-
纯阳正气胶囊是由广藿香、姜半夏、土木香、陈皮、丁香、肉桂、苍术、白术、茯苓等十七味中药制成的胶囊剂,主要用于治疗暑天感寒受湿、腹痛吐泻、胸膈胀痛、头痛恶寒、肢体酸重。纯阳正气胶囊是药典中收录的纯阳正气丸[1]的改良剂型,现代医学多用于改善肠胃功能、止泻等急性肠胃炎症状,其处方来源于晚清医书《饲鹤亭集方》,其中的陈皮理气健脾,活性成分橙皮苷可调节肠道菌群[2]、抑制肠道炎症[3];肉桂能改善消化系统,活性成分桂皮醛抗溃疡、抗菌[4];丁香温中、暖肾、降逆,活性成分丁香酚抑菌、镇痛[5];各处方药材药性相辅相成。纯阳正气胶囊参照纯阳正气丸在质量标准的含量测定项下均只有橙皮苷的测定,不能全面评价该制剂的质量。多组分的定量分析已成为中成药质量控制的有效手段[6-7]。本研究采用高效液相色谱法(HPLC)同时对纯阳正气胶囊中的橙皮苷、桂皮醛和丁香酚这3个活性成分进行测定,完善其质量控制方法,为纯阳正气胶囊质量标准的提升提供了依据。
-
Agilent1260 Infinity型高效液相色谱仪、DAD检测器(Agilent Technologies公司);XS205DU型电子分析天平(梅特勒-托利多仪器有限公司);KQ-600E型超声波清洗器(昆山市超声仪器有限公司)。
-
纯阳正气胶囊(批号:200901、201201、210201、211001,八加一药业股份有限公司);橙皮苷对照品(批号:110721-202019)、桂皮醛对照品(批号:110710-201821)、丁香酚对照品(批号:110725-201917)均购自中国食品药品检定研究院;乙腈(色谱纯,Merck公司);其他试剂均为分析纯;水为去离子水。
-
色谱柱为Agilent Poroshell 120 EC-C18(4.6 mm×150 mm,4 μm);流动相为乙腈-水,梯度洗脱程序为0 ~5 min,15%乙腈;5 ~10 min,15%~25%乙腈;10 ~12 min,25%~ 50%乙腈;12 ~16 min,50%~15%乙腈;柱温为35 ℃;检测波长为284 nm;流速为1.0 ml/min,进样量为10 μl。
-
取橙皮苷、桂皮醛和丁香酚对照品适量,精密称定,加甲醇分别制成浓度为1125、510、991 μg/ml的标准储备液。精密吸取橙皮苷储备液5 ml、桂皮醛储备液1.25 ml、丁香酚储备液4 ml置于同一25 ml量瓶中,用甲醇稀释至刻度,制成混合对照品储备液。精密吸取上述混合对照品储备液适量,加甲醇稀释制成含橙皮苷36 μg/ml、桂皮醛4.08 μg/ml和丁香酚25.37 μg/ml的混合对照品溶液。
-
取本品10粒内容物研磨均匀,取粉末约0.2 g,精密称定,置具塞锥形瓶中,精密加入甲醇25 ml,密塞,称定重量,超声20 min,放冷至室温,用甲醇补足减失重量,摇匀,滤过,取续滤液,即得。
-
按纯阳正气胶囊处方及制剂工艺,分别制成缺陈皮、缺肉桂和缺丁香的阴性样品,取阴性样品按“2.3”项下供试品溶液的制备方法制备阴性对照溶液。
-
分别取混合对照品溶液、供试品溶液和阴性对照溶液,按“2.1”项下的色谱条件进样,记录色谱图及相关参数。橙皮苷、桂皮醛和丁香酚的保留时间依次为6.983、10.399、11.729 min,分离度均大于1.5,理论塔板数按橙皮苷、桂皮醛和丁香酚的峰计算分别为54733、59111和83997,且阴性样品在对照品相应位置没有吸收峰,表明其他成分对测定无干扰,结果见图1。
-
分别精密吸取“2.2”项下的混合对照品储备液0.4、0.8、1.6、3.2、6.4 ml,置10 ml量瓶中,加甲醇稀释至刻度,按“2.1”项下的色谱条件进行测定。以峰面积Y对浓度X(μg/ml)进行线性回归,结果见表1。
表 1 线性关系考察结果
成分 回归方程 相关系数r 浓度范围(μg/ml) 橙皮苷 Y=17.995 X−8.5625 0.999 9 9.00~144.00 桂皮醛 Y=85.799 X−4.5451 0.999 9 1.02~ 16.32 丁香酚 Y=11.864 X−8.1321 0.999 9 6.34~101.48 -
取“2.2”项下制备的混合对照品溶液, 按“2.1”项下的色谱条件进行测定,橙皮苷、桂皮醛和丁香酚的峰面积RSD分别为1.21%、1.14%、0.96%(n=6),表明该方法精密度良好。
-
取“2.3”项下制备的供试品溶液(批号:210201),分别于0、2、4、6、8、12、24 h按“2.1”项下的色谱条件测定,记录峰面积。结果橙皮苷、桂皮醛和丁香酚峰面积的RSD分别为1.28%、1.38%、2.77%,表明供试品溶液在24 h内稳定性良好。
-
取同一批次的纯阳正气胶囊(批号:210201)6份,按“2.3”项制备供试品溶液,按“2.1”项下的色谱条件测定,记录色谱峰面积并计算含量。结果橙皮苷、桂皮醛和丁香酚的平均含量分别为4.14、0.45、3.06 mg/g,RSD分别为1.43%、1.71%、1.63%(n=6),表明该方法的重复性良好。
-
取已知含量的同一批次的纯阳正气胶囊9份(批号:210201),每份约0.1 g,分别精密加入混合对照品储备液适量,配制成低、中、高3个不同浓度的回收率溶液,每个浓度3份,按“2.3”项下供试品溶液的制备方法操作,按“2.1”项下的色谱条件测定,记录峰面积并计算回收率。结果显示,橙皮苷、桂皮醛和丁香酚的平均回收率分别为101.9%、98.0%、101.2%,RSD值分别为2.3%、1.6%、2.3%(n=9)。
