-
中药配方颗粒是以符合标准的单味中药饮片为原料,经现代工艺提取、浓缩、制粒而成的一种新型中药制剂[1]。1992年,国家批准了试点生产企业进行中药配方颗粒研发,2001年,将其规范命名为“中药配方颗粒”,同时纳入中药饮片管理范畴。2021年国家先后公布了两批次196种配方颗粒的国家标准[2-3],标志着中药配方颗粒正式步入历史舞台。地龙配方颗粒目前仍属于企业在研品种,由于药材来源、制备工艺和质量标准不同,其产品质量亦存在差异,加之2020年版《中国药典》中地龙项下缺少指标成分和定量评价方法[4],使其仍缺少统一的评价指标。
核苷类成分是地龙舒张支气管、抗组胺、平喘的物质基础[5],通过对核苷类成分的评测,可在一定程度上反映地龙药材和配方颗粒的内在质量。有研究表明,利用高效液相色谱法(HPLC)建立的特征图谱,能较好地表征地龙药材中核苷类成分[6-7],同时可对其进行含量测定[8-12],也有用该方法测定地龙配方颗粒中次黄嘌呤的含量并对其进行质量评价的研究报道[13-14]。本研究采用高效液相色谱法测定不同厂家地龙配方颗粒中次黄嘌呤、肌苷、鸟苷和腺苷4种核苷类成分的含量,并应用《中药色谱指纹图谱相似度评价系统(2012.130723版)》建立指纹图谱进行质量评价。
-
Thermo Vanquish Core高效液相色谱仪(赛默飞世尔科技有限公司);Thermo AcclaimTM120 C18色谱柱(4.6 mm × 250 mm,5 μm)。EX125DZH型十万分之一电子分析天平(奥豪斯仪器(常州)有限公司);ME204E/02型万分之一电子分析天平(梅特勒-托利多有限公司);SB-5200DTD型超声波清洗机(上海般诺生物科技有限公司)。
-
乙腈(上海泰坦科技股份有限公司);水(屈臣氏蒸馏水)。
-
尿嘧啶对照品(批号:B20908),次黄嘌呤对照品(批号:B20211),尿苷对照品(批号:B20907),鸟苷对照品(批号:B20902),肌苷对照品(批号:B20582),以上对照品购自上海源叶生物科技有限公司;黄嘌呤对照品(批号:C12004027,上海阿拉丁生化科技股份有限公司);腺苷对照品(批号:SA8060,北京索莱宝科技有限公司);纯度均大于98%。地龙对照药材(参环毛蚓,Pheretima,批号:120987-201508,中国食品药品检定研究所);样品S1~S10为不同厂家或批次生产的地龙配方颗粒。
-
Thermo AcclaimTM120 C18色谱柱(4.6 mm×250 mm,5 μm);流动相乙腈(A)-水(B),梯度洗脱,洗脱条件见表1;流速0.6 ml/min;柱温25 ℃;检测波长254 nm;进样量10 μl。理论塔板数按肌苷峰计算不小于3500。
表 1 梯度洗脱表
时间 (min) 流动相比例(%) 流动相A 流动相B 0~15 2 98 15~25 2~3 98~97 25~30 3~8 97~92 30~40 8~20 92~80 40~50 20 80 50~55 20~50 80~50 55~60 50~100 50~0 60~63 100 0 63~68 100~2 0~98 -
取地龙对照药材约0.5 g,精密称定,置具塞锥形瓶中,精密加入双蒸水50 ml,称定重量。于60 ℃水浴30 min,再超声(功率300 W,频率40 kHz)30 min,放至室温,称定重量,用水补足减失的重量,摇匀,取上清液,经0.45 μm微孔滤膜滤过,取续滤液,即得。
分别称取对照品适量,制成含尿嘧啶0.504 mg/ml,次黄嘌呤0.326 mg/ml,黄嘌呤0.345 mg/ml,尿苷0.420 mg/ml,肌苷0.420 mg/ml,鸟苷0.338 mg/ml,腺苷0.350 mg/ml的储备液,置4 ℃储存备用。取上述对照品储备液适量,制成含尿嘧啶20.16 μg/ml,次黄嘌呤60.52 μg/ml,黄嘌呤17.25 μg/ml,尿苷21.00 μg/ml,肌苷138.2 μg/ml,鸟苷33.82 μg/ml和腺苷35.02 μg/ml的混合对照溶液。
