-
卡培他滨是一种新型的氟尿嘧啶类口服药,它是5-氟尿嘧啶(5-FU)的前体药物。卡培他滨口服给药方便、依从性好、疗效确切,是治疗结直肠癌的基石药物,但在治疗过程中产生的不良反应(手足综合征等)极大地影响了患者的治疗。手足综合征(HFS)是卡培他滨引起的不良反应中较为特殊的反应,也是卡培他滨在治疗过程中的药物剂量限制性不良反应,主要表现为皮肤红肿、水泡、出血、疼痛。合并使用环氧合酶、尿素霜、维生素B6、奥美拉唑也不能完全阻断手足综合征的发生[1-3];合并使用中草药如白芍、桂枝、甘草等可降低手足综合征的发生率[4]。口服卡培他滨的患者手足综合征发生率高达60%[1],严重降低患者用药依从性,严重手足综合征(约17%)的患者只能减少药物摄入量乃至停止服用药物,影响化疗按期、足量进行[5-6]。明确手足综合征的发生机制和有效干预对卡培他滨安全有效的应用具有重要价值。目前手足综合征模型的建立还没有统一的金标准,本实验尝试用ICR小鼠灌胃卡培他滨后建立手足综合征模型,为卡培他滨致手足综合征模型的建立及机制研究提供参考。
-
雄性ICR小鼠,SPF级,5周龄左右,共42只小鼠,小鼠由上海西普尔-必凯实验动物有限公司提供。经上海中医药大学动物伦理委员会批准,实验动物伦理审查号为PZSHUTCM210715004。将小鼠随机编号1~42号,对照组ICR小鼠6只,实验组ICR小鼠36只。卡培他滨(商品名希罗达,上海罗氏制药有限公司,规格:0.5 g/片,国药准字号H20073024);羧甲基纤维素钠(CMC-Na)(国药集团);离心管(Titan公司);动物解剖手术器材(瑞沃德公司);消毒酒精、棉花球、锡箔纸(国药集团)。
-
造模前小鼠先饲养1周,保证充足的水源与饲料,42只ICR小鼠自由摄取食物,环境湿度保持区间50%~60%(±5%),控制温度在(23±1) ℃,调节光照为12 h(6: 30至18: 30光照),其余时间为光暗周期。定期观察小鼠培养环境,定期为小鼠更换垫料,清理排泄物。
-
卡培他滨0.5 g/片,溶解于10 ml CMC-Na(0.5%)中,制得50 mg/ml悬浊液备用。实验组ICR小鼠(36只),灌胃给药,按275 mg/kg(即小鼠0.15 ml/30g)连续灌胃14 d,2次/d(按照卡培他滨临床给药方案1 250 mg/kg,2次/d的剂量换算)。对照组ICR小鼠(6只),灌胃给予CMC-Na(0.5%)溶液,按照4 ml/kg剂量连续的灌胃14 d,2次/d。
-
取ICR小鼠的后足跖部皮肤组织,用生理盐水冲洗并擦干,以多聚甲醛(4%)对小鼠组织进行固定,石蜡包埋切片,使用苏木精-伊红对小鼠组织染色(H&E染色),使用普通光镜(比例尺5 μm)检测(注:染色呈现蓝色的为表皮层,该层位于淡粉色的角质层和淡蓝色的真皮层之间)。每天肉眼观察,若小鼠出现足跖部特征性改变,立即拍照并记录手足综合征发生时间,每3 d拍照记录小鼠足跖部皮肤变化情况。
-
实验组与对照组自由饲养1周后称重,记录原始体重,灌胃给药后每3 d对所有实验小鼠称重一次并记录体重变化。
-
标准参考美国国家癌症研究所(NCI)关于手足综合征的分级规定,建模实验中若实验小鼠足跖部的皮肤呈现了红色斑块、组织肿胀、角质层脱屑、溃疡、角质层厚度明显增加及其他明显体征者均可判定为手足综合征阳性。
-
对于手足综合征阳性的小鼠,在出现手足综合征后,经眼眶采样,用1.5 ml离心管(肝素钠抗凝)取血约0.5 ml,12 000 r/min离心10 min,收集血浆约0.25 ml,置于−80 ℃冰箱冷冻保存。采集小鼠血样后按照实验动物伦理要求规范处死小鼠,用手术剪取小鼠手足部皮肤,生理盐水冲洗后用锡纸包裹住样本并标号。所有样本置于−80 ℃冰箱冷冻保存,所有操作在1 h内完成。
-
小鼠经过14 d给药未出现手足综合征阳性反应,则认定该类小鼠为造模失败小鼠,在第15天对该类小鼠统一进行眼眶采血和足趾部皮肤组织样本收集,方法同“1.5.1”。对照组小鼠在第15天收集样本,方法同“1.5.1”。
-
数据采用平均值±标准差(mean±SD)表示,组与组之间根据数据分布状态比较采用学生t检验或秩检验,P<0.05认为有统计学差异。制图采用Excel或Graphpad 8.0软件。
-
通过对比对照组与实验组ICR小鼠体重变化,发现对照组ICR小鼠,灌胃14 d后,体重明显增加;而实验组ICR小鼠,灌胃14 d后,体重明显降低。表1和图1 为14 d内ICR小鼠的体重变化,实验过程中实验组小鼠死亡3只。
表 1 实验周期内小鼠体重变化情况(m/g,
