3 (M-H)– 455.353 455.306 3 0.17 夏枯草 311) 53.606 亚油酸 C18H32O2 (M-H)– 279.232 8 279.240 2 0.55 夏枯草 321) 53.911 软脂酸 C16H32O2 (M-H)– 255.233 4 255.240 2 –1.71 夏枯草 33 54.095 油酸 C18H34O2 (M-H)– 281.249 0 281.255 9 –1.43 夏枯草 341) 54.92 硬脂酸 C18H36O2 (M-H)- 283.264 5 283.271 5 –0.93 苍术 35 33.114 6-0-E阿魏酰基筋骨草醇 C25H32O12 (M-H)– 523.181 7 523.189 4 0.73 地黄 36 51.355 麝香草酚 C10H14O (M-H)– 149.097 1 149.104 5 0.28 夏枯草 37 54.305 11-十八烯酸- C18H34O2 (M-H)– 281.248 6 282.225 9 0.09 夏枯草 注:1)表示负模式下碎片电压160V和260V测得;2)表示正负模式下测得。 -
[1] 贺天临, 谢国群, 陈洁, 等. 夏枯草消瘤合剂联合化疗治疗中晚期非小细胞肺癌30例[J]. 上海中医药大学学报, 2015, 29(5):29-32. [2] 朱全刚, 程亮, 顾小燕, 等. HPLC法同时测定夏枯草消瘤合剂中迷迭香酸和咖啡酸的含量[J]. 中医药导报, 2015, 21(20):21-23. [3] 李芳, 林丽美, 李春. 夏枯草化学成分研究概况[J]. 中国实验方剂学杂志, 2011, 17(24):270-274. doi: 10.3969/j.issn.1005-9903.2011.24.075 [4] BAI Y B, XIA B H, XIE W J, et al. Phytochemistry and pharmacological activities of the genus Prunella[J]. Food Chem,2016,204:483-496. doi: 10.1016/j.foodchem.2016.02.047 [5] MENG G, WANG M, ZHANG K J, et al. Research progress on the chemistry and pharmacology of Prunella vulgaris species[J]. OALib,2014,1(3):1-19. [6] 梁杰康, 张琳, 严晓明. HPLC-ESI-MS/MS鉴定夏枯草的主要化学成分[J]. 中国中医药现代远程教育, 2013, 11(14):153-154. doi: 10.3969/j.issn.1672-2779.2013.14.101 [7] 孟正木, 何立文. 夏枯草化学成分研究[J]. 中国药科大学学报, 1995, 26(6):329-331. doi: 10.3321/j.issn:1000-5048.1995.06.003 [8] 王祝举, 赵玉英, 涂光忠, 等. 夏枯草化学成分的研究[J]. 药学学报, 1999, 34(9):679-681. doi: 10.3321/j.issn:0513-4870.1999.09.010 [9] 余茜, 戚进, 刘守金. 夏枯草果穗的化学成分[J]. 中国实验方剂学杂志, 2012, 18(5):107-109. doi: 10.3969/j.issn.1005-9903.2012.05.034 [10] 黄桢, 朱俏峭, 戚进, 等. 地黄的化学成分研究[J]. 海峡药学, 2016, 28(7):34-36. doi: 10.3969/j.issn.1006-3765.2016.07.013 [11] 刘彦飞, 梁东, 罗桓, 等. 地黄的化学成分研究[J]. 中草药, 2014, 45(1):16-22. [12] 冯卫生, 李孟, 郑晓珂, 等. 生地黄化学成分研究[J]. 中国药学杂志, 2014, 49(17):1496-1502. [13] 钟艳梅, 冯毅凡, 郭姣. 基于UPLC/Q-TOF MS技术的白术药材化学成分快速识别研究[J]. 质谱学报, 2015, 36(1):72-77. doi: 10.7538/zpxb.youxian.2014.0058 [14] 李伟, 文红梅, 崔小兵, 等. 白术的化学成分研究[J]. 中草药, 2007, 38(10):1460-1462. doi: 10.3321/j.issn:0253-2670.2007.10.008 [15] 邓爱平, 李颖, 吴志涛, 等. 苍术化学成分和药理的研究进展[J]. 中国中药杂志, 2016, 41(21):3904-3913. [16] 庞雪, 刘玉强, 刘小丹, 等. 苍术麸炒前后活性部位药效比较研究[J]. 中国药房, 2016, 27(10):1308-1311. doi: 10.6039/j.issn.1001-0408.2016.10.04 [17] 吕狄亚. 中药莪术化学成分分析及药代动力学研究[D].上海: 第二军医大学, 2011. [18] 汤敏燕, 孙凌峰, 汪洪武. 中药莪术挥发油化学成分的研究[J]. 林产化学与工业, 2000, 20(3):65-69. doi: 10.3321/j.issn:0253-2417.2000.03.012 [19] ZHAO L, LOU Z Y, ZHU Z Y, et al. Characterization of constituents in Stellera chamaejasme L. by rapid-resolution liquid chromatography-diode array detection and electrospray ionization time-of-flight mass spectrometry[J]. Biomed Chromatogr,2008,22(1):64-72. doi: 10.1002/bmc.897 [20] ZHANG H, GONG C G, LV L, et al. Rapid separation and identification of furocoumarins in Angelica dahurica by high-performance liquid chromatography with diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry[J]. Rapid Commun Mass Spectrom,2009,23(14):2167-2175. doi: 10.1002/rcm.4123 -