-
取地龙配方颗粒适量,研细,取0.5 g,精密称定,置具塞锥形瓶中,精密加入双蒸水50 ml,称定重量,超声处理(功率300 W,频率40 kHz)30 min,放至室温,再称定重量,用水补足减失的重量,摇匀,取上清液,经0.45 μm微孔滤膜滤过,取续滤液,即得。
-
取混合对照溶液和样品S1,按“2.2.2”项下方法制备供试品溶液,按“2.1”项下色谱条件进样检测,记录色谱图。根据对照品的保留时间,指认了地龙配方颗粒HPLC图谱中7个主要色谱峰(图1),分别为尿嘧啶(峰1)、次黄嘌呤(峰2)、黄嘌呤(峰3)、尿苷(峰4)、肌苷(峰5)、鸟苷(峰6)和腺苷(峰7)。
-
取样品S1,按“2.2.2”项制备供试品溶液,按“2.1”项下色谱条件测定6次,以肌苷峰为参照峰,计算各共有峰相对保留时间和相对峰面积,二者RSD分别小于0.12%和2.46%,表明仪器精密度良好。
-
取样品S1,按“2.2.2”项制备供试品溶液,分别于0、4、8、12、16、24 h时按“2.1”项下色谱条件测定,以肌苷峰为参照峰,各共有峰相对保留时间和相对峰面积RSD分别小于0.16%和2.73%,表明该溶液在24 h内稳定性良好。
-
取6份样品S1,按“2.2.2”项制备供试品溶液,按“2.1”项下色谱条件测定,以肌苷峰为参照峰,各共有峰相对保留时间和相对峰面积RSD分别小于0.14%和2.52%,表明该方法重复性良好。
-
取样品(S1~S10)和对照药材,按“2.2.2”项下方法制备供试品溶液,按“2.1”项下色谱条件测定,将所得的HPLC图谱导入《中药色谱指纹图谱相似度评价系统(2012.130723版)》软件,以样品S1色谱图为参照图谱,时间窗宽度为0.1,经多点校正后,进行全谱峰匹配,采用中位数法生成对照指纹图谱R(图2)。
-
使用《中药色谱指纹图谱相似度评价系统(2012.130723版)》软件对各厂家的地龙配方颗粒和对照药材的HPLC图谱与对照特征图谱进行相似度计算。结果10批次地龙配方颗粒(S1~S10)和对照药材的HPLC指纹图谱与对照指纹图谱的相似度分别为:0.943、0.953、0.961、0.982、0.912、0.970、0.989、0.974、0.972、0.978、0.945,均大于0.912,表明不同厂家生产的地龙配方颗粒之间,及其与地龙对照药材所含成分种类较为相似,但成分含量上具有一定的差异。
-
分别取混合对照溶液0.1、0.25、1.0、2.0、4.0、6.0、8.0 ml置于10 ml容量瓶中,定容。取上述溶液和混合对照溶液适量,0.45 μm滤膜滤过,按“2.1”项下色谱条件检测(n=2),以样品浓度(X)为横坐标,峰面积(Y)为纵坐标,计算得回归方程和相关系数,结果见表2。结果各回归方程的相关系数r≥0.999 9,表明4种成分在各自浓度范围内线性关系良好。
表 2 4种核苷类成分线性关系
组分 回归方程 相关系数 线性范围(μg/ml) 次黄嘌呤 Y=1.168 2X−0.004 5 0.999 9 0.605 2~60.520 0 肌苷 Y=0.605 0X+0.071 9 0.999 9 1.382 4~138.240 0 鸟苷 Y=0.705 3X+0.031 7 0.999 9 0.338 2~33.820 0 腺苷 Y=0.808 0X+0.029 1 0.999 9 0.350 2~35.020 0 -
取混合对照溶液,按“2.1”项下色谱条件连续进样6次,次黄嘌呤、肌苷、鸟苷和腺苷峰面积的RSD分别为0.19%、0.07%、0.26%、0.13%,表明仪器精密度良好。
-
取S1样品6份,按“2.2.2”项下方法制备供试品溶液,按“2.1”项下色谱条件检测,记录峰面积并计算含量。次黄嘌呤、肌苷、鸟苷和腺苷含量的RSD分别为1.94%、0.83%、0.94%、1.51%,表明该方法重复性良好。
-