$ \bar{x}\pm s $ )组别 n 0 d 7 d 14 d 对照组 6 28.54±0.71 32.56±0.88 34.66±1.07 实验组 33 29.07±0.76 26.84±1.74*** 23.15±2.31*** *** P<0.001,与对照组比较。 -
与对照组ICR小鼠相比,19只实验组小鼠的足底皮肤明显出现红斑、肿涨并出现少许水泡(图2),认为该小鼠出现手足综合征,按照伦理要求将小鼠处死,收集足底皮肤组织样本和血浆样本。
-
将ICR小鼠四肢皮肤用4%多聚甲醛固定后进行H&E染色(因苏木精呈碱性,细胞核内的染色质与胞质内的核酸显紫蓝色;伊红呈酸性,细胞质和细胞外基质中的成分显红色),如图3显示。与正常ICR小鼠相比,手足综合征阳性小鼠皮肤表皮层增厚,角质层呈现粉红色,真皮层呈现浅蓝色,表皮层处在二者之间呈现蓝色。发生HFS小鼠皮肤颗粒层变薄,基底层和棘层间细胞数量减少。正常小鼠角质层明显较薄。
-
ICR小鼠共39只(对照组6只,实验组33只),19只实验组ICR小鼠出现手足综合征阳性症状,发生率为57.58%。实验组ICR小鼠灌胃给药1周,出现手足综合征阳性小鼠与未出现手足综合征小鼠相比:实验组小鼠足底皮肤颜色变深(深红色),少量小鼠四肢掌心有透明水泡样组织出现;在灌胃给药10 d后,实验组小鼠出现手足综合征阳性症状,四肢出现了红斑、脱屑、水泡(红斑出现最多,脱屑其次,水泡最少)等情况。
-
将收集的血浆样本按照前期报道的方法进行卡培他滨及其5种代谢产物(5'-脱氧-5-氟胞嘧啶核苷、去氧氟尿苷、5'-氟-2'-脱氧尿苷、5-氟尿嘧啶、5-氟二氢嘧啶-2,4-二酮[7])定量(ng/ml,mean±SD)。结果发现,发生手足综合征小鼠与未发生手足综合征小鼠相比,卡培他滨浓度(ng/ml)分别为(58.08±44.54)和(39.23±26.98),5'-脱氧-5-氟胞嘧啶核苷浓度(ng/ml)分别为(
6047.42 ±3331.94 )和(4442.77 ±2140.44 ),去氧氟尿苷浓度(ng/ml)分别为(2899.28 ±1821.15 )和(2018.81 ±1037.86 ),5'-氟-2'-脱氧尿苷浓度(ng/ml)分别为(112.89±36.85) 和(122.23±19.16),5-氟尿嘧啶浓度(ng/ml)分别为(46.86±23.08)和(38.33±20.62),5-氟二氢嘧啶-2,4-二酮浓度(ng/ml)分别为(24.45±14.79)和(27.34±17.84)。卡培他滨及其代谢产物在发生和未发生手足综合征小鼠体内暴露水平均无明显差异(P>0.05,图4)。 -
体内药物暴露水平同药物疗效和不良反应密切相关。目前药物暴露水平常用的参数有曲线下面积(AUC)、稳态浓度(css)、峰浓度(cmax)、谷浓度(cmin)等。有研究发现[8],根据5-FU的AUC调整给药剂量后,患者血液系统出现3~4级不良反应发生率从之前的17.5%下降为 7.6%(P<0.05),黏膜炎的发生率也从5%降低为0%(P<0.01),总生存时间显著增加,从原来的16个月延长到22个月(P<0.01)。因此,5-FU在体内浓度可能成为预测疗效及不良反应的潜在预警生物标志物之一[9-10]。本研究中未发现卡培他滨及其代谢产物同手足综合征具有相关性,但Daher Abdi在20名75岁以上老年患者中发现,卡培他滨及其代谢产物在发生手足综合征患者体内暴露水平明显较高[11],但体外研究表明,5-FU同手足综合征无明显关联[12]。另有研究表明,手足皮肤局部较高表达的胸苷磷酸化酶可产生局部较高浓度的5-FU,同卡培他滨引发的手足综合征密切相关[13]。总之,卡培他滨引发手足综合征的机制仍需进一步研究。
在卡培他滨致手足综合征模型的建立方面,黎鹏等灌胃给予SD大鼠200~400 mg/d,2次/d,用药1~2周(1周后停药3 d),建立了卡培他滨致手足综合征模型,并认为200 mg/kg的剂量,灌胃2周可较好地建立手足综合征模型(造模成功率77.5%)[14]。但有研究显示,卡培他滨在大鼠体内的代谢过程与人体不同,因大鼠体内胞苷脱胺酶活性较低,5-DFCR通过糖基化生成其他产物,产生的5-FU较少,而卡培他滨在小鼠体内的代谢过程与人体基本相同,可能是最好的动物模型[15-16];Hiromoto [3]等利用ICR小鼠,灌胃给予200 mg/kg,1次/d,5次/周的方法建立手足综合征模型,3周建立手足综合征模型,但成功率未报道。He和Chen等给予ICR小鼠灌胃200 mg/kg,1次/d,连续灌胃30 d后,6只小鼠中仅有1只未发生手足综合征[17]。前期预实验中,采用灌胃200 mg/kg,2次/d的方法在ICR小鼠上建立手足综合征模型,灌胃1周后,6只小鼠仅有1只发生手足综合征。因此,根据临床卡培他滨用药剂量(1 250 mg/kg,2次/d)换算小鼠剂量为275 mg/kg,2次/d,既缩短了给药时间,又提高了建模成功率(57.6%),且较少有小鼠死亡(3只)。
