留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

mRNA肿瘤疫苗非病毒递送系统研究进展

周娇 郑建雨 王思真 杨峰

晁亮, 王辉, 沈淑琦, 游飘雪, 冀凯宏, 洪战英. 基于UHPLC-Q/TOF-MS代谢组学策略的葛根-知母药对防治阿尔茨海默病的药效与作用机制研究[J]. 药学实践与服务, 2025, 43(1): 30-40. doi: 10.12206/j.issn.2097-2024.202409035
引用本文: 周娇, 郑建雨, 王思真, 杨峰. mRNA肿瘤疫苗非病毒递送系统研究进展[J]. 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
CHAO Liang, WANG Hui, SHEN Shuqi, YOU Piaoxue, JI Kaihong, HONG Zhanying. Study on the pharmacological effects and mechanism of Gegen-Zhimu herb pair in preventing and treating Alzheimer's disease by UHPLC-Q/TOF-MS metabolomics strategy[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(1): 30-40. doi: 10.12206/j.issn.2097-2024.202409035
Citation: ZHOU Jiao, ZHENG Jianyu, WANG Sizhen, YANG Feng. Progress on mRNA tumor vaccine with non-viral delivery system[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034

mRNA肿瘤疫苗非病毒递送系统研究进展

doi: 10.12206/j.issn.2097-2024.202410034
基金项目: 国家自然科学基金(82473891);基础医学创新课题(JCKFKT-ZD-001)
详细信息
    作者简介:

    周 娇,硕士研究生,Email: brushz@qq.com

    通讯作者: 杨 峰,博士,教授,博士生导师,研究方向:药物递送系统,Email: yangfeng1008@126.com

Progress on mRNA tumor vaccine with non-viral delivery system

  • 摘要: 2020年底,FDA紧急批准了两种mRNA疫苗(BNT162b2和mRNA-1273),为应对COVID-19大流行提供了重要支撑。这些基于非病毒载体的COVID-19疫苗取得的巨大成功,推动了mRNA疫苗在肿瘤等疾病治疗领域的研究和应用。与基于病毒的递送系统相比,非病毒载体在生物安全性和多功能性方面具有重大优势。因此,非病毒载体已成为mRNA肿瘤疫苗开发的研究热点。本文重点介绍了非病毒载体的最新研发进展,包括脂质纳米颗粒、聚合物、肽类和无机材料等。此外,本文还概述了mRNA肿瘤疫苗临床试验的最新进展并讨论了非病毒载体在mRNA肿瘤疫苗临床转化面临的挑战以及未来的前景。
  • 阿尔茨海默病(AD)是一种以进行性记忆功能和神经行为障碍为表现的中枢神经系统退行性疾病。目前全球约有AD患者5000余万人,随着人口老龄化的进展,这一数字还将持续增加,给全球发展带来巨大的健康和经济负担[1] 。到目前为止,临床尚缺乏有效的AD治疗手段。胆碱酯酶抑制剂、NMDA拮抗剂等传统AD治疗药物效果有限,FDA新批准上市的Aβ单克隆抗体仑卡奈单抗等疗效尚存争议,且治疗费用昂贵[2] 。因此,开发经济、有效的AD治疗药物仍是当前研究热点。

    中药因其多靶点系统作用和低毒副作用的优势,近年来在AD等复杂疾病治疗药物发掘中发挥重要作用[3] 。中药葛根和知母临床应用历史悠久,葛根解肌退热、生津止渴,知母清热泻火、滋阴润燥,二者配伍可清热生津、滋阴润燥,改善代谢紊乱,对热邪灼津、痰浊阻窍所致的健忘呆钝、消渴等症具有治疗作用,主要代表方剂为玉液汤[4-6] 。近年来研究发现该药对的一些成分如葛根素[7] 、芒果苷[8] 、知母皂苷BⅡ[9] 等对AD具有药效作用。作为一种复杂的异质性疾病,AD的发生与糖尿病存在紧密的因果关联,也被称为脑型糖尿病(3型糖尿病)[10] 。但是目前鲜见葛根与知母配伍后在AD治疗中作用效果的报道。因此,本研究拟通过建立AD大鼠模型考察葛根和知母配伍防治AD的效果,同时运用代谢组学策略探究葛根与知母作为药对配伍后防治AD潜在的作用机制,为中药防治AD研究提供参考借鉴。

    Agilent 1290 Infinity液相色谱仪和6538 UHD Accurate-Mass 四级杆飞行时间串联高分辨质谱仪(美国安捷伦公司);HERAEUS FRESCO 17高速冷冻离心机(美国赛默飞公司);ANALOG 涡旋振荡器(美国奥豪斯公司);Milli-Q Integral超纯水机(美国Millipore公司);十万分之一电子分析天平(日本A&D公司);Digbehav动物行为学分析系统-水迷宫(上海吉量软件科技有限公司)。

    葛根(批号:A220901)与知母药材饮片(批号:20220201)购自上海市白鹿堂中药店,经海军军医大学药学系蒋益萍副教授鉴定为豆科植物野葛P. lobate(Willd.)Ohwi的干燥根和百合科植物知母A. asphodeloides Bge.的干燥根茎;乙醇(分析纯,国药集团上海化学试剂有限公司); 乙腈、甲酸(均为LC-MS级,赛默飞世尔科技中国有限公司);乙腈、甲醇(色谱纯,北京迪马科技有限公司);乌拉坦(批号:P2091859)、D-gal(批号:P1616089)和AlCl3(批号:P2391168)购自上海泰坦科技股份有限公司;生理氯化钠溶液(四川科伦药业股份有限公司);L-2-氯苯丙氨酸(98%,上海麦克林生化有限公司);超氧化物歧化酶(SOD)、丙二醛(MDA)和一氧化氮(NO)试剂盒购自上海源桔生物科技中心。

    健康雄性清洁级SD大鼠,体重(200±20)g,购自浙江省实验动物中心,动物生产许可证号:SCXK(浙)2019-0002。大鼠饲养于海军军医大学药学系实验动物中心,笼饲条件为:温度恒定为(22±2)℃,湿度区间为40%~60%,昼夜循环时间为12 h。

    分别取葛根、知母和葛根-知母药对(15∶12)粉末适量,以10倍体积70%乙醇浸泡,在85 ℃下加热回流提取90 min,滤过,滤渣以同等条件重复提取2次。合并3次滤液,60 ℃减压浓缩至无乙醇味,制备得到用于灌胃的提取液,密封保存于−20 ℃待用。

    2.2.1   分组与给药

    40只SD大鼠适应性喂养1周后按照体重随机分为空白对照组、AD模型组、葛根组、知母组和葛根-知母药对组共5组(n=8)。除对照组外,其余4组大鼠每日给予D-gal 300 mg/kg腹腔注射和AlCl3 200 mg/kg灌胃,连续给药21周建立AD动物模型。对照组每日给予等量的生理盐水(灌胃+腹腔注射)。自第14周起,3个中药干预组分别给予葛根、知母和葛根-知母药对提取液灌胃(相当于生药量:葛根6.25 g/(kg·d),知母5 g/(kg·d),药对11.25 g/(kg·d)。对照组和模型组大鼠灌胃等量纯水。

    2.2.2   Morris 水迷宫实验

    采用Morris水迷宫行为学实验评价大鼠的学习和记忆能力。水迷宫实验全程共6 d,其中包括5 d的定位航行训练和1 d的空间探索试验。利用动物行为学分析系统记录大鼠在定位航行训练期间每日的逃避潜伏时间和空间探索训练中的运动轨迹、穿越站台次数、各象限的运动距离和停留时间等参数,供分析评价使用。

    2.2.3   样本获取与前处理

    行为学实验结束后,大鼠腹腔注射乌拉坦麻醉,经腹主动脉取血,静置后,在4 ℃、4 000 r/min转速下离心10 min,取上清液分装冻存于−80 ℃,供后续分析用。

    2.2.4   血清MDA、SOD和NO检测

    使用ELISA试剂盒,按照说明书步骤检测大鼠血清中的SOD、MDA、NO等氧化应激和脂质过氧化相关指标。

    2.3.1   含内标的甲醇溶液配制

    精密称取L-2-氯苯丙氨酸适量,加入甲醇溶解得浓度为5 mg/ml的内标母液,随后用甲醇稀释得到浓度为2 μg/ml的内标溶液。

    2.3.2   分析样本制备

    各取200 μl解冻后的血清样本置于1.5 ml的离心管中,加入600 μl预冷的含内标的甲醇溶液,涡旋2 min后,在4 ℃、12 500 r/min转速下离心15 min,取上清液供UPLC-Q/TOF-MS分析用。取各样本20 μl,混合得到质控(QC)样本。