取S1样品按“2.2.2”项下方法制备供试品溶液,按“2.1”项下色谱条件分别于配制0、4、8、12、16、24 h时检测,记录峰面积。次黄嘌呤、肌苷、鸟苷和腺苷峰面积的RSD分别为0.37%、0.41%、0.47%、1.31%,表明供试品溶液在24 h之内稳定性良好。
-
精密称取S1样品0.25 g,共9份,分别精密加入相当于已知含量的50%、100%和150%的次黄嘌呤、肌苷、鸟苷和腺苷对照品溶液,按“2.2.2”项下方法制备供试品溶液,按“2.1”项下色谱条件测定,计算平均加样回收率。结果,次黄嘌呤平均回收率为97.95%,RSD为0.47%;肌苷平均回收率为102.98%,RSD为0.71%;鸟苷平均回收率为99.20%,RSD为0.26%;腺苷平均回收率为103.45%,RSD为0.59%。表明该方法准确度良好。
-
按上述供试品溶液的制备方法和测定条件,测定10批次地龙配方颗粒和对照药材中次黄嘌呤、肌苷、鸟苷和腺苷的含量,结果见表3。
表 3 4种成分的含量(n=3)
样品 含量(mg/g) 总含量(mg/g) 次黄嘌呤 肌苷 鸟苷 腺苷 S1 4.457 4 7.805 0 1.596 1 0.689 2 14.547 7 S2 0.740 0 4.770 9 0.999 3 0.596 0 7.106 2 S3 1.037 5 2.323 6 0.386 8 0.814 2 4.562 1 S4 1.322 1 6.257 1 0.605 1 1.145 1 9.329 4 S5 1.070 8 4.487 3 0.993 1 2.222 9 8.774 1 S6 1.063 5 3.836 9 0.452 8 1.431 2 6.784 4 S7 1.444 6 5.775 1 0.839 6 1.077 7 9.137 0 S8 1.038 5 3.095 7 0.606 9 0.161 3 4.902 3 S9 3.672 3 6.932 4 1.332 5 0.477 3 12.414 5 S10 1.200 1 2.132 3 0.325 4 0.537 2 4.195 0 对照品 0.2526 1.8422 0.2962 0.0308 2.4218 -
中药配方颗粒是将单味中药饮片水提后经多道工序制备而成。药材产地、质量、制备工艺的不同,使产品质量存在差异。从不同厂家地龙配方颗粒中核苷类成分与含量的测定结果来看,所有配方颗粒中均含有次黄嘌呤、肌苷、鸟苷和腺苷4种核苷类成分,而且肌苷含量最高,次黄嘌呤次之,与地龙药材(饮片)中核苷类成分含量中肌苷含量最高,次黄嘌呤含量次之的报道比较相符[7-11],说明从饮片提取至颗粒成品过程中,肌苷和次黄嘌呤的相对含量未发生较大变化,也表明了该成分在颗粒和药材(饮片)中具有一定的稳定性。而从含量测定结果来看,不同厂家地龙配方颗粒中4种核苷类成分构成比差异较大,可能是水提过程中,活性酶的存在和条件的差异使核苷类成分发生了转化或分解[10,11]。
-
指纹图谱能表征样品在特定条件下的特性,对照指纹图谱能表征多个样品的共性,二者的相似度大小能反映样品之间共性的多少。本研究用不同厂家10批次配方颗粒的HPLC指纹图谱建立了对照指纹图谱,各样品的HPLC指纹图谱与对照特征图谱的相似度在0.910以上,说明各厂家的地龙配方颗粒成分组成上具有一致性。本研究还将地龙对照药材HPLC指纹图谱与配方颗粒图谱进行了相似度评价,其与对照特征图谱的相似度在0.94以上,表明配方颗粒与对照药材在成分构成上也具有高度一致性。由此可知,HPLC指纹图谱可以反映配方颗粒之间的共性与差异,也可以表征配方颗粒与对照药材间的异同。因此,HPLC指纹图谱可用于配方颗粒的质量控制与评价。
-
随着部分中药配方颗粒标准的颁布,中药配方颗粒质量将逐步完善,而合理选择质量控制成分仍是保证质量和药效的前提。目前,大部分配方颗粒仍执行省药监部门标准,经查阅多省地龙配方颗粒质量标准公示稿发现,其质量控制成分均为肌苷,但含量范围存在较大差异。地龙配方颗粒中的核苷类成分可对平喘功效进行评价,而其与清热定惊、通络、利尿等功效的关联关系仍不明确。因此,通过核苷类成分单一维度来对地龙的整体质量状况进行评价是不全面的,需要从多维度建立地龙配方颗粒的质量评价标准,使其能全面反映地龙的不同功效。