-
本实验成功建立了卡培他滨致手足综合征的ICR小鼠模型,在给药时长、造模成功率方面均有一定优势。卡培他滨及其代谢产物在小鼠体内暴露浓度同手足综合征发生可能无关。手足综合征的发生机制仍需进一步研究。
Establishment of mouse model of hand-foot syndrome induced by capecitabine
-
摘要:
目的 手足综合征是卡培他滨的剂量限制性毒性反应。目前手足综合征模型的建立并没有统一的金标准,本实验给予ICR小鼠灌胃卡培他滨,诱导手足综合征发生,为手足综合征模型的建立提供借签。 方法 42只雄性ICR小鼠随机分为对照组(6只)和实验组(36只),实验组持续2周灌胃给予卡培他滨(275 mg/kg,2次/d),对照组给予溶剂0.5% CMC-Na(4 ml/kg,2次/d),取小鼠足部皮肤样本进行H&E染色,观察足跖部特征性外观以及形态改变,评估手足综合征的动物模型是否成功构建;实验结束后处死小鼠,收集血浆,定量其中卡培他滨及其代谢产物浓度改变。 结果 6只对照组小鼠均未出现手足综合征症状;实验组19只小鼠足部皮肤出现红斑、肿胀等症状,H&E染色可见部分足底皮肤角表皮层增厚,部分角质脱失破损,判断为发生手足综合征。发生与未发生手足综合征小鼠血浆中卡培他滨及其代谢产物浓度未见明显差异。 结论 卡培他滨致小鼠手足综合征的模型构建成功;卡培他滨及其代谢产物体内暴露水平差异可能不是手足综合征发生的原因。 Abstract:Objective Hand-foot syndrome is a dose-limiting toxicity of capecitabine. At present, there is no unified gold standard for the establishment of hand-foot syndrome model. To induce hand-foot syndrome and provide a reference for the establishment of hand-foot syndrome model by administering capecitabine in ICR mice. Methods 42 male ICR mice were randomly divided into control group (6 mice) and experimental group (36 mice). The experimental group was given capecitabine (275 mg/kg, twice/d) by intragastric administration for two weeks, and the control group was given 0.5% CMC-Na (4 ml/kg, twice/d), to evaluate whether the animal model of hand-foot syndrome was successfully constructed through H&E staining of mouse foot skin samples and observe morphological changes and the characteristic appearance of mouse foot skin. After the experiment, the mice were sacrificed, and plasma was collected to quantify the concentrations of capecitabine and metabolites. Results Control mice did not showed symptoms of hand-foot syndrome. The skin of the feet of 19 mice in the experimental group showed symptoms such as erythema and swelling, and H&E staining results showed that the