    2.3.3   色谱与质谱条件

    色谱条件:反相色谱柱为Waters X Select HSS T3柱(2.1 mm×100 mm, 1.8 μm),亲水作用色谱柱为Waters Acquity UPLC BEH HILIC柱(2.1 mm×100 mm, 1.8 μm);进样量:2 μl;柱温:40 ℃;流动相为0.1%甲酸-水(A )和0.1%甲酸-乙腈溶液(B);T3柱梯度洗脱模式:0~2 min,2%B;2~17 min,2%~98% B;17~19 min,98%B。HILIC柱梯度洗脱模式:0~2 min,95%B;2~4 min,95%~89% B;4~10 min, 89% B;10~12 min, 89%~66% B;12~15 min, 66% B。流速:0.4 ml/min;色谱柱平衡时间:5 min。

    质谱条件:采用 ESI 离子源,正、负离子检测模式;干燥气温度,350 ℃,干燥气体流量:11 L/min;毛细管电压:正离子模式为4 000 V,负离子模式为3 500 V;碎裂电压:120 V;质谱扫描范围:50~1 500 m/z

    2.3.4   数据预处理与分析

    质谱数据用XCMS程序包进行预处理,按80%原则过滤无效数据并进行内标归一化处理。使用SIMCA 14.1(Umetrics公司,瑞典)进行偏最小二乘判别分析(PLS-DA)和正交矫正偏最小二乘判别分析(OPLS-DA)并进行模型验证,结合R2X、R2Y和Q2判断模型的拟合效果和预测效果。以变量权重值(VIP)>1、P<0.05且差异倍数(fold change,FC)>1.2或<0.8作为筛选标准,获得AD疾病关联生物标志物。借助HMDB数据库(https://hmdb.ca/)等在线代谢物质谱数据库对筛选得到的差异代谢物进行比对和注释。借助MetaboAnalyst 6.0(https://www.metaboanalyst.ca/)网站进行代谢通路分析。

    使用SPSS Statistics 23(IBM公司,美国)和GraphPad Prism 8(Graphpad软件公司,美国)进行统计分析与绘图。两组间比较采用t检验,多组间比较采用单因素方差分析,P<0.05认为组间差异具有统计学意义。

    3.1.1   学习和记忆能力评价

    以水迷宫实验中大鼠逃避潜伏期、穿越站台所在位置次数以及站台所在象限的停留时间作为评价指标,考察大鼠的学习和记忆水平。结果如图1所示,定位航行训练期间,各组大鼠的逃避潜伏期随训练时间增加均呈下降趋势,其中模型组逃避潜伏期下降趋势较为平缓,对照组和3个中药干预组下降趋势均较模型组显著,对照组和葛根-知母药对组第5日逃避潜伏期较模型组均有极显著差异(P<0.01)。同样,空间探索实验中,模型组大鼠穿越站台次数以及站台所在象限的停留时间较对照组均显著减少,组间差异具有统计学意义(P<0.05)。中药干预后各组大鼠穿越站台次数及目标象限停留时间均有所增加,其中,葛根-知母药对组与模型组间差异具有统计学意义(P<0.05)。结果表明,造模后大鼠的学习和记忆能力出现下降,给予葛根、知母和葛根-知母药对干预均可不同程度改善大鼠的学习和记忆能力,以葛根-知母药对最为显著,效果优于单药。

    图  1  不同组别大鼠水迷宫实验结果
    A.逃避潜伏期;B.目标象限停留时间百分比;C.各组大鼠水迷宫代表轨迹图;D.穿越站台次数 *P<0.05, **P<0.01, 与模型组比较#P<0.05, ##P<0.01, ###P<0.001, 与对照组比较。
    3.1.2   血清生化指标测定

    与对照组相比,模型组大鼠血清NO水平相对升高,MDA水平显著升高(P<0.05),SOD含量极显著降低(P<0.01)。中药干预后,各给药组血清NO和MDA水平出现不同程度降低,其中葛根-知母药对组降低效果最为明显,与模型组间差异具有统计学意义(P<0.05)。葛根、知母和葛根-知母药对给药组血清SOD含量较模型组均有所回调,组间差异具有统计学意义(P<0.05),见图2

    图  2  不同组别大鼠血清SOD(A)、MDA(B)和NO(C)水平
    *P<0.05, **P<0.01, ***P<0.001, 与模型组比较; #P<0.05, ##P<0.01,与对照组比较。
    3.2.1   血清代谢轮廓和多元统计分析

    血清样本经UHPLC-Q/TOF-MS分析后得到各组大鼠血清代谢图谱,不同色谱柱分析条件下各组大鼠血清代谢轮廓存在一定差异。多元统计分析结果表明(图3),在PLS-DA多组分析模型中,空白对照组、AD模型组和3个中药干预组组间区分度较好,组内差异相对较小。PLS-DA模型200次置换检验结果显示,Q2回归线与Y轴截距小于0,R2和Q2曲线斜率始终为正值,且Q2<R2,表明模型未出现过拟合,具有相对可靠的解释和预测能力。在OPLS-DA模型中,不同分析条件下,AD模型组与空白对照组间完全分离,表明模型组与对照组间具有显著组间差异,CV-ANOVA验证结果证实所建立的OPLS-DA模型未出现过拟合,具备解释和预测能力。

    图  3  UHPLC-Q/TOF-MS正、负离子模式下T3柱和HILIC柱的PLS-DA与OPLS-DA得分图
    A-D. UHPLC-Q/TOF-MS正、负离子模式下T3柱和HILIC柱的PLS-DA得分图;E-H. 模型组与对照组间OPLS-DA得分图
    3.2.2   差异代谢物筛选与鉴定

    对T3柱和HILIC柱正、负离子模式下的代谢物信息进行差异化分析,以VIP值>1、P<0.05和FC>1.2或FC<0.8作为筛选标准,对不同模式下空白对照组与AD模型组的差异代谢物进行筛选,并以火山图形式呈现(图4)。图中橙色标记点为显著上调代谢物,蓝色标记点为显著下调代谢物。

    图  4  正负离子模式下差异代谢物筛选火山图
    A. T3正离子模式;B. T3负离子模式;C. HILIC正离子模式;D. HILIC负离子模式

    利用HMDB数据库对差异代谢物质谱信息进行匹配和鉴定,在AD模型组与对照组间鉴定出70个AD相关的潜在生物标志物,其中由HILIC柱鉴定得到31个代谢物,T3柱鉴定得到45个代谢物,T3和HILIC柱共同鉴定得到的代谢物6个,具体如表1所示。