本实验在同一色谱条件下建立了地龙配方颗粒的指纹图谱,测定并比较了不同厂家地龙配方颗粒中次黄嘌呤、肌苷、鸟苷和腺苷4种成分的含量,从一定程度上反映了地龙配方颗粒的特征及内在质量。本研究所用方法简便、稳定,具备定性和定量作用,并且分析和评价能力良好,能为地龙配方颗粒的鉴别和质量评价研究提供参考。
Determination of multi-index components and quality evaluation of Dilong Formula Granules
-
摘要:
目的 建立同时测定地龙配方颗粒中次黄嘌呤、肌苷、鸟苷和腺苷含量的HPLC方法,结合测定结果和HPLC指纹图谱对地龙配方颗粒进行质量评价。 方法 采用Thermo AcclaimTM120 C18色谱柱(4.6 mm×250 mm,5 μm),以乙腈-水为流动相,梯度洗脱,流速0.6 ml/min,柱温25 ℃,检测波长254 nm,对10批次样品进行4种成分含量测定和HPLC图谱采集;对所得图谱应用《中药色谱指纹图谱相似度评价系统(2012.130723版)》进行分析评价。 结果 次黄嘌呤、肌苷、鸟苷和腺苷成分在各自范围内线性关系良好(r≥0.999 9),平均加样回收率99.20%~102.98%,RSD 0.26%~0.71%;10批样品中4种成分含量范围分别为:0.740 0~4.457 4 mg/g、2.132 3~7.805 0 mg/g、0.325 4~1.596 1 mg/g、0.537 2~2.222 9 mg/g;不同厂家地龙配方颗粒HPLC图谱与对照指纹图谱的相似度均大于0.91。 结论 该方法可用于地龙配方颗粒中次黄嘌呤、肌苷、鸟苷和腺苷等核苷类成分的含量测定;HPLC指纹图谱可用于地龙配方颗粒的质量评价;不同厂家生产的地龙配方颗粒的HPLC指纹图谱相似度较高,但次黄嘌呤、肌苷、鸟苷和腺苷成分的含量差异较大。 Abstract:Objective To establish the method for the simultaneous determination of hypoxanthine, inosine, guanosine and adenosine in Dilong formula granules by HPLC and compare the fingerprints of Dilong formula granules from different manufacturers by HPLC chromatogram. Methods The contents of hypoxanthine, inosine, guanosine and adenosine were determined by Thermo AcclaimTM120C18 column (4.6 mm×250 mm 5 μm). The mobile phase was acetonitrile-water. Gradient elution with flow rate of 0.6 ml/min was used. Column temperature was 25 ℃. Detection wavelength was 254 nm. 10 batches of samples were tested. The HPLC chromatogram were compared and analyzed by using the similarity Evaluation system of chromatographic fingerprint of traditional Chinese Medicine (version 2012.130723). Results The linear ranges for the detection of hypoxanthine, inosine, guanosine