plantar skin angular epidermis was thickened, and part of the keratin was exfoliated and damaged, which was considered to be hand-foot syndrome. There were no significant differences in the concentrations of capecitabine and its metabolites between mice with and without hand-foot syndrome. Conclusion The model of hand-foot syndrome induced by capecitabine in mice was successfully established. Differences in exposure levels of capecitabine and metabolites may not be the cause of hand-foot syndrome. -
Key words:
- capecitabine /
- hand-foot syndrome /
- animal model /
- drug concentration /
- ICR mice
-
心脏瓣膜病为由多种病因引起的瓣膜狭窄或/和关闭不全所致的心脏病,是引起心力衰竭甚至心源性猝死的一个重要原因。人工瓣膜置换术是中-重度心脏瓣膜病的主要治疗手段之一,获得了良好而持久的临床结果,可有效改善患者心脏功能,提高生活质量[1]。人工心脏瓣膜分为机械瓣和生物瓣两大类。机械瓣具有较高的耐力和持久性,临床应用广泛,但最大的难题是患者必须终身抗凝且易发生血栓栓塞和出血,给患者的工作、生活带来诸多不变;生物瓣置换患者不必终身抗凝,但生物瓣寿命问题未获得满意解决,多数患者需面临二次手术。由于心脏瓣膜置换术后患者易出现血栓、感染、应激性溃疡(SU)等多种并发症,需同时使用多种药物,药物相互作用复杂[2]。患者术后需服用华法林进行抗凝治疗,该药个体用药差异大,需根据凝血指标调整剂量。尤其对于机械瓣膜置换者更要终身进行抗凝治疗,患者常因对抗凝治疗认识不足而影响用药依从性。鉴于此,临床药师通过协助医生对该类患者进行用药方案的制订、调整,及时发现患者出现的并发症、药物不良反应,对患者进行药学监护及抗凝治疗的用药教育对保证患者治疗的有效性及安全性具有重要意义。本文结合典型案例,提出临床药师参与心脏瓣膜置换术后患者药学服务的5个切入点,为临床提供参考。
1. 心脏瓣膜置换术后患者的抗凝治疗监护
心脏瓣膜置换术后患者需服用抗凝药物华法林,临床药师应协助医师根据凝血酶原时间(PT)和国际标准化比值(INR)监测值对华法林的剂量进行调整,并对患者进行密切的药学监护。关于此类患者的INR目标范围,参考国际相关标准并结合当前我国抗凝研究结果,我们建议:对于机械瓣置换患者的INR监测值,主动脉瓣单瓣置换为1.8~2.2,二尖瓣单瓣置换为2.0~2.5,主动脉瓣与二尖瓣双瓣置换为2.0~2.5,三尖瓣机械瓣置换为2.5~3.0;生物瓣置换患者为1.8~2.2[3-4]。
病例1:患者,男,50岁,因主动脉瓣钙化伴重度狭窄入院后行主动脉瓣置换(机械瓣)+升主动脉成形术,术后予华法林进行抗凝治疗,临床药师协助医师根据PT及INR值监测结果对华法林剂量进行调整。患者主动脉瓣机械瓣置换术,INR目标范围为1.8~2.2,术后PT、INR监测结果及华法林用量见表1。患者术后5天INR为1.04,医师予华法林片4.5 mg qd。根据《华法林抗凝治疗的中国专家共识》[5],中国人华法林的初始剂量为1~3 mg,而该患者初始给予4.5 mg的负荷剂量,初期可能会因过度抗凝而加大栓塞风险,临床药师建议给予华法林片3 mg qd,医师接受。华法林作用发生缓慢,当日PT及INR复查结果反映的是2天前服药的效果,应根据凝血指标监测结果及时调整华法林剂量,INR<目标值下限:华法林加量,每次增加1/4片;INR>目标值上限:华法林减量,每次减少1/4片。该患者术后9天时INR2.65,超过目标值上限,临床药师建议医师将剂量减为2.25 mg qd,继续监测PT和INR,嘱患者住院期间出现皮下瘀斑、紫癜、牙龈出血、鼻衄、便血、黑便等症状及时告知医师及药师,并密切关注患者粪隐血、粪转铁蛋白、血小板计数、血红蛋白含量等化验指标的变化情况。患者术后11天INR2.79,仍未达标,华法林片继续减量至1.5 mg qd,患者术后13天INR2.01达标,抗凝治疗期间未出现出血相关症状。