    表  1  差异代谢物鉴定、趋势和相关通路分析结果
    序号 代谢物 色谱柱 分子质量(m/z 化学式 加合离子 趋势 相关通路 P
    1 2-羟基丁酸 T3 127.0362 C4H8O3 M+Na 丙酸代谢 1.22E-03
    2 肌酸 T3 132.0781 C4H9N3O2 M+H # 甘氨酸、丝氨酸和苏氨酸代谢 6.98E-03
    3 脯氨酸 T3、HILIC 138.0553 C5H9NO2 M+Na #* 精氨酸和脯氨酸代谢 4.20E-03
    4 L-天冬氨酸 T3 133.0606 C4H8N2O3 M+H # 丙氨酸、天冬氨酸和
    谷氨酸代谢
    2.36E-02
    5 L-乙酰基肉碱 T3 204.1218 C9H17NO4 M+H 不饱和脂肪酸的生物合成 1.26E-03
    6 棕榈酰肉碱 T3 400.3424 C23H45NO4 M+H #* 脂肪酸降解 2.38E-04
    7 喹啉酸 T3 168.0271 C7H5NO4 M+H 烟酸和烟酰胺代谢 4.97E-04
    8 焦谷氨酸 T3 128.0329 C5H7NO3 M-H # 谷胱甘肽代谢 2.89E-02
    9 3b-羟基-5-胆酸 T3 357.2789 C24H38O3 M+H-H2O 1.01E-02
    10 香草酸 T3 151.0361 C8H8O4 M+H-H2O 3.05E-03
    11 肌酸酐 T3 136.0491 C4H7N3O M+Na # 1.89E-04
    12 戊烯二酸 T3 153.0198 C5H6O4 M+Na 8.96E-03
    13 亚油酸 T3 303.2327 C18H32O2 M+Na # 亚油酸代谢 2.45E-02
    14 4-羟基丁酸 T3 103.0382 C4H8O3 M-H # 4.49E-03
    15 糖原 T3 689.2111 C24H42O21 M+Na 淀粉和蔗糖代谢 2.24E-02
    16 肉豆蔻酸 T3 211.2038 C14H28O2 M+H-H2O # 脂肪酸生物合成 4.15E-02
    17 丙酰肉碱 T3 218.1383 C10H19NO4 M+H # 支链脂肪酸的氧化 1.97E-02
    18 硬脂酰肉碱 T3 428.3734 C25H50NO4 M+H #* 长链饱和脂肪酸的
    线粒体β氧化
    2.84E-04
    19 花生四烯酸 T3 327.232 C20H32O2 M+Na #* 花生四烯酸代谢 1.53E-02
    20 N1乙酰精胺 T3 267.208 C12H28N4O M+Na # 赖氨酸降解 3.71E-02
    21 N6, N6, N6-三甲基-L-赖氨酸 T3 189.16 C9H20N2O2 M+H # α-亚麻酸代谢 4.44E-02
    22 α-亚麻酸 T3 279.2316 C18H30O2 M+H #* 初级胆汁酸生物合成 2.80E-02
    23 24羟基胆固醇 T3 425.343 C27H46O2 M+Na # 半胱氨酸和蛋氨酸代谢 8.17E-04
    24 2-氧代-4-甲硫基丁酸 T3 131.0189 C5H8O3S M+H-H2O 不饱和脂肪酸的生物合成 1.14E-02
    25 二十碳五烯酸 T3 285.2212 C20H30O2 M+H-H2O # 2.45E-02
    26 油酰乙醇酰胺 T3 348.2891 C20H39NO2 M+Na # 8.42E-03
    27 吲哚-3-丙酸 T3 190.0858 C11H11NO2 M+H # 4.79E-04
    28 棕榈油酸 T3 237.2193 C16H30O2 M+H-H2O #* 5.79E-03
    29 15(S)-羟基二十碳三烯酸 T3 345.2341 C20H34O3 M+Na # 9.83E-03
    30 十四酰肉碱 T3、HILIC 372.3103 C21H41NO4 M+H # 1.15E-02
    31 3-羟基马尿酸 T3 178.0501 C9H9NO4 M+H-H2O #* 9.53E-03
    32 18-羟基花生四烯酸 T3 343.225 C20H32O3 M+Na # 3.91E-02
    33 亚麻酰基肉碱 T3 424.3414 C25H46NO4 M+H # 4.25E-04
    34 LysoPC(15:0/0:0) T3 526.3057 C23H48NO7P M+FA-H #* 2.55E-02
    35 PC(18:1(9Z)e/2:0) T3 550.3872 C28H56NO7P M+H #* 2.11E-03
    36 7-酮胆固醇 T3 401.3455 C27H44O2 M+H #* 1.08E-04
    37 9-十六碳烯酰肉碱 T3 398.3152 C23H43NO4 M+H # 9.43E-05
    38 16(17)-EpDPE T3 343.2219 C22H32O3 M-H #* 3.33E-02
    39 十八烯酰肉碱 T3 426.3578 C25H47NO4 M+H # 1.84E-04
    40 肉豆蔻酰肉碱 T3 370.2951 C21H39NO4 M+H 4.25E-03
    41 DL-乙酰肉碱 T3 204.1227 C9H17NO4 M+H 嘧啶代谢 1.85E-03
    42 胞苷一磷酸 HILIC 368.0407 C9H14N3O8P M+FA-H # 甘氨酸、丝氨酸和苏氨酸代谢 2.74E-02
    43 胆碱 HILIC 86.0963 C5H14NO M+H-H2O 初级胆汁酸生物合成 1.20E-02
    44 甘胆酸 HILIC 466.33 C26H43NO6 M+H #* 苯丙氨酸、酪氨酸和色氨酸生物合成 2.43E-04
    45 L-酪氨酸 HILIC 182.0812 C9H11NO3 M+H #* 苯丙氨酸、酪氨酸和色氨酸生物合成 2.89E-03
    46 苯丙氨酸 HILIC 166.0862 C9H11NO2 M+H 嘌呤代谢 1.68E-03
    47 肌苷酸 HILIC 383.0262 C10H13N4O8P M+Cl #* 丙氨酸、天冬氨酸和
    谷氨酸代谢
    9.85E-04
    48 L-天门冬氨酸 HILIC 134.0433 C4H7NO4 M+H 苯丙氨酸、酪氨酸和色氨酸生物合成 5.14E-04
    49 苯丙酮酸 HILIC 165.0546 C9H8O3 M+H #* 嘧啶代谢 6.25E-03
    50 乳清酸 HILIC、T3 179.0029 C5H4N2O4 M+Na #* 鞘脂代谢 3.04E-02
    51 鞘氨醇 HILIC 302.3059 C18H39NO2 M+H # 酪氨酸代谢 6.59E-04
    52 香草扁桃酸 HILIC 233.0192 C9H10O5 M+Cl #* 酪氨酸代谢 6.72E-05
    53 酪胺 HILIC 120.079 C8H11NO M+H-H2O 2.50E-03
    54 3-氧代-4, 6 -胆二烯酸 HILIC 393.2315 C24H34O3 M+Na # 初级胆汁酸生物合成 1.46E-02
    55 鹅去氧胆酸 HILIC 437.2877 C24H40O4 M+FA-H #* 丙氨酸、天冬氨酸和
    谷氨酸代谢
    7.30E-04
    56 谷氨酰胺 HILIC 169.0584 C5H10N2O3 M+Na # 5.06E-04
    57 亮氨酸 HILIC 133.0855 C6H12O3 M+H 5.18E-03
    58 高-L-精氨酸 HILIC 189.1292 C7H16N4O2 M+H #* 1.22E-02
    59 马尿酸 HILIC、T3 178.0516 C9H9NO3 M-H # 2.94E-02
    60 牛磺胆酸3-硫酸盐 HILIC 596.2653 C26H45NO10S2 M+H 1.78E-05
    61 鹅去氧胆酸3-硫酸盐 HILIC 455.2515 C24H40O7S M+H-H2O 半胱氨酸和蛋氨酸代谢 2.76E-03
    62 硫代半胱氨酸 HILIC 187.9645 C3H7NO2S2 M+Cl # 亚油酸代谢 8.23E-05
    63 13-L-过氧化氢亚油酸 HILIC 311.2187 C18H32O4 M-H # 4.63E-03
    64 S-亚硝基谷胱甘肽 HILIC 381.0763 C10H16N4O7S M+FA-H #* 鞘脂代谢 8.86E-05
    65 LacCer(d18:1/12:0) HILIC 806.5705 C42H79NO13 M+H 花生四烯酸代谢 1.30E-04
    66 LysoPC(14:0/0:0) HILIC、T3 512.3009 C22H46NO7P M+FA-H 3.34E-02
    67 2-(14,15-环氧二十碳三烯酰基)甘油 HILIC 395.2749 C23H38O5 M+H 1.41E-03
    68 赖氨酰苯丙氨酸 HILIC 294.1891 C15H23N3O3 M+H 醚脂代谢 2.52E-04
    69 二十四碳四烯酸肉碱 HILIC、T3 526.3786 C31H53NO4 M+Na 2.98E-05
    70 1-(11Z二十二碳烯酰基)-3-磷酸甘油酯 HILIC 515.3163 C25H49O7P M+Na 8.91E-07
    注:↑表示模型组较对照组相对升高趋势,↓表示模型组较对照组相对下降趋势,P值为模型组与对照组间代谢物水平的t检验计算结果;
    #表示代谢物经葛根-知母药对干预后具有回调趋势(共47个),*表示代谢物(共20个)经葛根-知母药对干预后回调差异具有统计学意义(P<0.05)。
    下载: 导出CSV 
    | 显示表格
    3.2.3   药物的干预效果

    利用各组间的FC值变化情况判断药对干预后的回调代谢物。对于具有回调趋势的代谢物多组间变化情况进行单因素方差分析,P<0.05的代谢物确定为药对干预后显著回调的差异代谢物。结果显示,葛根-知母药对干预后出现回调的差异代谢物共计47个,其中,显著回调代谢物20个(表1图5)。

    图  5  20个显著回调代谢物在不同组间的相对信号强度
    *P<0.05, **P<0.01, ***P<0.001, 与模型组比较; #P<0.05, ##P<0.01,###P<0.001,与对照组比较。

    对70个AD相关的差异代谢物和葛根-知母药对干预后显著回调的20个差异代谢物分别进行通路富集分析后发现(图6),AD模型大鼠潜在疾病生物标志物涉及通路主要包括苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢、亚油酸代谢、不饱和脂肪酸的生物合成、丙氨酸、天冬氨酸和谷氨酸代谢、精氨酸生物合成、酪氨酸代谢、嘧啶代谢等。葛根-知母药对干预可对苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢、不饱和脂肪酸的生物合成、酪氨酸代谢和初级胆汁酸生物合成等通路产生回调影响。