and adenosine showed good linear relationships within their own ranges (r≥0.999 9). The average recoveries were 99.20%~102.98% with RSD of 0.26 %~0.71%. The contents of 4 components in 10 batches of samples were 0.740 0~4.457 4 mg/g, 2.132 3~7.805 0 mg/g, 0.325 4~1.596 1 mg/g, 0.537 2~2.222 9 mg/g respectively. The similarity between HPLC chromatogram and control fingerprints of Dilong formula granules from different manufacturers was greater than 0.91. Conclusion The method could be used to determine the contents of hypoxanthine, inosine, guanosine and adenosine in Dilong formula granule. HPLC fingerprints could be used to evaluation the quality in Dilong formula granule. The similarity of HPLC fingerprints from different manufacturer production of Dilong formula granule is high, but 4 contents in composition are difference. -
Key words:
- Dilong formula granule /
- fingerprints /
- hypoxanthine /
- inosine /
- guanosine /
- adenosine /
- quality evaluation
-
白蔹为葡萄科蛇葡萄属植物白蔹的干燥块根,首载于《神农本草经》。白蔹是最早用于疮痈、烫伤[1]治疗的药物,具有解毒、生肌的功效。资料显示,白蔹在皮肤创伤治疗中的使用频率较高。随着白蔹药理研究的不断深入,发现白蔹还具有抗菌、抗病毒[2-6]、免疫调节及促进溃疡快速愈合等作用。
在2015版《中国药典》中,白蔹的质量标准只有定性分析而无定量分析。白蔹成分检测中发现其含大黄素等蒽醌类活性成分[7],且白蔹中大黄素的定量测定方法文献资料[8-9]较少。本实验采用反相高效液相色谱法,建立白蔹药材中大黄素含量测定方法,为白蔹的质量控制标准提供方法和依据。
1. 试药与仪器
1.1 试药
大黄素对照品(中国食品药品检定研究院,批号:110756-201512,经面积归一化法计算含量为99.1%);甲醇(烟台远东精细有限公司,批号:160706)为色谱纯,水为超纯水,磷酸(莱阳市双双化工有限公司,批号:2010246)为分析纯,硫酸(淄博市淄川区张庄化学试剂厂,批号:950626)为分析纯。白蔹饮片(安国市弘发中药材饮片有限公司,批号:131001),经淄博市中医院药品供应科主任魏星教授鉴定为葡萄科蛇葡萄属植物白蔹Ampelopsis japonica(Thunb.) Makino的干燥块根。
1.2 仪器
Lab Alliance PC 3000 高效液相色谱仪(美国科学系统公司),紫外检测器(北京普析通用仪器有限责任公司);LD310-2R电子天平(沈阳龙腾电子有限公司);FA/JA系列电子天平(上海上平仪器有限公司);RE-201D型恒温水浴锅、RE-201D型旋转蒸发器(郑州博科仪器设备有限公司);766-3型远红外快速干燥箱(江苏省南通县金余电器配件厂)。
2. 方法与结果