表 1 病例1凝血功能监测及华法林剂量调整情况术后天数 剂量(m/mg) PT(t/s) INR d5 4.5 13.8 1.04 d6 3 − − d7 3 21.0 1.85 d8 3 − − d9 2.25 27.9 2.65 d10 2.25 − − d11 1.5 28.6 2.79 d12 1.5 − − d13 1.5 22.5 2.01 病例2:患者,女,69岁,因三尖瓣重度关闭不全;二尖瓣置换术后入院拟行介入下三尖瓣置换术。患者12年前行二尖瓣机械瓣置换术,入院前长期服用华法林抗凝,考虑到此次入院计划行三尖瓣置换术,故入院后停用华法林,根据《华法林抗凝治疗的中国专家共识》[5],行外科手术患者可不采用桥接,华法林停药后术前INR可恢复至接近正常范围(INR<1.5),患者查INR为1.89,因计划次日手术,为减少患者出血风险临床药师建议临时给予维生素K120 mg im,降低INR,医师接受。患者次日行经导管三尖瓣介入置换术,术后予华法林进行抗凝治疗,患者术后PT、INR值监测结果及华法林用量见表2。患者三尖瓣介入置换术,INR目标范围为2.5~3.0,术后8天INR2.19,华法林1.5 mg qd,已使用4 d,仍在目标值下限,临床药师建议医师华法林加量0.75 mg,医师接受,予华法林2.25 mg qd,继续监测PT、INR值及患者抗凝过程中可能出现的出血症状及指标。患者术后10天INR达3.38,考虑到INR>3.0,临床药师协助医师调整抗凝治疗方案:停用华法林2 d,拟于第3天减量0.75 mg,医师按照此方案给药。患者于术后16天INR2.70达标,继续予以华法林1.5 mg qd,至术后18天患者INR维持在目标范围内,患者出院继续予华法林抗凝治疗。
表 2 病例2凝血功能监测及华法林剂量调整情况术后天数 剂量(m/mg) PT(t/s) INR d4 1.5 13.6 1.04 d5 1.5 − − d6 1.5 15.0 1.17 d7 1.5 − − d8 2.25 24.3 2.19 d9 2.25 − − d10 2.25 28.2 2.67 d11 2.25 − − d12 − 35.0 3.38 d13 − − − d14 1.5 15.5 1.22 d15 1.5 − − d16 1.5 28.5 2.70 d17 1.5 − − d18 1.5 28.0 2.65 2. 感染监测及抗菌药物合理应用与监护
心脏瓣膜置换术后患者感染预防与控制至关重要,临床药师可从以下几方面进行监护:① 围手术期抗菌药物的合理应用:心脏瓣膜置换术围手术期应预防性应用抗菌药物,可能的污染菌为凝固酶阴性葡萄球菌或金黄色葡萄球菌[6],临床药师应提醒医生于术前0.5~1 h应用第一、二代头孢菌素,预防用药疗程要覆盖整个手术过程,可根据情况延至术后一段时间,如48 h[6]。②术后感染监测:心脏瓣膜置换术后患者易发生肺部感染、手术切口感染、心内膜感染等感染[7],临床药师应关注患者是否有咳嗽、发热、创面脓性分泌物及白细胞、中性粒细胞升高等提示感染发生的症状及指标,及时提醒医师进行相关标本微生物送检、胸部X线等检查,发生感染时在抗菌药物治疗方案制订与调整方面为医师提供建议。③注意抗菌药物联用的影响:某些抗菌药物与华法林合用可能会存在相互作用,如头孢哌酮、红霉素、甲硝唑、喹诺酮类抗菌药可增强华法林的抗凝作用;利福平可抑制其抗凝作用[8],因此临床药师应对患者进行全面的药学监护,减少抗菌药物与华法林联用对抗凝治疗的影响,同时注意应用抗菌药物可能出现的胃肠道反应、皮疹、肝酶升高等不良反应。
病例3:患者,男,60岁,因主动脉瓣重度狭窄入院后行主动脉瓣置换术。患者心脏瓣膜置换术术前1 h,使用第二代头孢菌素类抗菌药物头孢呋辛钠注射剂1.5 g预防感染,围手术期抗菌药物种类选择及给药时机合理。术后1天患者体温37.5 ℃,双肺呼吸音清晰,血白细胞计数18.76×109/L、中性粒细胞计数17.86×109/L、中性粒细胞95.2%,怀疑感染可能,取血、痰标本培养,继续予头孢呋辛钠注射剂1.5 g bid ivgtt。术后3天体温37.8 ℃,血白细胞计数22.65×109/L,中性粒细胞96.8%,考虑头孢呋辛钠已用3 d,白细胞计数、中性粒细胞等指标仍较高,协助医师调整治疗方案,换用头孢美唑钠注射剂1 g bid ivgtt联合盐酸莫西沙星氯化钠注射液0.4 g qd ivgtt,患者术后应用华法林抗凝,临床药师提醒医师盐酸莫西沙星可增强华法林的抗凝作用,需严密监控患者的PT/INR值,同时密切监测患者的感染相关症状及指标变化。术后5天患者体温36.6 ℃,痰培养、血培养结果无致病菌生长,血白细胞计数18.61×109/L、中性粒细胞85.7%,指标有所下降,继续原用药方案。术后6天体温36.6 ℃,血白细胞计数17.97×109/L、中性粒细胞80.4%。术后9天体温36.5 ℃,血白细胞计数9.17×109/L、中性粒细胞64.0%,指标正常。抗菌药物应用期间临床药师对药物不良反应进行监测,同时注意对华法林的抗凝作用的影响,并根据患者情况协助医师适时停用抗菌药物。患者术后13天(出院)无相关感染症状,血常规正常,期间未出现相关不良反应。