    图  6  血清差异代谢物KEGG通路富集分析
    A.模型组与对照组;B.葛根-知母药对干预后回调通路(1.苯丙氨酸、酪氨酸和色氨酸生物合成;2.苯丙氨酸代谢;3.亚油酸代谢;4.不饱和脂肪酸的生物合成;5.丙氨酸、天冬氨酸和谷氨酸代谢;6.精氨酸生物合成;7.烟酸和烟酰胺代谢;8.嘧啶代谢;9.酪氨酸代谢;10.初级胆汁酸生物合成)

    AD是一种复杂的中枢神经系统异质性疾病,具体病因尚不明确。目前已知可导致AD的因素包括基因突变、氧化应激、神经炎症以及多种环境和疾病因素[11] 。衰老被认为是AD最相关的危险因素[12] ,啮齿类动物长期摄入D-gal可产生包括氧化应激、炎症反应在内的多种与人类相似的衰老相关变化[13] 。铝元素可通过促进中枢神经系统炎症反应、降低脑中SOD活性,影响胆碱能神经传递、促进Tau蛋白磷酸化等形式诱导神经毒性,过量铝暴露与AD等中枢神经系统退行性疾病进展相关[14] 。研究表明,D-gal与AlCl3联合应用可产生类似于自然衰老的变化及AD相关特征[15] 。因此,本研究选取D-gal与AlCl3联合造模,通过大鼠长程给药模拟和还原AD相关的病程和病理变化,力求更加精准地反映AD患者体内代谢分子水平变化。药效学实验表明,D-gal和AlCl3联合给药后大鼠学习和记忆能力明显下降,体内氧化应激和炎症相关因子水平发生变化,表明该模型成功模拟AD相关的病理变化和特征。而葛根-知母药对干预可显著改善AD模型大鼠的学习和记忆能力,并回调SOD、NO和MDA等相关生化指标,改善和回调效果优于单药,表明葛根和知母配伍后在AD防治中具有一定的增效作用,具备进一步研究的价值。

    代谢组学结果表明,葛根-知母药对可以显著回调血清中20种代谢物,主要涉及苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢、不饱和脂肪酸的生物合成、酪氨酸代谢等途径。酪氨酸是一些神经递质或者神经调节剂的前体。Liu[16]等对尸源样本进行非靶向和靶向代谢组学分析发现,AD患者海马中苯丙酮酸含量普遍上调,表明苯丙氨酸代谢失调可能是AD病理形成的重要机制。本研究同样发现AD模型大鼠血清中苯丙酮酸水平较对照组显著升高,葛根-知母药对可以显著回调苯丙酮酸至生理水平。脯氨酸是一种非必需氨基酸,参与氧化还原调控和细胞凋亡,既是活性氧(ROS)清除剂,也是ROS生产者,因此,平衡脯氨酸水平和脯氨酸相关代谢酶活性对维系细胞生理功能至关重要。脯氨酸代谢可能会通过ROS、细胞衰老和细胞免疫等机制影响神经元功能[17] 。Xu等[18]整合代谢组学与蛋白质组学结果发现,脱脂核桃粉可以通过升高小鼠脑组织中脯氨酸等多种氨基酸水平发挥对东莨菪碱诱导的AD小鼠神经保护机制。这与本实验结果相似,葛根-知母药对可以通过回调脯氨酸水平发挥AD防治作用。

    此外,本研究发现多种回调代谢物与脂质代谢密切相关。花生四烯酸和α-亚麻酸是由多不饱和脂肪酸氧化产生的脂氧化物,广泛参与机体炎症、免疫等多种生理病理进程。花生四烯酸升高可进一步提高氧化应激水平,与AD等疾病进程紧密相关[19] 。AD与胆汁酸代谢异常之间存在紧密关联,这可能与肠-肝-脑轴机制相关。有研究表明AD患者血浆中胆汁酸水平升高[20] 。磷脂是保持细胞膜完整性的主要物质,溶血磷脂酰胆碱是磷脂的降解产物,与磷脂代谢密切相关,磷脂代谢异常可导致溶血磷脂酰胆碱下调,表现为细胞凋亡及信号转导异常,是AD的潜在诱因之一[21] 。本研究表明,葛根-知母药对的AD防治作用效果可能与显著回调血清中花生四烯酸、α-亚麻酸、甘胆酸、鹅去氧胆酸和溶血磷脂酰胆碱水平相关。

    ROS产生与消除之间的不平衡被称为氧化应激,氧化应激是AD等疾病的关键因素和共同点。NO是ROS的一种,也是神经传递和炎症相关的重要因素。高水平ROS会触发不饱和脂肪酸的脂质过氧化,导致MDA等高反应性化合物的产生,因此MDA是脂质过氧化和氧化应激的标志。SOD是抵消ROS有害影响最有效的一线防御机制。SOD可以通过去除超氧自由基防止更具破坏力的过氧亚硝酸盐生成,并维持体内NO在生理相关水平[22, 23] 。代谢组学结果提示,葛根-知母药对回调干预的多种途径与氧化应激和脂质过氧化相关。ELISA实验结果进一步表明,葛根-知母药对干预可提高AD大鼠体内SOD水平,回调NO和MDA至生理水平,提示葛根-知母药对可以通过调节氧化应激和脂质过氧化,维持体内NO的生理水平对AD产生防治作用。

    综上,本文通过建立AD大鼠模型考察了葛根-知母药对防治AD的作用效果,药对药效优于单药;运用代谢组学策略揭示其改善AD大鼠学习和记忆能力相关的潜在代谢物和代谢路径,其作用机制可能与调节苯丙氨酸、酪氨酸和色氨酸生物合成等代谢通路、改善氧化应激和脂质过氧化水平等相关,为中药药对防治AD的临床应用和进一步开发提供了科学依据。