2.1 色谱条件
Apollo-C18色谱柱(4.6 mm×250 mm,5 μm);流动相为甲醇−0.2%磷酸溶液(85:15),流速1.0 ml/min,检测波长220 nm,进样量20 μl。在此条件下,大黄素与相邻色谱峰分离度良好,无干扰,理论塔板数为2 000。对照品与供试品色谱图见图1。
2.2 溶液的配制
2.2.1 对照品溶液的制备
取大黄素对照品(含量为99.1%)约10 mg,精密称定,置于1 000 ml 容量瓶中,加甲醇溶解并稀释至刻度,摇匀,得浓度为9.91 μg /ml 的大黄素对照品储备液,备用。
2.2.2 供试品溶液的制备
取过5目筛的白蔹药材粉末,置烘箱内(70±2)℃,2 h烘干。精密称量30 g,用10倍量质量分数20%的硫酸在50 ℃条件下回流水解2 h。过滤,取滤渣。滤渣用纯化水洗至中性(pH=7),烘干。称其质量,记录。再以8倍量体积的95%乙醇在82 ℃条件下回流提取2次,每次1 h,过滤,合并乙醇提取液,减压蒸馏,浓缩至无醇味,加乙醇溶解并定容于10 ml容量瓶中,即得供试品溶液。
2.3 方法学考察
2.3.1 线性关系考察
分别精密量取“2.2.1”项下制备的大黄素对照品溶液各125、250、500、1 000、2 000、4 000 μl,分别置10 ml容量瓶中,加甲醇稀释至刻度,配制成6种不同浓度的对照品溶液。依次精密吸取对照品溶液各20 μl注入高效液相色谱仪中,记录峰面积。以峰面积Y为纵坐标,对照品溶液浓度X为横坐标,进行线性回归,得回归方程为Y = 53 962X − 966. 46,r = 0.999 7;结果表明大黄素在0.124~3.968 μg/ml浓度范围内线性关系良好。
2.3.2 精密度试验
精密量取对照品溶液20 μl,按“2.1”项下色谱条件连续进样6次,测定峰面积。大黄素峰面积RSD为1.7%。仪器精密度良好,符合要求。
2.3.3 重复性试验
精密称取同一批号样品6份,按“2.2.2”项下方法平行制备样品溶液,在“2.1”项色谱条件下,分别进样,测定大黄素的峰面积,RSD为1.2%(n= 6),结果表明本方法重复性良好。
2.3.4 稳定性试验
按“2.1”项下色谱条件,分别精密量取在室温(10~30 ℃)下放置0、2.5、5、7.5、10、24 h的同一份供试品溶液各20 μl进样测定,记录大黄素的峰面积,6次进样结果表明,供试品溶液在24 h内基本稳定,RSD为1.5%。
2.3.5 加样回收率试验
取同一批次(批号:20170704)已知含量的白蔹药材样品9份,分别按相当于样品溶液中大黄素含量的80%(n=3)、100%(n=3)、120%(n=3)加入“2.3.1”项下制备的对照品溶液,按“2.2”项下色谱条件进行测定。计算回收率,结果见表1。
表 1 白蔹药材样品加样回收率试验结果样品含有量(m/mg) 加样量(m/mg) 测得量(m/mg) 回收率(%) 平均回收率(%) RSD
(%)0.225 0.180 0.399 96.7 99.7 2.5 0.225 0.180 0.403 98.9 0.225 0.180 0.409 102.0 0.225 0.225 0.446 98.2 0.225 0.225 0.458 103.6 0.225 0.225 0.447 98.7 0.225 0.270 0.503 103.0 0.225 0.270 0.494 99.6 0.225 0.270 0.487 97.0 2.3.6 样品测定
取不同批次白蔹药材样品,分别按“2.3.2”项下方法制备样品溶液,按“2.2”项下色谱条件测定峰面积,连续进样3次,以外标法计算含量,测定结果见表2。
表 2 白蔹样品大黄素含量测定结果(n=3)批号 含量(μg/g) RSD(%) 20170622 17.845 1.16 20170626 19.113 2.07 20170704 15.002 2.50 3. 讨论
3.1 色谱条件的选择
3.1.1 检测波长的选择
