[1] |
KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity[J]. Ca-Cancer J Clin, 2020, 70(2):86-104. doi: 10.3322/caac.21596 |
[2] |
FAGHFURI E, POURFARZI F, FAGHFOURI A H, et al. Recent developments of RNA-based vaccines in cancer immunotherapy[J]. Expert Opin Biol Ther, 2021, 21(2):201-218. doi: 10.1080/14712598.2020.1815704 |
[3] |
WANG X J, WANG W, ZOU S Y, et al. Combination therapy of KRAS G12V mRNA vaccine and pembrolizumab: clinical benefit in patients with advanced solid tumors[J]. Cell Res, 2024, 34(9):661-664. doi: 10.1038/s41422-024-00990-9 |
[4] |
YOO Y J, LEE C H, PARK S H, et al. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy[J]. J Controlled Release, 2022, 343:564-583. doi: 10.1016/j.jconrel.2022.01.047 |
[5] |
LIU X Q, HUANG P, YANG R S, et al. mRNA cancer vaccines: construction and boosting strategies[J]. ACS Nano, 2023, 17(20):19550-19580. doi: 10.1021/acsnano.3c05635 |
[6] |
CHEN J J, CHEN J Z, XU Q B. Current developments and challenges of mRNA vaccines[J]. Annu Rev Biomed Eng, 2022, 24:85-109. doi: 10.1146/annurev-bioeng-110220-031722 |
[7] |
WADHWA A, ALJABBARI A, LOKRAS A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines[J]. Pharmaceutics, 2020, 12(2):102. doi: 10.3390/pharmaceutics12020102 |
[8] |
KIM J, EYGERIS Y, RYALS R C, et al. Strategies for non-viral vectors targeting organs beyond the liver[J]. Nat Nanotechnol, 2024, 19(4):428-447. doi: 10.1038/s41565-023-01563-4 |
[9] |
LANGER R, FOLKMAN J. Polymers for the sustained release of proteins and other macromolecules[J]. Nature, 1976, 263(5580):797-800. doi: 10.1038/263797a0 |
[10] |
DIMITRIADIS G J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes[J]. Nature, 1978, 274(5674):923-924. doi: 10.1038/274923a0 |
[11] |
WOLFF J A, MALONE R W, WILLIAMS P, et al. Direct gene transfer into mouse muscle in vivo[J]. Science, 1990, 247(4949 Pt 1): 1465-1468. |
[12] |
MARTINON F, KRISHNAN S, LENZEN G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA[J]. Eur J Immunol, 1993, 23(7):1719-1722. doi: 10.1002/eji.1830230749 |
[13] |
CONRY R M, LOBUGLIO A F, WRIGHT M, et al. Characterization of a messenger RNA polynucleotide vaccine vector[J]. Cancer Res, 1995, 55(7): 1397-1400. [14 PATIL S, GAO Y G, LIN X, et al. The development of functional non-viral vectors for gene delivery[J]. Int J Mol Sci, 2019, 20(21): 5491. |
[14] |
陈昕璐, 高原, 李鹃鹃, 等. mRNA脂质纳米粒载药系统的构建及体外评价[J]. 药学实践与服务, 2023, 41(5):291-295. doi: 10.12206/j.issn.2097-2024.202302026 |
[15] |
COVID-19 vaccine tracker and landscape[EB/OL].(2023-03-30)[2024-05-23]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. |
[16] |
PENG L, WAGNER E. Polymeric carriers for nucleic acid delivery: current designs and future directions[J]. Biomacromolecules, 2019, 20(10):3613-3626. doi: 10.1021/acs.biomac.9b00999 |
[17] |
HALD ALBERTSEN C, KULKARNI J A, WITZIGMANN D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy[J]. Adv Drug Delivery Rev, 2022, 188:114416. doi: 10.1016/j.addr.2022.114416 |
[18] |
XIONG H, LIU S, WEI T, et al. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo[J]. J Controlled Release, 2020, 325:198-205. doi: 10.1016/j.jconrel.2020.06.030 |
[19] |
TSAKIRI M, ZIVKO C, DEMETZOS C, et al. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics[J]. Front Pharmacol, 2022, 13:900610. doi: 10.3389/fphar.2022.900610 |
[20] |
EYGERIS Y, GUPTA M, KIM J, et al. Chemistry of lipid nanoparticles for RNA delivery[J]. Acc Chem Res, 2022, 55(1):2-12. doi: 10.1021/acs.accounts.1c00544 |
[21] |
ZHANG Y B, YAN J Y, HOU X C, et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2[J]. Nano Lett, 2023, 23(7):2593-2600. doi: 10.1021/acs.nanolett.2c04883 |
[22] |
LIU J Q, ZHANG C X, ZHANG X F, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. J Controlled Release, 2022, 345:306-313. doi: 10.1016/j.jconrel.2022.03.021 |
[23] |
GU Y Z, YANG J Y, HE C, et al. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases[J]. Signal Transduction Targeted Ther, 2023, 8(1):273. doi: 10.1038/s41392-023-01479-4 |
[24] |
KOWALSKI P S, RUDRA A, MIAO L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery[J]. Mol Ther, 2019, 27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012 |
[25] |