  • 图  1  应用于mRNA肿瘤疫苗的非病毒递送系统

    图  2  LNP及其各组成部分示意图

    图  3  几种常见的基于聚合物的非病毒递送系统的化学结构

    表  1  中国进入临床试验阶段的mRNA肿瘤疫苗

    疫苗登记号适应证申办单位研发阶段
    ChiCTR2300071001EGFR 突变阳性的晚期非小细胞肺癌苏州艾博生物科技有限公司探索性研究/预试验
    CTR20232018晚期实体瘤北京立康生命科技有限公司Ⅰ期临床
    CTR20240438新诊断的原发性脑胶质母细胞瘤(WHO 4级)北京启辰生生物科技有限公司Ⅰ期临床
    ChiCTR2300077339晚期胰腺癌中国人民解放军总医院Ⅰ期临床
    ChiCTR2300071740HPV16/18阳性的不可切除的复发性或转移性实体瘤南阳医学高等专科学校第一附属医院Ⅰ期临床
    ChiCTR2200066118晚期黑色素瘤南阳医学高等专科学校第一附属医院Ⅰ期临床
    ChiCTR2200056172晚期实体瘤蚌埠医学院第一附属医院Ⅰ期临床
    ChiCTR2000029301胃癌,食管癌深圳市新合生物医疗科技有限公司Ⅰ期临床
    ChiCTR1900023000晚期恶性实体瘤斯微(上海)生物科技有限公司Ⅰ期临床
    下载: 导出CSV
  • [1] KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity[J]. Ca-Cancer J Clin, 2020, 70(2):86-104. doi:  10.3322/caac.21596
    [2] FAGHFURI E, POURFARZI F, FAGHFOURI A H, et al. Recent developments of RNA-based vaccines in cancer immunotherapy[J]. Expert Opin Biol Ther, 2021, 21(2):201-218. doi:  10.1080/14712598.2020.1815704
    [3] WANG X J, WANG W, ZOU S Y, et al. Combination therapy of KRAS G12V mRNA vaccine and pembrolizumab: clinical benefit in patients with advanced solid tumors[J]. Cell Res, 2024, 34(9):661-664. doi:  10.1038/s41422-024-00990-9
    [4] YOO Y J, LEE C H, PARK S H, et al. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy[J]. J Controlled Release, 2022, 343:564-583. doi:  10.1016/j.jconrel.2022.01.047
    [5] LIU X Q, HUANG P, YANG R S, et al. mRNA cancer vaccines: construction and boosting strategies[J]. ACS Nano, 2023, 17(20):19550-19580. doi:  10.1021/acsnano.3c05635
    [6] CHEN J J, CHEN J Z, XU Q B. Current developments and challenges of mRNA vaccines[J]. Annu Rev Biomed Eng, 2022, 24:85-109. doi:  10.1146/annurev-bioeng-110220-031722
    [7] WADHWA A, ALJABBARI A, LOKRAS A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines[J]. Pharmaceutics, 2020, 12(2):102. doi:  10.3390/pharmaceutics12020102
    [8] KIM J, EYGERIS Y, RYALS R C, et al. Strategies for non-viral vectors targeting organs beyond the liver[J]. Nat Nanotechnol, 2024, 19(4):428-447. doi:  10.1038/s41565-023-01563-4
    [9] LANGER R, FOLKMAN J. Polymers for the sustained release of proteins and other macromolecules[J]. Nature, 1976, 263(5580):797-800. doi:  10.1038/263797a0
    [10] DIMITRIADIS G J. Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes[J]. Nature, 1978, 274(5674):923-924. doi:  10.1038/274923a0
    [11] WOLFF J A, MALONE R W, WILLIAMS P, et al. Direct gene transfer into mouse muscle in vivo[J]. Science, 1990, 247(4949 Pt 1): 1465-1468.
    [12] MARTINON F, KRISHNAN S, LENZEN G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA[J]. Eur J Immunol, 1993, 23(7):1719-1722. doi:  10.1002/eji.1830230749
    [13] CONRY R M, LOBUGLIO A F, WRIGHT M, et al. Characterization of a messenger RNA polynucleotide vaccine vector[J]. Cancer Res, 1995, 55(7): 1397-1400.
    [14] PATIL S, GAO Y G, LIN X, et al. The development of functional non-viral vectors for gene delivery[J]. Int J Mol Sci, 2019, 20(21): 5491.
    [15] 陈昕璐, 高原, 李鹃鹃, 等. mRNA脂质纳米粒载药系统的构建及体外评价[J]. 药学实践与服务, 2023, 41(5):291-295. doi:  10.12206/j.issn.2097-2024.202302026
    [16] COVID-19 vaccine tracker and landscape[EB/OL].(2023-03-30)[2024-05-23]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
    [17] PENG L, WAGNER E. Polymeric carriers for nucleic acid delivery: current designs and future directions[J]. Biomacromolecules, 2019, 20(10):3613-3626. doi:  10.1021/acs.biomac.9b00999
    [18] HALD ALBERTSEN C, KULKARNI J A, WITZIGMANN D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy[J]. Adv Drug Delivery Rev, 2022, 188:114416. doi:  10.1016/j.addr.2022.114416
    [19] XIONG H, LIU S, WEI T, et al. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo[J]. J Controlled Release, 2020, 325:198-205. doi:  10.1016/j.jconrel.2020.06.030
    [20] TSAKIRI M, ZIVKO C, DEMETZOS C, et al. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics[J]. Front Pharmacol, 2022, 13:900610. doi:  10.3389/fphar.2022.900610
    [21] EYGERIS Y, GUPTA M, KIM J, et al. Chemistry of lipid nanoparticles for RNA delivery[J]. Acc Chem Res, 2022, 55(1):2-12. doi:  10.1021/acs.accounts.1c00544
    [22] ZHANG Y B, YAN J Y, HOU X C, et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2[J]. Nano Lett, 2023, 23(7):2593-2600. doi:  10.1021/acs.nanolett.2c04883
    [23] LIU J Q, ZHANG C X, ZHANG X F, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. J Controlled Release, 2022, 345:306-313. doi:  10.1016/j.jconrel.2022.03.021
    [24] GU Y Z, YANG J Y, HE C, et al. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases[J]. Signal Transduction Targeted Ther, 2023, 8(1):273. doi:  10.1038/s41392-023-01479-4
    [25] KOWALSKI P S, RUDRA A, MIAO L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery[J]. Mol Ther, 2019, 27(4):710-728. doi:  10.1016/j.ymthe.2019.02.012
    [26] ZENG C X, ZHANG C X, WALKER P G, et al. Formulation and delivery technologies for mRNA vaccines[J]. Curr Top Microbiol Immunol, 2022, 440:71-110.
    [27] YIN Y, LI X Y, MA H X, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy[J]. Nano Lett, 2021, 21(5):2224-2231. doi:  10.1021/acs.nanolett.0c05039
    [28] KIM M, OH J, LEE Y, et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke[J]. J Controlled Release, 2022, 350:471-485. doi:  10.1016/j.jconrel.2022.08.049
    [29] LI J, WU Y, XIANG J, et al. Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines[J]. Chem Eng J, 2023, 456:140930. doi:  10.1016/j.cej.2022.140930
    [30] PÉREZ-FERREIRO M, ABELAIRAS A M, CRIADO A, et al. Dendrimers: exploring their wide structural variety and applications[J]. Polymers, 2023, 15(22):4369. doi:  10.3390/polym15224369
    [31] ABEDI-GABALLU F, DEHGHAN G, GHAFFARI M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy[J]. Appl Mater Today, 2018, 12:177-190. doi:  10.1016/j.apmt.2018.05.002
    [32] JOUBERT F, MUNSON M J, SABIRSH A, et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine)dendrimers to improve cytosolic delivery of mRNA[J]. J Controlled Release, 2023, 356:580-594. doi:  10.1016/j.jconrel.2023.03.011
    [33] JARZEBSKA N T, LAUCHLI S, ISELIN C, et al. Functional differences between protamine preparations for the transfection of mRNA[J]. Drug Deliv, 2020, 27(1):1231-1235. doi:  10.1080/10717544.2020.1790692
    [34] MOHAMAD RAZIF M I, NIZAR N, ZAINAL ABIDIN N H, et al. Emergence of mRNA vaccines in the management of cancer[J]. Expert Rev Vaccines, 2023, 22(1):629-642. doi:  10.1080/14760584.2023.2232450
    [35] WANG Y H, SU H H, YANG Y, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy[J]. Mol Ther, 2013, 21(2):358-367. doi:  10.1038/mt.2012.250
    [36] CHEN Z, MENG C Y, MAI J H, et al. An mRNA vaccine elicits STING-dependent antitumor immune responses[J]. Acta Pharm Sin B, 2023, 13(3):1274-1286. doi:  10.1016/j.apsb.2022.11.013
    [37] TIMOTIEVICH E D, SHILOVSKIY I P, KHAITOV M R. Cell-penetrating peptides as vehicles for delivery of therapeutic nucleic acids. mechanisms and application in medicine[J]. Biochemistry, 2023, 88(11):1800-1817.
    [38] HUANG J, WANG K Y, FU X Z, et al. Efficient colon cancer immunogene therapy through co-delivery of IL-22BP mRNA and tumor cell lysate by CLSV nanoparticles[J]. Int J Nanomed, 2023, 18:8059-8075. doi:  10.2147/IJN.S439381
    [39] WANG X Y, LIN C, CHANG W J, et al. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells[J]. Int J Biol Macromol, 2022, 221:121-134. doi:  10.1016/j.ijbiomac.2022.08.164
    [40] ZHANG W, LIU Y, MIN CHIN J, et al. Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination[J]. Eur J Pharm Biopharm, 2021, 163:179-187. doi:  10.1016/j.ejpb.2021.03.011
    [41] SHIN H, KANG S, WON C, et al. Enhanced local delivery of engineered IL-2 mRNA by porous silica nanoparticles to promote effective antitumor immunity[J]. ACS Nano, 2023, 17(17):17554-17567. doi:  10.1021/acsnano.3c06733
    [42] LIU Y X, YAN Q J, ZENG Z Y, et al. Advances and prospects of mRNA vaccines in cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2):189068. doi:  10.1016/j.bbcan.2023.189068
    [43] PENG M, MO Y Z, WANG Y A, et al. Neoantigen vaccine: an emerging tumor immunotherapy[J]. Mol Cancer, 2019, 18(1):128. doi:  10.1186/s12943-019-1055-6
    [44] ZHANG X Y, CUI H Q, ZHANG W J, et al. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison[J]. Bioact Mater, 2023, 22:491-517.
    [45] CAFRI G, GARTNER J J, ZAKS T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer[J]. J Clin Invest, 2020, 130(11):5976-5988. doi:  10.1172/JCI134915
    [46] ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963):144-150. doi:  10.1038/s41586-023-06063-y
    [47] ROUDKO V, GREENBAUM B, BHARDWAJ N. Computational prediction and validation of tumor-associated neoantigens[J]. Front Immunol, 2020, 11:27. doi:  10.3389/fimmu.2020.00027
    [48] ZHANG H X, XIA X J. RNA cancer vaccines: developing mRNA nanovaccine with self-adjuvant property for cancer immunotherapy[J]. Hum Vaccines Immunother, 2021, 17(9):2995-2998. doi:  10.1080/21645515.2021.1921524
    [49] ANDERSON N M, SIMON M C. The tumor microenvironment[J]. Curr Biol, 2020, 30(16):R921-R925. doi:  10.1016/j.cub.2020.06.081
  • [1] 邵尉, 袁妮, 刘叶, 于飞, 柳莹, 王峰.  丙戊酸钠与左乙拉西坦治疗儿童癫痫病的成本-效果分析 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408046
    [2] 张强, 李静, 刘越, 储晓琴.  基于网络药理学与分子对接技术研究制痂酊治疗Ⅱ度烧伤的作用机制 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202307014
    [3] 段禹, 刘爱军.  活血化瘀法治疗血管性痴呆的研究进展 . 药学实践与服务, 2025, 43(4): 151-155, 173. doi: 10.12206/j.issn.2097-2024.202408045
    [4] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2025, 43(1): 10-16. doi: 10.12206/j.issn.2097-2024.202404008
    [5] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [6] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408053
    [7] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [8] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [9] 陈春娟, 郑志新, 李骊.  平喘方联合孟鲁司特钠治疗儿童支气管哮喘的临床疗效观察 . 药学实践与服务, 2024, 42(12): 524-527, 532. doi: 10.12206/j.issn.2097-2024.202405035
    [10] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [11] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [12] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [13] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [14] 顾佳钰, 胡馨儿, 王晓飞, 张颖, 张海, 曹岩.  侧流免疫层析定量检测方法的研究进展 . 药学实践与服务, 2024, 42(7): 273-277, 284. doi: 10.12206/j.issn.2097-2024.202307037
    [15] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [16] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [17] 石晓萍, 吕迁洲, 李晓宇, 许青.  泊沙康唑对比伏立康唑经验治疗或诊断驱动治疗免疫功能低下患者侵袭性霉菌病的成本-效果分析 . 药学实践与服务, 2024, 42(12): 512-519. doi: 10.12206/j.issn.2097-2024.202401050
    [18] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 457-460, 502. doi: 10.12206/j.issn.2097-2024.202405059
    [19] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [20] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
  • 期刊类型引用(1)

