-
在全球新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)大流行期间,Moderna和BioNTech/辉瑞公司基于脂质纳米颗粒(lipid nanoparticles,LNP)载体的mRNA疫苗获得FDA紧急批准[1,2],其迅速地减少了冠状病毒传播。基于脂质纳米颗粒-mRNA的COVID-19疫苗取得的巨大成功,使得mRNA疫苗技术迅速成为研究的热点,并促进了mRNA疫苗在肿瘤等重大疾病治疗中的研发和应用。
2024年6月,上海交通大学附属瑞金医院沈柏用教授团队披露mRNA肿瘤疫苗研究新进展,在全球范围内首次报道针对KRAS G12V单靶点的mRNA肿瘤疫苗在实体肿瘤中的治疗效果,为传统治疗无法耐受或者耐药的晚期肿瘤患者带来新希望[3]。同时,针对肿瘤抑制性免疫微环境,编码细胞因子的mRNA肿瘤疫苗可以促进效应T细胞的成熟、调控肿瘤微环境,从而提高在实体瘤局部疫苗接种的抗肿瘤疗效。其中,以MEDI1191、mRNA-
2416 、mRNA-2752 、SAR44100等为代表的 mRNA肿瘤疫苗已进入临床试验阶段。mRNA肿瘤疫苗通过将编码肿瘤抗原的mRNA引入宿主细胞(通常是抗原提呈细胞)的细胞质中表达靶蛋白抗原,然后在抗原提呈细胞表面呈递MHC分子,诱导有效的免疫应答来发挥作用[4,5]。相对于其他类型的治疗性肿瘤疫苗来说,基于mRNA的肿瘤疫苗是一种有前途的策略(图1),其具有如下优势:①与病毒疫苗类似,mRNA肿瘤疫苗能够同时递送多种抗原,引发体液免疫和细胞免疫,增加了肿瘤细胞根除的可能性。②与基于肽的疫苗不同,mRNA肿瘤疫苗不受患者特异性HLA类型的限制。③与基于DNA的肿瘤疫苗相比,mRNA肿瘤疫苗安全且耐受性良好,没有插入宿主基因组的风险[4]。尽管mRNA肿瘤疫苗具有非常广阔的应用前景,但仍然存在以下问题:①mRNA分子在体内非常不稳定,很容易被细胞外的核酸酶降解[6]。②mRNA分子量大且带负电荷,这阻碍了它们通过细胞膜高效递送至靶细胞[7]。因此,推动mRNA药物应用的关键之一是高效的mRNA递送系统的开发。与基于病毒的递送系统相比,非病毒载体在生物安全性和多功能性方面具有重大优势。如基于脂质的纳米颗粒、聚合物纳米颗粒、肽类纳米颗粒和无机纳米粒子,能有效压缩mRNA,使其免受核酸酶的降解[8]。此外,根据靶向器官的生物结构和递送过程中的屏障,非病毒载体可以有目的地进行结构改造,从而更有效地将mRNA递送到身体的特定部位,以提高治疗效果[8]。因此,基于非病毒载体的递送系统的研究已成为mRNA肿瘤疫苗研究领域的热点课题。 -
基于肿瘤的特点编码特异性抗原,使其顺利地被免疫细胞识别以激活免疫应答,是mRNA肿瘤疫苗的核心作用机制。现阶段主要研究的mRNA肿瘤疫苗编码的抗原主要有肿瘤相关抗原(tumor-associated antigen,TAA)、肿瘤特异性抗原(tumor specific antigen,TSA)和免疫调节因子3种类型[42]。通过对非病毒载体和对机体免疫系统的研究不断深入,目前已有多项mRNA肿瘤疫苗进入临床试验。中国进入临床试验阶段的mRNA肿瘤疫苗如表1所示。
表 1 中国进入临床试验阶段的mRNA肿瘤疫苗
疫苗登记号 适应证 申办单位 研发阶段 ChiCTR2300071001 EGFR 突变阳性的晚期非小细胞肺癌 苏州艾博生物科技有限公司 探索性研究/预试验 CTR20232018 晚期实体瘤 北京立康生命科技有限公司 Ⅰ期临床 CTR20240438 新诊断的原发性脑胶质母细胞瘤(WHO 4级) 北京启辰生生物科技有限公司 Ⅰ期临床 ChiCTR2300077339 晚期胰腺癌 中国人民解放军总医院 Ⅰ期临床 ChiCTR2300071740 HPV16/18阳性的不可切除的复发性或转移性实体瘤 南阳医学高等专科学校第一附属医院 Ⅰ期临床 ChiCTR2200066118 晚期黑色素瘤 南阳医学高等专科学校第一附属医院 Ⅰ期临床 ChiCTR2200056172 晚期实体瘤 蚌埠医学院第一附属医院 Ⅰ期临床 ChiCTR2000029301 胃癌,食管癌 深圳市新合生物医疗科技有限公司 Ⅰ期临床 ChiCTR1900023000 晚期恶性实体瘤 斯微(上海)生物科技有限公司 Ⅰ期临床 -
肿瘤特异性抗原是体细胞中的非同义突变产生非自体蛋白[43],仅在肿瘤细胞中表达,而在正常细胞中不表达,因此支持对患者个体肿瘤抗原产生特异性免疫反应[44]。多个编码TSA的mRNA肿瘤疫苗已完成了Ⅰ/Ⅱ期临床试验[45]。BNT 122是BioNTech 和Genentech公司联合研发的一款编码胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)患者的20种新抗原的mRNA疫苗,使用LNP进行静脉注射给药。Ⅰ期临床试验结果显示,在手术切除后的PADC患者中,将BNT 122与化疗和免疫检查点疗法联用时,该mRNA疫苗有潜力地延缓了PDAC患者的复发。目前基于BNT122针对黑色素瘤和结直肠癌的治疗处于Ⅱ期临床试验阶段,针对实体瘤的临床试验即将进行Ⅱ期临床试验[46]。
-
肿瘤相关抗原是是一种在正常组织中表达但在肿瘤组织中过表达的抗原。具有肿瘤特异性弱、中枢免疫耐受性强、免疫原性弱的特点[47]。目前,利用多种TAA组合开发mRNA疫苗已成为一种趋势。BI
1361849 是Ludwig癌症研究所研发的一款编码NY-ESO-1、MAGE-C2、MAGE-C1、survivin、5T4和MUC1这6种TAA的mRNA疫苗,其使用鱼精蛋白作为载体。Ⅰb期临床研究评估了BI-1361849 联合局部放疗对Ⅳ期非小细胞肺癌(non-small-cell carcinoma,NSCLC)患者的有效性和安全性,结果显示,BI-1361849 具有良好的耐受性和免疫原性。2017年12月,在美国启动了BI-1361849 与 抗程序性死亡配体1 durvalumab和抗细胞毒性T淋巴细胞相关蛋白4(CTLA-4)抗体tremelimumab联用治疗NSCLC的Ⅰ/Ⅱ期临床试验。 -