3. 围手术期气道管理与药学监护
心脏瓣膜置换术围手术期气道管理可减少并发症、缩短患者住院时间,布地奈德等糖皮质激素雾化吸入给药是常用药之一,与支气管舒张剂联用可协同增效,推荐术前3~7 d、术后3~7 d应用[9]。临床药师应对患者进行用药教育:吸气时手指按住出气口并紧闭口唇以使药液尽可能进入肺部,用力深吸气并屏气3~5 s以吸入完全;呼气时手指从出气口移开,并将喷气口移开口唇以减少痰液喷射到药液中,缓慢呼气。雾化吸入糖皮质激素可能导致患者出现口腔真菌感染、声音嘶哑,临床药师应教育患者注意用药后漱口以减少不良反应的发生。
4. 应激性溃疡预防与药学监护
应激性溃疡(SU)为机体在严重创伤,各种困难、复杂的手术,危重疾病等应激状态下发生的急性胃肠道黏膜溃疡病变,严重者可并发消化道出血、甚至穿孔,使病死率增加。机械通气超过48 h或接受体外生命支持、凝血机制障碍或使用抗凝或抗血小板药、原有消化道溃疡或出血病史、大剂量使用糖皮质激素或合并使用非甾体类抗炎药、急性肝肾功能衰竭等危险因素会增加SU发生及并发出血的风险[10]。心脏瓣膜置换术属于复杂手术,且涉及到接受体外生命支持、机械通气超过48 h、使用抗凝药等危险因素,因此心脏瓣膜置换术后患者应进行SU预防,制定合适的SU预防用药方案、及时判断消化道出血发生并选择有效治疗措施是临床药师关注的重点。SU预防方案建议将质子泵抑制剂(PPI)作为首选预防药物,在原发病发生后应用标准剂量,q12h,ivgtt,至少连续3 d[11]。临床药师应嘱患者留意是否有呕血、黑便等消化道出血症状发生,并监测血常规、大便常规等,及时发现消化道出血等提示SU并发出血的情况,以采取及时有效的措施治疗,同时协助医师权衡患者出血及不良事件风险,把握停药指征,避免过度使用SU预防药物。
病例4:患者,男,53岁,因二尖瓣关闭不全入院行二尖瓣置换术+三尖瓣成形术。术后返回监护病房,予注射用泮托拉唑钠40 mg bid ivgtt预防SU。临床药师叮嘱护士注意泮托拉唑钠溶解和稀释后应在4 h内用完,滴注时要求15~60 min内滴完。术后3 d,患者一般情况可,转入普通病房,临床医师继续予注射用泮托拉唑钠40 mg bid ivgtt。根据相关文献及指南,当患者病情好转或转入普通病房,可耐受肠内营养或已进食,应将SU预防药物静脉给药换为口服给药,并逐渐停药[10,12]。考虑到该患者病情平稳,已转至普通病房,能正常进食,经前期监护患者未出现提示SU并发出血的情况,临床药师建议医师将PPI由静脉用药调整为口服用药,医师接受,更改医嘱:停用泮托拉唑钠注射剂,予雷贝拉唑钠肠溶片20 mg qd po,继续监测出血相关症状及指标,至患者出院情况稳定。
5. 出院患者华法林使用的用药教育
心脏瓣膜置换术后患者需长期服用华法林,华法林与多种药物、食物存在相互作用,其抗凝作用的个体差异也与患者的依从性相关[8],临床药师对患者进行详尽的用药教育有助于提高患者华法林的正确使用及自我监测意识,可从以下几方面进行教育:①使患者了解术后长期服用华法林抗凝的重要性,强调每天需按时服用华法林,如忘记,当晚12:00之前想起可补吃,若第2天想起则不可再吃。②告知患者需定期监测PT和INR值使其保持在目标范围内,出院后第一周每3天检查一次,以后每周检查一次,结果连续3次在目标范围内可再延长至每2周一次,以此类推,最长不可超过3个月检查一次,若不在目标范围应咨询医师或药师进行剂量调整。③叮嘱患者日常留意是否出现牙龈易出血、皮肤瘀斑、黑便等出血症状及无缘由剧烈头痛、四肢麻木、肢端水肿等血栓症状,如出现上述症状应立即复查PT、INR,并向医师或药师咨询。④使患者知晓华法林与多种药物有相互作用,出现其他疾病需用药时应咨询医师或药师进行药物选择;叮嘱患者避免大量摄入菠菜、西芹、卷心菜、动物肝脏等富含维生素K的食物而影响华法林的抗凝效果。⑤使患者知晓外伤、感染、发热、呕吐、腹泻等异常的生理状态会影响华法林的治疗,若发生上述情况需及时就诊;如需行创伤性手术或检查(如拔牙、胃镜等)需告知医生正在服用华法林。