    1. 熊亚娟,冯思雨,郭泽磾. 肺炎患儿雾化吸入结合大环内酯类抗生素的治疗效果分析. 中国医学工程. 2024(11): 104-106 . 百度学术

    其他类型引用(1)

  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  5681
  • HTML全文浏览量:  3946
  • PDF下载量:  30
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2024-11-18
  • 网络出版日期:  2025-03-14
  • 刊出日期:  2025-03-25

mRNA肿瘤疫苗非病毒递送系统研究进展

doi: 10.12206/j.issn.2097-2024.202410034
    基金项目:  国家自然科学基金(82473891);基础医学创新课题(JCKFKT-ZD-001)
    作者简介:

    周 娇,硕士研究生,Email: brushz@qq.com

    通讯作者: 杨 峰,博士,教授,博士生导师,研究方向:药物递送系统,Email: yangfeng1008@126.com

摘要: 2020年底,FDA紧急批准了两种mRNA疫苗(BNT162b2和mRNA-1273),为应对COVID-19大流行提供了重要支撑。这些基于非病毒载体的COVID-19疫苗取得的巨大成功,推动了mRNA疫苗在肿瘤等疾病治疗领域的研究和应用。与基于病毒的递送系统相比,非病毒载体在生物安全性和多功能性方面具有重大优势。因此,非病毒载体已成为mRNA肿瘤疫苗开发的研究热点。本文重点介绍了非病毒载体的最新研发进展,包括脂质纳米颗粒、聚合物、肽类和无机材料等。此外,本文还概述了mRNA肿瘤疫苗临床试验的最新进展并讨论了非病毒载体在mRNA肿瘤疫苗临床转化面临的挑战以及未来的前景。

English Abstract

晁亮, 王辉, 沈淑琦, 游飘雪, 冀凯宏, 洪战英. 基于UHPLC-Q/TOF-MS代谢组学策略的葛根-知母药对防治阿尔茨海默病的药效与作用机制研究[J]. 药学实践与服务, 2025, 43(1): 30-40. doi: 10.12206/j.issn.2097-2024.202409035
引用本文: 周娇, 郑建雨, 王思真, 杨峰. mRNA肿瘤疫苗非病毒递送系统研究进展[J]. 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
CHAO Liang, WANG Hui, SHEN Shuqi, YOU Piaoxue, JI Kaihong, HONG Zhanying. Study on the pharmacological effects and mechanism of Gegen-Zhimu herb pair in preventing and treating Alzheimer's disease by UHPLC-Q/TOF-MS metabolomics strategy[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(1): 30-40. doi: 10.12206/j.issn.2097-2024.202409035
Citation: ZHOU Jiao, ZHENG Jianyu, WANG Sizhen, YANG Feng. Progress on mRNA tumor vaccine with non-viral delivery system[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
  • 在全球新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)大流行期间,Moderna和BioNTech/辉瑞公司基于脂质纳米颗粒(lipid nanoparticles,LNP)载体的mRNA疫苗获得FDA紧急批准[1,2],迅速地延缓了新型冠状病毒的传播。基于脂质纳米颗粒-mRNA的COVID-19疫苗取得的巨大成功,使得mRNA疫苗技术迅速成为研究的热点,并促进了mRNA疫苗在肿瘤等重大疾病治疗中的研发和应用。

    2024年6月,上海交通大学附属瑞金医院沈柏用教授团队披露mRNA肿瘤疫苗研究新进展,在全球范围内首次报道针对KRAS G12V单靶点的mRNA肿瘤疫苗在实体肿瘤中的治疗效果,为传统治疗无法耐受或者耐药的晚期肿瘤患者带来新希望[3]。同时,针对肿瘤抑制性免疫微环境,编码细胞因子的mRNA肿瘤疫苗可以促进效应T细胞的成熟、调控肿瘤微环境,从而提高在实体瘤局部疫苗接种的抗肿瘤疗效。其中,以MEDI1191、mRNA-2416、mRNA-2752、SAR44100等为代表的 mRNA肿瘤疫苗已进入临床试验阶段。mRNA肿瘤疫苗通过将编码肿瘤抗原的mRNA引入宿主细胞(通常是抗原提呈细胞)的细胞质中表达靶蛋白抗原,然后在抗原提呈细胞表面呈递MHC分子,诱导有效的免疫应答来发挥作用[4,5]。相对于其他类型的治疗性肿瘤疫苗来说,基于mRNA的肿瘤疫苗是一种有前途的策略(图1),其具有如下优势:①与病毒疫苗类似,mRNA肿瘤疫苗能够同时递送多种抗原,引发体液免疫和细胞免疫,增加了肿瘤细胞根除的可能性。②与基于肽的疫苗不同,mRNA肿瘤疫苗不受患者特异性HLA类型的限制。③与基于DNA的肿瘤疫苗相比,mRNA肿瘤疫苗安全且耐受性良好,没有插入宿主基因组的风险[4]。尽管mRNA肿瘤疫苗具有非常广阔的应用前景,但仍然存在以下问题:①mRNA分子在体内非常不稳定,很容易被细胞外的核酸酶降解[6]。②mRNA分子量大且带负电荷,这阻碍了它们通过细胞膜高效递送至靶细胞[7]。因此,推动mRNA药物应用的关键之一是高效的mRNA递送系统的开发。与基于病毒的递送系统相比,非病毒载体在生物安全性和多功能性方面具有重大优势。如基于脂质的纳米颗粒、聚合物纳米颗粒、肽类纳米颗粒和无机纳米粒子,能有效压缩mRNA,使其免受核酸酶的降解[8]。此外,根据靶向器官的生物结构和递送过程中的屏障,非病毒载体可以有目的地进行结构改造,从而更有效地将mRNA递送到身体的特定部位,以提高治疗效果[8]。因此,基于非病毒载体的递送系统的研究已成为mRNA肿瘤疫苗研究领域的热点课题。