笔者所查文献[8-10]中,测量大黄素所用波长有254、290 nm等。通过实验发现,不同的波长影响其重现性及灵敏度。通过对大黄素标准品甲醇溶液全波段(200~400 nm)紫外扫描可见:其在220、254、260、272、278 nm处均具有特征吸收。通过综合比较上述波长处大黄素峰的峰形及峰面积,220 nm处波长的峰形较好、干扰少、峰面积较大,故选定220 nm作为白蔹药材中大黄素的测定波长。
3.1.2 流动相的选择
大黄素的化学名为1'3'8-三羟基-6-甲基蒽醌,具有一定的极性和酸性。所查文献中,大黄素含量测定的流动相体系有多种。在实验过程中发现,流动相对色谱峰的保留时间及分离度有较大影响。故本实验在选择流动相时,考察了不同比例的甲醇-水,乙腈-水,甲醇:0.1%磷酸溶液[8-10],甲醇:0.5%磷酸溶液[11],甲醇:0.2%磷酸溶液,甲醇:0.02%磷酸溶液,甲醇:1% 冰醋酸[12]等不同溶剂系统,结果表明,相同条件下,甲醇:0.2%磷酸溶液(85:15)为流动相时,可以达到基线分离,出峰时间较短,峰形较好。
3.1.3 流速与进样量的选择
在流动相及波长选定的条件下,考察了不同流速(0.5~2.0 ml/min)对出峰时间的影响,当流速小于1.0 ml/min时,保留时间延长,使流动相的用量增加,会造成试剂的浪费;当流速大于1.0 ml/min时,保留时间缩短,但大黄素的峰会与杂质峰产生重叠,影响分离度及重现性。本实验选择1.0 ml/min作为流速。
在样品浓度一定的条件下,考察了不同进样体积(10~30 μl)的影响。实验结果表明,进样体积小于20 μl时,重现性及灵敏度均下降;大于20 μl时,杂质峰明显。当进样量为20 μl时,峰的对称性得到保证。因此,本实验选择20 μl为进样量。
3.2 样品提取方法的选择
已有文献[8]对白蔹中大黄素的提取方法采用甲醇提取及三氯甲烷萃取法。通过实验发现这种方法稳定性差、步骤烦琐,且所用试剂毒性较大。本实验在上述提取方法的基础上,参照大黄药材中大黄素的提取方法[10],通过4因素(粒度、溶剂剂量、溶剂浓度、提取时间)3水平的正交设计确定了白蔹中大黄素的提取方法。结果表明,采用过5目筛的白蔹粉末,先用20%的硫酸在50 ℃条件下回流酸水解2 h,滤渣用纯化水洗至中性。再用8倍量体积的95%乙醇,水浴回流2 h能够达到较好的提取效果。白蔹中含大黄素等游离蒽醌,还含有结合型蒽醌[13-14]。先进行酸水解,使结合型蒽醌水解,结果大黄素的含量有所提高。白蔹具有的抗菌性与其中的大黄素[15-16]有关,大黄素是白蔹的活性成分。本提取方法克服了以往相关文献报道方法的不足,分离度好、重现性好、结果准确,因此大黄素作为白蔹药材中指标成分有一定可行性,为完善白蔹药材的质量控制标准提供了方法和依据。新药临床试验的质量是药品上市后安全、有效的保障[17],所以临床试验过程中的质量控制尤为重要。包括相似性评价(外观检测和观感评估测试)、安全性评价(常规安全性检测)、适用性评价(薄层鉴别、HPLC、指标成分测定和药理实验)和最终制剂的质量标准。临床试验过程中的质量控制所要评价的范围更广、要求更为严格,是为了确保临床数据的真实、准确、完整和可靠,为下一步临床应用提供依据,对提高医疗水平具有重大意义。
-
表 1 梯度洗脱表
时间 (min) 流动相比例(%) 流动相A 流动相B 0~15 2 98 15~25 2~3 98~97 25~30 3~8 97~92 30~40 8~20 92~80 40~50 20 80 50~55 20~50 80~50 55~60 50~100 50~0 60~63 100 0 63~68 100~2 0~98 表 2 4种核苷类成分线性关系
组分 回归方程 相关系数 线性范围(μg/ml) 次黄嘌呤 Y=1.168 2X−0.004 5 0.999 9 0.605 2~60.520 0 肌苷 Y=0.605 0X+0.071 9 0.999 9 1.382 4~138.240 0 鸟苷 Y=0.705 3X+0.031 7 0.999 9 0.338 2~33.820 0 腺苷 Y=0.808 0X+0.029 1 0.999 9 0.350 2~35.020 0 表 3 4种成分的含量(n=3)