总之,心脏瓣膜置换术后患者需同时使用多种药物,且华法林等药物个体用药差异大、需根据监测指标调整剂量,临床药学服务十分必要。临床药师可从心脏瓣膜置换术患者PT、INR值监测及华法林的剂量调整,感染监测及抗菌药物的合理应用,围手术期气道管理,应激性溃疡预防与药学监护,出院患者华法林用药教育等方面入手,加强与医生、患者的沟通,对患者进行个体化的药学服务,以促进药物的合理使用,保障患者用药安全、有效。
-
表 1 实验周期内小鼠体重变化情况(m/g,
$ \bar{x}\pm s $ )组别 n 0 d 7 d 14 d 对照组 6 28.54±0.71 32.56±0.88 34.66±1.07 实验组 33 29.07±0.76 26.84±1.74*** 23.15±2.31*** *** P<0.001,与对照组比较。 -
[1] PANDY J G P, FRANCO P I G, LI R K. Prophylactic strategies for hand-foot syndrome/skin reaction associated with systemic cancer treatment: a meta-analysis of randomized controlled trials[J]. Support Care Cancer, 2022, 30(11):8655-8666. doi: 10.1007/s00520-022-07175-3 [2] BRAIK T, YIM B, EVANS A, et al. Randomized trial of vitamin B6 for preventing hand-foot syndrome from capecitabine chemotherapy[J]. J Community Support Oncol, 2014, 12(2):65-70. doi: 10.12788/jcso.0017 [3] HIROMOTO S, KAWASHIRI T, YAMANAKA N, et al. Use of omeprazole, the proton pump inhibitor, as a potential therapy for the capecitabine-induced hand-foot syndrome[J]. Sci Rep, 2021, 11(1):8964. doi: 10.1038/s41598-021-88460-9 [4] DENG B, SUN W. Herbal medicine for hand-foot syndrome induced by fluoropyrimidines: a systematic review and meta-analysis[J]. Phytother Res, 2018, 32(7):1211-1228. doi: 10.1002/ptr.6068 [5] CARONIA D, MARTIN M, SASTRE J, et al. A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome[J]. Clin Cancer Res, 2011, 17(7):2006-2013. doi: 10.1158/1078-0432.CCR-10-1741 [6] 王志鹏. 卡培他滨不良反应和耐药生物标志物的发现[D]. 上海: 中国人民解放军海军军医大学, 2019. [7] WANG Z P, LI X X, YANG Y, et al. A sensitive and efficient method for determination of capecitabine and its five metabolites in human plasma based on one-step liquid-liquid extraction[J]. J Anal Methods Chem, 2019, 2019:1-10. [8] FETY R, ROLLAND F, Barberi-Heyob M, et al. Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res. 1998, 4(9): 2039-2045. [9] GAMELIN E, DELVA R, JACOB J, et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008, 26(13): 2099-105. [10] MEZA-JUNCO J, SAWYER M B. Drug exposure: still an excellent biomarker[J]. Biomark Med, 2009, 3(6):723-731. doi: 10.2217/bmm.09.58 [11] DAHER ABDI Z, LAVAU-DENES S, PRÉMAUD A, et al. Pharmacokinetics and exposure-effect relationships of capecitabine in elderly patients with breast or colorectal cancer[J]. Cancer Chemother Pharmacol, 2014, 73(6):1285-1293. doi: 10.1007/s00280-014-2466-0 [12] FISCHEL J L, FORMENTO P, CICCOLINI J, et al. Lack of contribution of dihydrofluorouracil and α-fluoro-β-alanine to the cytotoxicity of 5'-deoxy-5-fluorouridine on human keratinocytes[J]. Anti Cancer Drugs, 2004, 15(10):969-974. doi: 10.1097/00001813-200411000-00006 [13] YANG B X, XIE X R, LV D Z, et al. Capecitabine induces hand-foot syndrome through elevated thymidine phosphorylase-mediated locoregional toxicity and GSDME-driven pyroptosis that can be relieved by tipiracil[J]. Br J Cancer, 2023, 128(2):219-231. doi: 10.1038/s41416-022-02039-3 [14] 黎鹏, 王炳胜, 李永民. 卡培他滨诱导手足综合征动物模型的建立[J]. 中华肿瘤防治杂志, 2017, 24(12):802-807. [15] DESMOULIN F, GILARD V, MALET-MARTINO M, et al. Metabolism of capecitabine, an oral fluorouracil prodrug: 19F NMR studies in animal models and human urine[J]. Drug Metab Dispos, 2002, 30(11):1221-1229. doi: 10.1124/dmd.30.11.1221 [16] DESMOULIN F, GILARD V, MARTINO R, et al. Isolation of an unknown metabolite of capecitabine, an oral 5-fluorouracil prodrug, and its identification by nuclear magnetic resonance and liquid chromatography–tandem mass spectrometry as a glucuroconjugate of 5’-deoxy-5-fluorocytidine, namely 2’-(β-d-glucuronic acid)–5’-deoxy-5-fluorocytidine[J]. J Chromatogr B, 2003, 792(2):323-332. doi: 10.1016/S1570-0232(03)00319-2 [17] HE X Y, WANG J L, WANG Q, et al. P38 MAPK, NF-κB, and JAK-STAT3 signaling pathways involved in capecitabine-induced hand-foot syndrome via interleukin 6 or interleukin 8 abnormal expression[J]. Chem Res Toxicol, 2022, 35(3):422-430. doi: 10.1021/acs.chemrestox.1c00317 -