ZENG C X, ZHANG C X, WALKER P G, et al. Formulation and delivery technologies for mRNA vaccines[J]. Curr Top Microbiol Immunol, 2022, 440:71-110. |
[26] |
YIN Y, LI X Y, MA H X, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy[J]. Nano Lett, 2021, 21(5):2224-2231. doi: 10.1021/acs.nanolett.0c05039 |
[27] |
KIM M, OH J, LEE Y, et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke[J]. J Controlled Release, 2022, 350:471-485. doi: 10.1016/j.jconrel.2022.08.049 |
[28] |
LI J, WU Y, XIANG J, et al. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines[J]. Chem Eng J, 2023, 456:140930. doi: 10.1016/j.cej.2022.140930 |
[29] |
PÉREZ-FERREIRO M, ABELAIRAS A M, CRIADO A, et al. Dendrimers: exploring their wide structural variety and applications[J]. Polymers, 2023, 15(22):4369. doi: 10.3390/polym15224369 |
[30] |
ABEDI-GABALLU F, DEHGHAN G, GHAFFARI M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy[J]. Appl Mater Today, 2018, 12:177-190. doi: 10.1016/j.apmt.2018.05.002 |
[31] |
JOUBERT F, MUNSON M J, SABIRSH A, et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine)dendrimers to improve cytosolic delivery of mRNA[J]. J Controlled Release, 2023, 356:580-594. doi: 10.1016/j.jconrel.2023.03.011 |
[32] |
JARZEBSKA N T, LAUCHLI S, ISELIN C, et al. Functional differences between protamine preparations for the transfection of mRNA[J]. Drug Deliv, 2020, 27(1):1231-1235. doi: 10.1080/10717544.2020.1790692 |
[33] |
MOHAMAD RAZIF M I, NIZAR N, ZAINAL ABIDIN N H, et al. Emergence of mRNA vaccines in the management of cancer[J]. Expert Rev Vaccines, 2023, 22(1):629-642. doi: 10.1080/14760584.2023.2232450 |
[34] |
WANG Y H, SU H H, YANG Y, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy[J]. Mol Ther, 2013, 21(2):358-367. doi: 10.1038/mt.2012.250 |
[35] |
CHEN Z, MENG C Y, MAI J H, et al. An mRNA vaccine elicits STING-dependent antitumor immune responses[J]. Acta Pharm Sin B, 2023, 13(3):1274-1286. doi: 10.1016/j.apsb.2022.11.013 |
[36] |
TIMOTIEVICH E D, SHILOVSKIY I P, KHAITOV M R. Cell-penetrating peptides as vehicles for delivery of therapeutic nucleic acids. mechanisms and application in medicine[J]. Biochemistry, 2023, 88(11):1800-1817. |
[37] |
HUANG J, WANG K Y, FU X Z, et al. Efficient colon cancer immunogene therapy through co-delivery of IL-22BP mRNA and tumor cell lysate by CLSV nanoparticles[J]. Int J Nanomed, 2023, 18:8059-8075. doi: 10.2147/IJN.S439381 |
[38] |
WANG X Y, LIN C, CHANG W J, et al. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells[J]. Int J Biol Macromol, 2022, 221:121-134. doi: 10.1016/j.ijbiomac.2022.08.164 |
[39] |
ZHANG W, LIU Y, MIN CHIN J, et al. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination[J]. Eur J Pharm Biopharm, 2021, 163:179-187. doi: 10.1016/j.ejpb.2021.03.011 |
[40] |
SHIN H, KANG S, WON C, et al. Enhanced local delivery of engineered IL-2 mRNA by porous silica nanoparticles to promote effective antitumor immunity[J]. ACS Nano, 2023, 17(17):17554-17567. doi: 10.1021/acsnano.3c06733 |
[41] |
LIU Y X, YAN Q J, ZENG Z Y, et al. Advances and prospects of mRNA vaccines in cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2):189068. doi: 10.1016/j.bbcan.2023.189068 |
[42] |
PENG M, MO Y Z, WANG Y A, et al. Neoantigen vaccine: an emerging tumor immunotherapy[J]. Mol Cancer, 2019, 18(1):128. doi: 10.1186/s12943-019-1055-6 |
[43] |
ZHANG X Y, CUI H Q, ZHANG W J, et al. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison[J]. Bioact Mater, 2023, 22:491-517. |
[44] |
CAFRI G, GARTNER J J, ZAKS T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer[J]. J Clin Invest, 2020, 130(11):5976-5988. doi: 10.1172/JCI134915 |
[45] |
ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963):144-150. doi: 10.1038/s41586-023-06063-y |
[46] |
ROUDKO V, GREENBAUM B, BHARDWAJ N. Computational prediction and validation of tumor-associated neoantigens[J]. Front Immunol, 2020, 11:27. doi: 10.3389/fimmu.2020.00027 |
[47] |
ZHANG H X, XIA X J. RNA cancer vaccines: developing mRNA nanovaccine with self-adjuvant property for cancer immunotherapy[J]. Hum Vaccines Immunother, 2021, 17(9):2995-2998. doi: 10.1080/21645515.2021.1921524 |
[48] |
ANDERSON N M, SIMON M C. The tumor microenvironment[J]. Curr Biol, 2020, 30(16):R921-R925. doi: 10.1016/j.cub.2020.06.081 |