免疫调节因子是一类能够刺激或抑制特定免疫细胞功能的分子,包括细胞因子、共刺激因子等[48]。靶向肿瘤微环境实现肿瘤免疫治疗是目前抗肿瘤技术研究的热点。免疫调节因子可以重新激活免疫系统的抗肿瘤免疫反应并重塑积极的免疫微环境[49]。此外,编码免疫调节因子的mRNA疫苗还可作为编码TAA的mRNA疫苗的佐剂。mRNA-
2752 是Moderna公司研发的一款编码人 OX40L、IL-23 和 IL-36γ 的mRNA疫苗,其使用LNP作为载药系统,通过瘤内注射给药。在Ⅰ期的一项剂量递增研究(NCT03739931)中,mRNA-2752 与免疫检查点阻断治疗剂durvalumab共同给药显示出抗肿瘤作用。目前mRNA-2752 针对于三阴性乳腺癌、泌尿上皮癌、淋巴瘤和免疫检查点难治性黑色素瘤和非小细胞肺癌的Ⅰ期临床人体耐受性试验正在进行中。
Progress on mRNA tumor vaccine with non-viral delivery system
-
摘要: 2020年底,FDA紧急批准了两种mRNA疫苗(BNT162b2和mRNA-
1273 ),为应对COVID-19大流行提供了重要支持。这些基于非病毒载体的COVID-19疫苗取得的巨大成功,推动了mRNA疫苗在肿瘤等疾病治疗领域的研究和应用。与基于病毒的递送系统相比,非病毒载体在生物安全性和多功能性方面具有重大优势。因此,非病毒载体已成为mRNA肿瘤疫苗开发的研究热点。本文重点介绍了非病毒载体的最新研发进展,包括脂质纳米颗粒、聚合物、肽类和无机材料等。此外,本文还概述了mRNA肿瘤疫苗临床试验的最新进展并讨论了非病毒载体在mRNA肿瘤疫苗临床转化面临的挑战以及未来的前景。Abstract: At the end of 2020, the FDA issued emergency use authorization for two mRNA vaccines(BNT162b2 and mRNA-1273 ), which provided important support in the response to the COVID-19 pandemic. The great success of these COVID-19 vaccines based on non-viral vectors has promoted the research and application of mRNA vaccines in the treatment of diseases such as tumors. Compared with virus-based delivery systems, non-viral carriers have significant advantages in biological safety and versatility. Therefore, non-viral vectors have become a research hotshot for mRNA tumor vaccines. In this paper, the latest research progress on lipid nanoparticles, polymers, peptides and inorganic materials were introduced. In addition, recent clinical trials of mRNA tumor vaccines were reviewed and the challenges and prospects of non-viral vectors in clinical transformation of mRNA tumor vaccines were discussed.-
Key words:
- non-viral vectors /
- mRNA vaccine /
- tumor vaccine /
- immunotherapy
-
表 1 中国进入临床试验阶段的mRNA肿瘤疫苗
疫苗登记号 适应证 申办单位 研发阶段 ChiCTR2300071001 EGFR 突变阳性的晚期非小细胞肺癌 苏州艾博生物科技有限公司 探索性研究/预试验 CTR20232018 晚期实体瘤 北京立康生命科技有限公司 Ⅰ期临床 CTR20240438 新诊断的原发性脑胶质母细胞瘤(WHO 4级) 北京启辰生生物科技有限公司 Ⅰ期临床 ChiCTR2300077339 晚期胰腺癌 中国人民解放军总医院 Ⅰ期临床 ChiCTR2300071740 HPV16/18阳性的不可切除的复发性或转移性实体瘤 南阳医学高等专科学校第一附属医院 Ⅰ期临床 ChiCTR2200066118 晚期黑色素瘤 南阳医学高等专科学校第一附属医院 Ⅰ期临床 ChiCTR2200056172 晚期实体瘤 蚌埠医学院第一附属医院 Ⅰ期临床 ChiCTR2000029301 胃癌,食管癌 深圳市新合生物医疗科技有限公司 Ⅰ期临床 ChiCTR1900023000 晚期恶性实体瘤 斯微(上海)生物科技有限公司 Ⅰ期临床 -
[1] KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity[J]. Ca-Cancer J Clin, 2020, 70(2):86-104. doi: 10.3322/caac.21596 [2] FAGHFURI E, POURFARZI F, FAGHFOURI A H, et al. Recent developments of RNA-based vaccines in cancer immunotherapy[J]. Expert Opin Biol Ther, 2021, 21(2):201-218. doi: 10.1080/14712598.2020.1815704 [3] WANG X J, WANG W, ZOU S Y, et al. Combination therapy of KRAS G12V mRNA vaccine and pembrolizumab: clinical benefit in patients with advanced solid tumors[J]. Cell Res, 2024, 34(9):661-664. doi: 10.1038/s41422-024-00990-9 [4] YOO Y J, LEE C H, PARK S H, et al. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy[J]. J Controlled Release, 2022, 343:564-583. doi: 10.1016/j.jconrel.2022.01.047 [5] LIU X Q, HUANG P, YANG R S, et al. mRNA cancer vaccines: construction and boosting strategies[J]. ACS Nano, 2023, 17(20):19550-19580. doi: 10.1021/acsnano.3c05635 [6] CHEN J J, CHEN J Z, XU Q B. Current developments and challenges of mRNA vaccines[J]. Annu Rev Biomed Eng, 2022, 24:85-109. doi: 10.1146/annurev-bioeng-110220-031722 [7] WADHWA A, ALJABBARI A, LOKRAS A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines[J]. Pharmaceutics, 2020, 12(2):102. doi: 10.3390/pharmaceutics12020102 [8] KIM J, EYGERIS Y, RYALS R C, et al. Strategies for non-viral vectors targeting organs beyond the liver[J]. Nat Nanotechnol, 2024, 19(4):428-447. doi: 10.1038/s41565-023-01563-4 [9] LANGER R, FOLKMAN J. Polymers for the sustained release of proteins and other macromolecules[J]. Nature, 1976, 263(5580):797-800. doi: 10.1038/263797a0 [10] DIMITRIADIS G J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes[J]. Nature, 1978, 274(5674):923-924. doi: 10.1038/274923a0 [11] WOLFF J A, MALONE R W, WILLIAMS P, et al. Direct gene transfer into mouse muscle in vivo[J]. Science, 1990, 247(4949 Pt 1): 1465-1468. [12] MARTINON F, KRISHNAN S, LENZEN G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA[J]. Eur J Immunol, 1993, 23(7):1719-1722. doi: 10.1002/eji.1830230749 [13] CONRY R M, LOBUGLIO A F, WRIGHT M, et al. Characterization of a messenger RNA polynucleotide vaccine vector[J]. Cancer Res, 1995, 55(7): 1397-1400. [14 PATIL S, GAO Y G, LIN X, et al. The development of functional non-viral vectors for gene delivery[J]. Int J Mol Sci, 2019, 20(21): 5491. [14] 陈昕璐, 高原, 李鹃鹃, 等. mRNA脂质纳米粒载药系统的构建及体外评价[J]. 药学实践与服务, 2023, 41(5):291-295. doi: 10.12206/j.issn.2097-2024.202302026 [15] COVID-19 vaccine tracker and landscape[EB/OL].(2023-03-30)[2024-05-23]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. [16] PENG L, WAGNER E. Polymeric carriers for nucleic acid delivery: current designs and future directions[J]. Biomacromolecules, 2019, 20(10):3613-3626. doi: 10.1021/acs.biomac.9b00999 [17] HALD ALBERTSEN C, KULKARNI J A, WITZIGMANN D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy[J]. Adv Drug Delivery Rev, 2022, 188:114416. doi: 10.1016/j.addr.2022.114416 [18] XIONG H, LIU S, WEI T, et al. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo[J]. J Controlled Release, 2020, 325:198-205. doi: 10.1016/j.jconrel.2020.06.030 [19] TSAKIRI M, ZIVKO C, DEMETZOS C, et al. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics[J]. Front Pharmacol, 2022, 13:900610. doi: 10.3389/fphar.2022.900610 [20] EYGERIS Y, GUPTA M, KIM J, et al. Chemistry of lipid nanoparticles for RNA delivery[J]. Acc Chem Res, 2022, 55(1):2-12. doi: 10.1021/acs.accounts.1c00544 [21] ZHANG Y B, YAN J Y, HOU X C, et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2[J]. Nano Lett, 2023, 23(7):2593-2600. doi: 10.1021/acs.nanolett.2c04883 [22] LIU J Q, ZHANG C X, ZHANG X F, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. J Controlled Release, 2022, 345:306-313. doi: 10.1016/j.jconrel.2022.03.021 [23] GU Y Z, YANG J Y, HE C, et al. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases[J]. Signal Transduction Targeted Ther, 2023, 8(1):273. doi: 10.1038/s41392-023-01479-4 [24] KOWALSKI P S, RUDRA A, MIAO L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery[J]. Mol Ther, 2019, 27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012 [25] ZENG C X, ZHANG C X, WALKER P G, et al. Formulation and delivery technologies for mRNA vaccines[J]. Curr Top Microbiol Immunol, 2022, 440:71-110. [26] YIN Y, LI X Y, MA H X, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy[J]. Nano Lett, 2021, 21(5):2224-2231. doi: 10.1021/acs.nanolett.0c05039 [27] KIM M, OH J, LEE Y, et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke[J]. J Controlled Release, 2022, 350:471-485. doi: 10.1016/j.jconrel.2022.08.049 [28] LI J, WU Y, XIANG J, et al. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines[J]. Chem Eng J, 2023, 456:140930. doi: 10.1016/j.cej.2022.140930 [29] PÉREZ-FERREIRO M, ABELAIRAS A M, CRIADO A, et al. Dendrimers: exploring their wide structural variety and applications[J]. Polymers, 2023, 15(22):4369. doi: 10.3390/polym15224369 [30] ABEDI-GABALLU F, DEHGHAN G, GHAFFARI M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy[J]. Appl Mater Today, 2018, 12:177-190. doi: 10.1016/j.apmt.2018.05.002 [31] JOUBERT F, MUNSON M J, SABIRSH A, et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine)dendrimers to improve cytosolic delivery of mRNA[J]. J Controlled Release, 2023, 356:580-594. doi: 10.1016/j.jconrel.2023.03.011 [32] JARZEBSKA N T, LAUCHLI S, ISELIN C, et al. Functional differences between protamine preparations for the transfection of mRNA[J]. Drug Deliv, 2020, 27(1):1231-1235. doi: 10.1080/10717544.2020.1790692 [33] MOHAMAD RAZIF M I, NIZAR N, ZAINAL ABIDIN N H, et al. Emergence of mRNA vaccines in the management of cancer[J]. Expert Rev Vaccines, 2023, 22(1):629-642. doi: 