-
脑胶质瘤是最常见的原发性脑肿瘤类型之一,占所有原发性脑肿瘤的近30%,占所有恶性脑肿瘤的80%,中位生存时间约为12.5~15.0个月,手术切除、放疗、烷化剂化疗或靶向治疗是脑胶质瘤治疗主要手段[1, 2]。尽管近年来脑胶质瘤的生物学研究取得了很多进展,但并没有显著改善患者的治疗效果[3]。目前,多数研究采用传统的细胞模型、肿瘤球体模型、以啮齿类动物为代表的体内模型评估药物的有效性,但这些模型不能真实预测药物在临床治疗的疗效,候选药物在I期临床试验中的成功概率仅为3.4%,由于有效性不足和安全性差,最终阶段的失败率为54%[4]。因此,迫切需要能够真实反映人类脑胶质瘤疾病特征、微环境及其对治疗药物的反应等特点的临床前模型。
微流控芯片技术能实现在特定形状的通道中精确操纵各种流体和化学参数,例如,营养物质、流速、压力、氧气和pH值,提供可控的培养条件,从而仿真模拟人体组织和器官的微观结构和功能特征[5],在脑胶质瘤相关研究如循环分离肿瘤细胞、药物筛选、胶质母细胞瘤进展和细胞定位、模拟肿瘤与血流、缺氧和血管生成之间的相互作用等具有广泛的应用[6]。笔者应用脑胶质瘤细胞构建了一种模拟肿瘤微环境的脑胶质瘤微流控芯片模型,用两种抗肿瘤药物进行药效验证和模型评价,并进一步探究中药半枝莲提取液抗脑胶质瘤的疗效,以期为寻找治疗脑胶质瘤中药及其活性成分筛选提供技术支撑。
Construction of glioma microfluidic chip model and evaluation the medicinal efficacy of traditional Chinese medicine
-
摘要:
目的 构建一种脑胶质瘤微流控芯片模型,模拟肿瘤微环境,用于抗脑胶质瘤中药药效评价。 方法 将神经胶质细胞瘤细胞U251接种于不同培养方式的微流控芯片内,对所构建的模型内细胞的活力和肿瘤微环境进行表征,采用荧光染色法评价阳性药替莫唑胺(TMZ)和多西他赛(DOC)对模型内细胞活性和凋亡的影响,将该模型应用于中药半枝莲提取液抗脑胶质瘤的药效评价。 结果 所构建的U251微流控芯片模型中细胞具有较高活力,并能够在一定程度上模拟肿瘤缺氧的微环境;芯片中U251细胞的活力随着阳性药浓度的升高而降低,3D培养的U251细胞活力高于2D培养(P<0.05);细胞内线粒体膜电位随着阳性药浓度的升高而下降;2 mg/ml半枝莲提取液可以一定程度上杀伤U251细胞,并可以降低模型内细胞的线粒体膜电位。 结论 成功构建了能有效模拟肿瘤微环境和快速评估抗肿瘤药效的脑胶质瘤微流控芯片模型,为抗脑胶质瘤中药的药效评价和活性成分筛选提供了新策略。 Abstract:Objective To construct a glioma microfluidic chip model to simulate tumor microenvironment for evaluating the medicinal efficacy of anti-glioma traditional Chinese medicines. Methods Glioblastoma cells U251 were seeded into microfluidic chips with different culture modes, and the cell viability and tumour microenvironment within the constructed model were characterized. Fluorescence staining was used to evaluate the effects of the positive drugs temozolomide (TMZ) and docetaxel (DOC) on the cell activity and apoptosis within the model, which was applied to evaluate the medicinal efficacy of the extracts of the herb Scutellaria barbata on gliomas. Results The cells in the constructed U251 microfluidic chip model displayed high viability and were able to mimic the hypoxic microenvironment of tumor to a certain extent; the viability of the U251 cells in the microfluidic chips decreased with the increasing of the concentration of the positive drug, and the viability of the 3D cultured U251 cells was higher than in the 2D condition (P<0.05); the intracellular mitochondrial membrane potential decreased with the increasing of the concentration of the positive drug; and the 2 mg /ml Scutellaria barbata extract killed U251 cells to a certain extent and reduced the mitochondrial membrane potential of the cells in the model. Conclusion This study successfully constructed a microfluidic chip model of glioma that could effectively simulate the tumor microenvironment and rapidly evaluate the anti-tumor medicinal efficacy, which provided a new strategy for the medicinal efficacy evaluation and active components screening of anti-glioma traditional Chinese medicines. -
-
[1] LI L, ZHANG T H, XIAO M L, et al. Brain macrophage senescence in glioma[J]. Semin Cancer Biol, 2024, 104-105:46-60. doi: 10.1016/j.semcancer.2024.07.005 [2] LIN H, LIU C X, HU A K, et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives[J]. J Hematol Oncol, 2024, 17(1):31. doi: 10.1186/s13045-024-01544-7 [3] WEN P Y, WELLER M, LEE E Q, et al. Glioblastoma in adults: a Society for Neuro-Oncology(SNO)and European Society of Neuro-Oncology(EANO)consensus review on current management and future directions[J]. Neuro Oncol, 2020, 22(8):1073-1113. doi: 10.1093/neuonc/noaa106 [4] ALVES A H, NUCCI M P, MAMANI J B, et al. The advances in glioblastoma on-a-chip for therapy approaches[J]. Cancers, 2022, 14(4):869. doi: 10.3390/cancers14040869 [5] MA C, PENG Y S, LI H T, et al. Organ-on-a-chip: a new paradigm for drug development[J]. Trends Pharmacol Sci, 2021, 42(2):119-133. doi: 10.1016/j.tips.2020.11.009 [6] SLIKA H, KARIMOV Z, ALIMONTI P, et al. Preclinical models and technologies in glioblastoma research: evolution, current state, and future avenues[J]. Int J Mol Sci, 2023, 24(22):16316. doi: 10.3390/ijms242216316 [7] AGOSTI E, ANTONIETTI S, IUS T, et al. Glioma stem cells as promoter of glioma progression: a systematic review of molecular pathways and targeted therapies[J]. Int J Mol Sci, 2024, 25(14):7979. doi: 10.3390/ijms25147979 [8] ORAIOPOULOU M E, TZAMALI E, PAPAMATHEAKIS J, et al. Phenocopying glioblastoma: a review[J]. IEEE Rev Biomed Eng, 2023, 16:456-471. doi: 10.1109/RBME.2021.3111744 [9] PASUPULETI V, VORA L, PRASAD R, et al. Glioblastoma preclinical models: strengths and weaknesses[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(1):189059. doi: 10.1016/j.bbcan.2023.189059 [10] JAYARAM M A, PHILLIPS J J. Role of the microenvironment in glioma pathogenesis[J]. Annu Rev Pathol, 2024, 19:181-201. doi: 10.1146/annurev-pathmechdis-051122-110348 [11] Kaur S, Kaur I, Rawal P, et al. Non-matrigel scaffolds for organoid cultures[J]. Cancer Lett, 2021, 504:58-66. doi: 10.1016/j.canlet.2021.01.025 [12] Lin L, Chung CK. PDMS Microfabrication and Design for Microfluidics and Sustainable Energy Application: Review [J]. Micromachines(Basel), 2021, 12(11)pii: mi12111350. [13] Slika H, Karimov Z, Alimonti P, et al. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues[J]. International Journal of Molecular Sciences, 2023, 24:16316. doi: 10.3390/ijms242216316 [14] ZHAO M N, VAN STRATEN D, BROEKMAN M L D, et al. Nanocarrier-based drug combination therapy for glioblastoma[J]. Theranostics, 2020, 10(3):1355-1372. doi: 10.7150/thno.38147 [15] MA R C, TAPHOORN M J B, PLAHA P. Advances in the management of glioblastoma[J]. J Neurol Neurosurg Psychiatry, 2021, 92(10):1103-1111. doi: 10.1136/jnnp-2020-325334 [16] 脑胶质瘤中西医结合临床诊疗专家共识(上海)[J]. 上海中医药大学学报, 2023, 37(05): 1-10. [17] 陈紫莹, 赵晓平, 范小璇, 等. 中药治疗脑胶质瘤作用机制研究进展[J]. 环球中医药, 2024, 17(5):959-964. doi: 10.3969/j.issn.1674-1749.2024.05.039 [18] 齐帆, 赵晓平, 范小璇, 等. 中医药调控肿瘤微环境治疗脑胶质瘤的研究进展[J]. 中国实验方剂学杂志, 2024, 30(16):303-314. [19] 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 122. [20] CHEN Q, RAHMAN K, WANG S J, et al. Scutellaria barbata: a review on chemical constituents, pharmacological activities and clinical applications[J]. Curr Pharm Des, 2020, 26(1):160-175. doi: 10.2174/1381612825666191216124310 [21] 唐笛笛, 赵晓平, 范小璇, 等. 半枝莲抗胶质瘤微血管生成的研究进展[J]. 环球中医药, 2023, 16(8):1701-1706. doi: 10.3969/j.issn.1674-1749.2023.08.044 [22] 韩春辉. 白花蛇舌草、半枝莲及其药对提取物对人胶质瘤细胞迁移侵袭的影响及作用机制研究[D]. 大连: 大连医科大学, 2019. [23] HE X Y, XIONG L L, XIA Q J, et al. C18H17NO6 and its combination with scutellarin suppress the proliferation and induce the apoptosis of human glioma cells via upregulation of fas-associated factor 1 expression[J]. Biomed Res Int, 2019, 2019:6821219. [24] HE X Y, XU Y, XIA Q J, et al. Combined scutellarin and C18H17NO6 imperils the survival of glioma: partly associated with the repression of PSEN1/PI3K-AKT signaling axis[J]. Front Oncol, 2021, 11:663262. doi: 10.3389/fonc.2021.663262