样品 含量(mg/g) 总含量(mg/g) 次黄嘌呤 肌苷 鸟苷 腺苷 S1 4.457 4 7.805 0 1.596 1 0.689 2 14.547 7 S2 0.740 0 4.770 9 0.999 3 0.596 0 7.106 2 S3 1.037 5 2.323 6 0.386 8 0.814 2 4.562 1 S4 1.322 1 6.257 1 0.605 1 1.145 1 9.329 4 S5 1.070 8 4.487 3 0.993 1 2.222 9 8.774 1 S6 1.063 5 3.836 9 0.452 8 1.431 2 6.784 4 S7 1.444 6 5.775 1 0.839 6 1.077 7 9.137 0 S8 1.038 5 3.095 7 0.606 9 0.161 3 4.902 3 S9 3.672 3 6.932 4 1.332 5 0.477 3 12.414 5 S10 1.200 1 2.132 3 0.325 4 0.537 2 4.195 0 对照品 0.2526 1.8422 0.2962 0.0308 2.4218 -
[1] 孙源源, 施萍. 借助中药配方颗粒推进中药国际化的对策研究[J]. 中草药, 2013, 44(8): 929-934. [2] 国家药监局批准颁布第一批中药配方颗粒国家药品标准[EB/OL]. [2022-06-27]. https://www.nmpa.gov.cn/yaowen/ypjgyw/20210429094401110.htm. [3] 关于中药配方颗粒国家药品标准(第二批)的公示-国家药典委员会[EB/OL]. [2022-06-28]. https://www.chp.org.cn/gjyjw/zy/16007.jhtml. [4] 国家药典委员会. 中华人民共和国药典: 一部[S]. 北京: 中国医药科技出版社, 2020: 127. [5] 杜航, 孙佳明, 郭晓庆, 等. 地龙的化学成分及药理作用[J]. 吉林中医药, 2014, 34(7): 707-709. [6] 黄帅, 徐风, 杨平, 等. 地龙的HPLC特征图谱研究[J]. 中国药房, 2015, 26(21): 2971-2974. [7] 孙洁, 田芳, 毛润乾, 等. 广地龙饮片的HPLC特征图谱及5个核苷类成分的测定[J]. 药物分析杂志, 2019, 39(11): 2010-2019. [8] 关水清, 周改莲, 董婧婧, 等. HPLC同时测定广地龙中5种核苷类成分含量[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 85-91. [9] 吴文如, 李薇, 赖小平. HPLC法测定不同产地地龙中尿嘧啶、次黄嘌呤、尿苷、肌苷的含量[J]. 中国药师, 2011, 14(7): 914-917. [10] 周恒, 曹依敏, 苗水, 等. HPLC法测定沪地龙中7个核苷类成分的含量[J]. 药物分析杂志, 2018, 38(1): 97-103. [11] 季倩, 高守红, 张汉明, 等. HPLC法测定各沪产地龙和广地龙中次黄嘌呤、黄嘌呤、尿嘧啶和尿苷的含量[J]. 第二军医大学学报, 2015, 36(4): 443-446. [12] 王莎莎, 曲悦, 薛大权, 等. 地龙药材的质量标准提升研究[J]. 中国药房, 2019, 30(17): 2379-2383. [13] 卢绮雯, 李坚, 何琳. 高效液相色谱法测定地龙配方颗粒中次黄嘌呤的含量[J]. 时珍国医国药, 2007, 18(9): 2200-2201. [14] 何琳, 龙晓英, 谢礼新, 等. 地龙配方颗粒的质量标准研究[J]. 中成药, 2007, 29(8): 1173-1177. -