10.1080/14760584.2023.2232450 [34] WANG Y H, SU H H, YANG Y, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy[J]. Mol Ther, 2013, 21(2):358-367. doi: 10.1038/mt.2012.250 [35] CHEN Z, MENG C Y, MAI J H, et al. An mRNA vaccine elicits STING-dependent antitumor immune responses[J]. Acta Pharm Sin B, 2023, 13(3):1274-1286. doi: 10.1016/j.apsb.2022.11.013 [36] TIMOTIEVICH E D, SHILOVSKIY I P, KHAITOV M R. Cell-penetrating peptides as vehicles for delivery of therapeutic nucleic acids. mechanisms and application in medicine[J]. Biochemistry, 2023, 88(11):1800-1817. [37] HUANG J, WANG K Y, FU X Z, et al. Efficient colon cancer immunogene therapy through co-delivery of IL-22BP mRNA and tumor cell lysate by CLSV nanoparticles[J]. Int J Nanomed, 2023, 18:8059-8075. doi: 10.2147/IJN.S439381 [38] WANG X Y, LIN C, CHANG W J, et al. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells[J]. Int J Biol Macromol, 2022, 221:121-134. doi: 10.1016/j.ijbiomac.2022.08.164 [39] ZHANG W, LIU Y, MIN CHIN J, et al. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination[J]. Eur J Pharm Biopharm, 2021, 163:179-187. doi: 10.1016/j.ejpb.2021.03.011 [40] SHIN H, KANG S, WON C, et al. Enhanced local delivery of engineered IL-2 mRNA by porous silica nanoparticles to promote effective antitumor immunity[J]. ACS Nano, 2023, 17(17):17554-17567. doi: 10.1021/acsnano.3c06733 [41] LIU Y X, YAN Q J, ZENG Z Y, et al. Advances and prospects of mRNA vaccines in cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2):189068. doi: 10.1016/j.bbcan.2023.189068 [42] PENG M, MO Y Z, WANG Y A, et al. Neoantigen vaccine: an emerging tumor immunotherapy[J]. Mol Cancer, 2019, 18(1):128. doi: 10.1186/s12943-019-1055-6 [43] ZHANG X Y, CUI H Q, ZHANG W J, et al. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison[J]. Bioact Mater, 2023, 22:491-517. [44] CAFRI G, GARTNER J J, ZAKS T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer[J]. J Clin Invest, 2020, 130(11):5976-5988. doi: 10.1172/JCI134915 [45] ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963):144-150. doi: 10.1038/s41586-023-06063-y [46] ROUDKO V, GREENBAUM B, BHARDWAJ N. Computational prediction and validation of tumor-associated neoantigens[J]. Front Immunol, 2020, 11:27. doi: 10.3389/fimmu.2020.00027 [47] ZHANG H X, XIA X J. RNA cancer vaccines: developing mRNA nanovaccine with self-adjuvant property for cancer immunotherapy[J]. Hum Vaccines Immunother, 2021, 17(9):2995-2998. doi: 10.1080/21645515.2021.1921524 [48] ANDERSON N M, SIMON M C. The tumor microenvironment[J]. Curr Biol, 2020, 30(16):R921-R925. doi: 10.1016/j.cub.2020.06.081