    图  1  应用于mRNA肿瘤疫苗的非病毒递送系统

    • mRNA肿瘤疫苗的研究发端于 20 世纪 70 年代。1976年,Langer等[9]首次使用了聚合物纳米颗粒和微颗粒作为载体来封装核酸。随后2年,又实现将外源性mRNA通过脂质体递送到宿主细胞,进一步拓展了mRNA技术的应用[10]。1990年,Wolff等[11]将含有氯霉素乙酰转移酶、荧光素酶和β-半乳糖苷酶基因的RNA和DNA表达载体分别注射到小鼠体内骨骼肌中,在所有小鼠体内都检测到了相应蛋白质的表达,为mRNA用作治疗药物的研究奠定了基础。mRNA疫苗的概念可以追溯到1993年,Martinon等[12]在用编码流感病毒蛋白的mRNA免疫的小鼠中观察到细胞毒性T淋巴细胞的诱导,揭示了mRNA作为编码抗原的基因在疫苗研究领域的应用潜能。1995年,Conry 等[13]构建了编码荧光素酶和人癌胚抗原(carcinoem bryonic antigen,CEA)的mRNA剪切体,该mRNA剪切体在体外小鼠成纤维细胞中定向表达CEA, mRNA肿瘤疫苗的概念被首次提出。近年来,COVID-19的流行推动了mRNA疫苗的深入研究和技术的发展,并使mRNA肿瘤疫苗再次受到关注。事实上,COVID-19疫苗的快速发展得益于多年来在临床前和临床试验中以mRNA疫苗作为肿瘤治疗策略的相关研究。因此,mRNA疫苗是未来肿瘤治疗有希望的候选疗法之一。

    • 由于mRNA存在不稳定性、高免疫原性、递送效率低等问题,开发高效的靶向递送系统是mRNA疫苗亟待解决的问题。mRNA疫苗递送载体主要包括病毒载体和非病毒载体。目前,多数的临床基因治疗试验采用病毒载体。然而,病毒载体存在易于刺激免疫原性反应产生和诱导基因插入突变等问题,其临床安全性一直受到质疑。而包括脂质纳米粒、聚合物、肽类、无机材料在内的非病毒载体,具有强大的基因装载能力、高度的安全性和实用性,且其制备较为简单。因此,非病毒载体在进一步的临床开发和应用中显示出巨大的潜力[14]

    • 脂质纳米颗粒是一种临床批准的用于核酸递送的多功能平台[15]。截至2023年11月,3种基于LNP的药物(1种siRNA,2种mRNA)已获得美国食品药品监督管理局批准,超过50种候选药物正在临床试验中,用于治疗或预防传染病、肿瘤和遗传性疾病[16]

      LNP脂质壳结构由脂质或类脂材料以及辅助成分(包括胆固醇、辅助磷脂和聚乙二醇化脂质)组成(图2)。这些成分可促进单分散纳米颗粒的形成、提高纳米颗粒的稳定性、实现有效的核酸封装、增加细胞摄取和促进mRNA的内体逃逸。其中,辅助磷脂可以调节 LNP 双分子层的流动性,促进内体逃逸[17];胆固醇通过填充磷脂间的空隙来调节膜的流动性,促进膜融合。聚乙二醇(polyethyleneglycol,PEG)化脂质控制LNP的大小和稳定性,介导LNP的间接靶向能力以及保护LNP免受巨噬细胞介导的清除[18,19];LNP 配方中最重要的成分为阳离子脂质或可电离脂质,在早期的研究中主要使用阳离子脂质,如(2,3-二油酰基-丙基)-三甲基氯化铵[(2, 3-dioleyl-propyl)-trimethyl ammonium chloride, DOTAP]和1,2-双十八烯氧基-3-甲基铵丙烷(1, 2-didecaenooxy-3-methyl ammonium propane, DOTMA)。然而阳离子脂质具有高免疫原性和较强的毒性[20]

      图  2  LNP及其各组成部分示意图

      可电离脂质具有pH敏感性,其在酸性条件下带正电荷,在生理pH条件下接近中性[21,22]。这种特性使它们在体内分布时更少地与血清成分相互作用。当可电离脂质纳米粒进入细胞的酸性内体后,它们可以被质子化,从而帮助mRNA逃逸到细胞质中。常用的可电离脂质有1,2-二甲氧基-N,N-二甲基-3-氨基丙烷(DLin-DMA)、N,N-二甲基-2,2-二-(9Z,12Z)-9,12-十八碳二烯-1-基-1,3-二氧戊环-4-乙胺(DLin-KC2-DMA)和4-(N,N-二甲基氨基)丁酸(二亚油基)甲酯(DLin-MC3-DMA)。可电离脂质的结构改变可引起 mRNA递送效率的改变,如Dong等[23]合成了含有不同头部基团的二氨基(DAL)可电离脂质材料,用于包载编码IL-12、IL-27和GM-CSF等细胞因子的mRNA。使用DAL-LNP对携带B16F10黑色素瘤的小鼠进行治疗性疫苗接种,结果显示通过DAL-LNP在瘤内给药IL-12和IL-27 mRNA促进了B16F10黑色素瘤生长的持续抑制,且没有引起明显的毒性。

      此外,在LNP的表面进行靶向免疫细胞表面受体的功能性修饰,或与佐剂共同给药,可增强免疫刺激。Shi等[24]将 Pam2Cys(一种可通过 Toll 样受体(TLR)2/6 途径发出信号的简单合成代谢脂氨基酸)引入 LNP,实现了与 mRNA 的共同递送。结果显示,使用由此产生的 mRNA-LNP (Pam2Cys)进行免疫,可通过诱导 IL-12 和 IL-17 等细胞因子改善肿瘤引流淋巴结(tumor-draining lymph nodes,TDLN)的免疫微环境。

    • 目前常用于mRNA递送的聚合物材料主要有聚乙烯亚胺(polyethyleneimine,PEI)、基于聚酰胺-胺(poly-amindoamine,PAMAM)和聚丙烯亚胺(polypropylenimine,PPI)的树枝状大分子、聚氨基酯(poly β-aminoester,PBAE)、壳聚糖等[25]图3)。与LNP相比,基于聚合物的递送系统具有较高的多分散性、分子量和电荷密度,这导致基于聚合物的递送系统纯度较低、清除率较低且毒性较大。因此,它们在mRNA递送方面的临床应用不如可电离脂质纳米粒广泛。为了提高聚合物材料的转染效率和稳定性,并降低其毒性,人们对其结构进行了改造,包括添加脂质尾部、超支化基团和可生物降解分子[26]

      图  3  几种常见的基于聚合物的非病毒递送系统的化学结构

      PEI含有大量的氨基,在生理pH值下可被质子化带正电荷。而mRNA是一种带负电的分子。因此,PEI通过静电相互作用与mRNA紧密地结合形成纳米复合物[27]。此复合物可以有效地压缩mRNA,并在一定程度上保护mRNA免受外界酶的降解[28]。在体内,PEI充当“质子海绵”促进mRNA释放到细胞质。然而,由于高电荷密度和高分子量,PEI具有较大的全身毒性和低生物降解性。用脂肪链修饰的低分子量PEI已被用于mRNA递送以降低毒性,如Peng等[29]合成了一种氟烷烃接枝的聚乙烯亚胺(F-PEI)。结果显示由F-PEI和编码肿瘤抗原的mRNA自组装形成的疫苗,无额外的佐剂,即可诱导树突状细胞成熟并触发有效的抗原呈递,从而引发抗肿瘤免疫反应。

      树枝状大分子(dendrimers)是一类具有树枝状结构,由低聚物通过支化单元重复、线性连接而成的大分子,其通常由内核、聚合物主链和树枝单元的侧链组成[30,31]。作为一种阳离子聚合物,树枝状大分子的细胞毒性也需要通过表面改性来降低。England等[32]使用赖氨酸作为位点选择性锚,通过酰胺化反应引入了聚磺酰精氨酸和咪唑基团对PAMAM(P)和赖氨酸(L)树枝状大分子进行了化学改性。实验结果显示,与市售的转染剂jetPEI® 相比,改性的PAMAM树枝状大分子显示出更高的mRNA转染效率。

    • 除了基于聚合物和脂质纳米粒的载体外,还可以使用基于肽类的载体递送mRNA。肽类由可生物降解的氨基酸组成,因此其具有高度的生物相容性。鱼精蛋白和细胞穿膜肽(cell-penetrating peptides,CPPs)是两种基于肽的载体,可用于mRNA递送。鱼精蛋白是一种天然的富含精氨酸的阳离子蛋白,可以把带负电的mRNA分子络合成纳米级别的核酸颗粒[33]。此外,鱼精蛋白-mRNA组成的纳米级颗粒还可以进一步制备成脂质纳米颗粒,这种脂质-鱼精蛋白-mRNA(lipid/protamine/mRNA, LPR)的制剂形式,兼有脂质纳米粒和鱼精蛋白的优势[34,35]。Shen等[36]制备了一种由鱼精蛋白/mRNA核和脂质壳组成的mRNA肿瘤疫苗(MVP)。结果显示,MVP 中的mRNA核和脂质壳可充分刺激树突状细胞中I型干扰素和炎症细胞因子的表达,在小鼠结直肠肿瘤和黑色素瘤模型中引起了有效的抗肿瘤免疫。

      CPPs是一类由不多于30个氨基酸组成的小分子多肽。CPPs在生理pH值下带正电荷,可以与带负电荷的mRNA形成纳米结构[37]。Men等[38]将肿瘤细胞裂解液引入到DMP纳米颗粒[由DOTAP和(乙二醇)-b-聚(ε-己内酯)(mPEG-PCL)自组装形成]中,并将CPPs修饰在DMP表面,形成CLSV系统。然后将编码IL-22结合蛋白(interleukin-22 binding protein,IL-22BP)的mRNA与CLSV混合形成CLSV/IL-22BP复合物。结果表明,所构建的CLSV达到了激活免疫反应和增强mRNA递送的双重目的,在体外和体内均表现出较强的抑制肿瘤细胞生长的能力。

    • 无机纳米颗粒是一种多功能纳米平台。虽然INPs的生物相容性不如脂质纳米粒和聚合物,但是INPs可以通过表面功能化修饰,获得具有适当的溶解度和分散性的纳米粒子。并且某些INPs具有磁性和光学性质,可实现对肿瘤的成像和消融[39]。典型的INPs包括金纳米粒子、二氧化硅纳米粒子、氧化铁纳米粒子、量子点等。

      常用的INPs是介孔二氧化硅纳米粒子(mesoporous silica, MSN),其具有孔道均匀、高比表面积、大孔容和可生物降解性等优点。Phua等[40]开发了一种介孔二氧化硅纳米颗粒-mRNA (MSN-mRNA)皮下递送系统。结果显示,将编码卵清蛋白和粒细胞巨噬细胞集落刺激因子的裸mRNA和C16@MSNs组成的MSN-mRNA疫苗配方应用于小鼠E.G7-OVA预防性肿瘤模型时,产生了显著的肿瘤抑制作用。其次,INPs还可以与聚合物和脂质纳米粒联合,用于mRNA的递送。Shin等[41]开发了一种基于聚乙烯亚胺修饰的多孔二氧化硅纳米颗粒(PPSN)的递送平台,其携带细胞因子mRNA用于体内局部免疫治疗。结果表明,PPSN在定位mRNA翻译方面明显比美国食品药品监督管理局批准的LNP更有效。该研究显示了PPSN介导的mRNA递送作为肿瘤免疫疗法中基于mRNA治疗的特异性、有效性和安全性平台的潜力。

    • 基于肿瘤的特点编码特异性抗原,使其顺利地被免疫细胞识别以激活免疫应答,是mRNA肿瘤疫苗的核心作用机制。现阶段主要研究的mRNA肿瘤疫苗编码的抗原主要有肿瘤相关抗原(tumor-associated antigen,TAA)、肿瘤特异性抗原(tumor specific antigen,TSA)和免疫调节因子3种类型[42]。通过对非病毒载体和对机体免疫系统的研究不断深入,目前已有多项mRNA肿瘤疫苗进入临床试验。中国进入临床试验阶段的mRNA肿瘤疫苗如表1所示。

      表 1  中国进入临床试验阶段的mRNA肿瘤疫苗

      疫苗登记号适应证申办单位研发阶段
      ChiCTR2300071001EGFR 突变阳性的晚期非小细胞肺癌苏州艾博生物科技有限公司探索性研究/预试验
      CTR20232018晚期实体瘤北京立康生命科技有限公司Ⅰ期临床
      CTR20240438新诊断的原发性脑胶质母细胞瘤(WHO 4级)北京启辰生生物科技有限公司Ⅰ期临床
      ChiCTR2300077339晚期胰腺癌中国人民解放军总医院Ⅰ期临床
      ChiCTR2300071740HPV16/18阳性的不可切除的复发性或转移性实体瘤南阳医学高等专科学校第一附属医院Ⅰ期临床
      ChiCTR2200066118晚期黑色素瘤南阳医学高等专科学校第一附属医院Ⅰ期临床
      ChiCTR2200056172晚期实体瘤蚌埠医学院第一附属医院Ⅰ期临床
      ChiCTR2000029301胃癌,食管癌深圳市新合生物医疗科技有限公司Ⅰ期临床
      ChiCTR1900023000晚期恶性实体瘤斯微(上海)生物科技有限公司Ⅰ期临床
    • 肿瘤特异性抗原是体细胞中的非同义突变产生非自体蛋白[43],仅在肿瘤细胞中表达,而在正常细胞中不表达,因此支持对患者个体肿瘤抗原产生特异性免疫反应[44]。多个编码TSA的mRNA肿瘤疫苗已完成了Ⅰ/Ⅱ期临床试验[45]。BNT 122是BioNTech 和Genentech公司联合研发的一款编码胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)患者的20种新抗原的mRNA疫苗,使用LNP进行静脉注射给药。Ⅰ期临床试验结果显示,在手术切除后的PADC患者中,将BNT 122与化疗和免疫检查点疗法联用时,该mRNA疫苗对延缓PDAC患者的复发具有潜力。目前基于BNT122针对黑色素瘤和结直肠癌的治疗处于Ⅱ期临床试验阶段,针对实体瘤的临床试验即将进行Ⅱ期临床试验[46]

    • 肿瘤相关抗原是是一种在正常组织中表达但在肿瘤组织中过表达的抗原。具有肿瘤特异性弱、中枢免疫耐受性强、免疫原性弱的特点[47]。目前,利用多种TAA组合开发mRNA疫苗已成为一种趋势。BI 1361849是Ludwig癌症研究所研发的一款编码NY-ESO-1、MAGE-C2、MAGE-C1、survivin、5T4和MUC1这6种TAA的mRNA疫苗,其使用鱼精蛋白作为载体。Ⅰb期临床研究评估了BI-1361849联合局部放疗对Ⅳ期非小细胞肺癌(non-small-cell carcinoma,NSCLC)患者的有效性和安全性,结果显示,BI-1361849具有良好的耐受性和免疫原性。2017年12月,在美国启动了BI-1361849与 抗程序性死亡配体1 durvalumab和抗细胞毒性T淋巴细胞相关蛋白4(CTLA-4)抗体tremelimumab联用治疗NSCLC的Ⅰ/Ⅱ期临床试验。

    • 免疫调节因子是一类能够刺激或抑制特定免疫细胞功能的分子,包括细胞因子、共刺激因子等[48]。靶向肿瘤微环境实现肿瘤免疫治疗是目前抗肿瘤技术研究的热点。免疫调节因子可以重新激活免疫系统的抗肿瘤免疫反应并重塑积极的免疫微环境[49]。此外,编码免疫调节因子的mRNA疫苗还可作为编码TAA的mRNA疫苗的佐剂。mRNA-2752是Moderna公司研发的一款编码人 OX40L、IL-23 和 IL-36γ 的mRNA疫苗,其使用LNP作为载药系统,通过瘤内注射给药。在Ⅰ期的一项剂量递增研究(NCT03739931)中,mRNA-2752与免疫检查点阻断治疗剂durvalumab共同给药显示出抗肿瘤作用。目前mRNA-2752针对于三阴性乳腺癌、泌尿上皮癌、淋巴瘤和免疫检查点难治性黑色素瘤和非小细胞肺癌的Ⅰ期临床人体耐受性试验正在进行中。

    • 随着分子生物学的发展,mRNA疫苗给肿瘤免疫治疗带来了前所未有的希望。通过对mRNA化学修饰的改进以及开发更高效的非病毒载体递送系统可以提高mRNA肿瘤疫苗的安全性、稳定性和递送效率。基于基因治疗的良好前景,未来mRNA肿瘤疫苗的非病毒递送系统的主要发展方向可能包含以下几个方面:①将不同类型的非病毒载体联用共同递送mRNA疫苗,以结合不同类型载体的优点,实现提高纳米粒子稳定性、生物相容性和降低毒性等目的。②对非病毒载体进行功能化修饰以实现mRNA肿瘤疫苗的靶向性、光响应性、荧光可视性、pH响应性释放等功能。③阐明非病毒载体结构与其功能的关系,以及进入人体后与肿瘤微环境的相互作用机制。目前,正在开展许多基于脂质纳米颗粒、脂质-鱼精蛋白、阳离子脂质复合物和脂质多聚复合物等非病毒递送系统的mRNA肿瘤疫苗的临床试验。相信伴随多组学技术的发展和跨学科的融合,未来肿瘤特异性抗原的筛选将变得越来越精确。随着对非病毒递送系统研究的不断深入,mRNA肿瘤疫苗将在未来的肿瘤治疗中发挥巨大的作用。

参考文献 (49)

目录

/

返回文章
返回