-
取4批样品,分别按“2.3”项下方法制备供试品溶液,按“2.1”项下色谱条件测定,记录色谱峰面积并计算含量,结果见表2。
表 2 4批次样品含量测定结果(mg/g,n=3)
批号 橙皮苷 桂皮醛 丁香酚 200901 5.04 0.63 3.62 201201 6.30 0.88 3.33 210201 4.14 0.45 3.06 211001 4.56 0.81 3.74 -
对于流动相的选择,本实验参考相关研究分别考察了乙腈-0.5%磷酸溶液[8]、甲醇-水[9]、乙腈-水[10]作为流动相时对橙皮苷、桂皮醛、丁香酚色谱峰的影响。其中,乙腈-0.5%磷酸流动相无法使3种成分分离;甲醇-水流动相峰形矮且不尖锐,基线不平稳;乙腈-水流动相效果最佳,3种成分分离度均大于1.5,峰形良好。对于检测波长的选择,DAD检测器全波长扫描显示橙皮苷、桂皮醛、丁香酚分别在282、290、284 nm波长处有最大吸收,3种成分最大吸收波长相近,故选择284 nm作为检测波长,不影响3种成分的吸收。
-
纯阳正气丸对橙皮苷的含量测定采用了加热回流的方法,因此本实验分别考察了回流和超声两种提取方式。加热回流提取时桂皮醛含量的RSD较大,回收率差,考虑桂皮醛属于易挥发性物质[11],受温度影响大,文献[12]报道也多以超声提取为主,最终选择以超声作为提取方式,分别考察了超声时间和提取溶剂。分别比较20、30、40 min超声的提取效果,20 min为最佳提取时间;考虑橙皮苷、桂皮醛和丁香酚在溶剂中的溶解度,分别比较了甲醇、乙醇、稀乙醇和50%乙醇的提取效果,结果显示甲醇提取时指标成分含量较高,且无峰干扰,提取效果好。最后确定以甲醇作为提取溶剂,超声提取20 min的提取方法,简单便捷、结果准确。
-
对4批纯阳正气胶囊中橙皮苷、桂皮醛和丁香酚的含量进行分析,结果显示不同批次样品橙皮苷和桂皮醛的含量差异较大,丁香酚的含量波动较小,这有可能与不同来源和不同批次药材的质量有关,这提示我们在制订含量限度的时候除了要控制工艺,还要充分考虑药材对终产品的影响,本次试验只测定了4批不同批次的纯阳正气胶囊样品,后续将增加更多不同批次的样品进行测定研究,提升纯阳正气胶囊的质量标准。
Simultaneous determination of three constituents in Chunyang Zhengqi capsules by HPLC
-
摘要:
目的 采用高效液相色谱法建立同时测定纯阳正气胶囊中橙皮苷、桂皮醛和丁香酚含量的方法。 方法 色谱柱为Agilent PorosheⅡ 120 EC-C18(4.6 mm×150 mm,4 μm),以乙腈-水为流动相梯度洗脱,柱温35 ℃,流速1.0 ml/min,检测波长284 nm。 结果 方法学验证表明,橙皮苷、桂皮醛和丁香酚3种成分线性关系良好(r≥0.999 9),精密度小于2.0%,平均加样回收率在98.0%~101.9%之间,稳定性和重复性的RSD均<3.0%,符合方法学要求。 结论 该方法简便、稳定、重复性好、准确可靠,可用于纯阳正气胶囊的质量控制。 Abstract:Objective To establish method for simultaneous determination of hesperidin, cinnamaldehyde and eugenol in Chunyang Zhengqi capsules by high performance liquid chromatography. Methods The column was Agilent PorosheⅡ 120 EC-C18 (4.6 mm×150 mm, 4 μm). The mobile phase was acetonitrile-water with gradient elution. The column temperature was 35℃. The flow rate was 1.0 ml/min, and the detection wavelength was 284 nm. Results The methodological verification showed that hesperidin, cinnamaldehyde and eugenol had a good linearity (r≥0.999 9). The precisions were less than 2.0%. The average recovery was between 98.0% and 101.9%. The stability and repeatability of RSD were also less than 3.0%, which met the requirements of method validation. Conclusion The method is simple, stable, reproducible and accurate, which could be used to the quality control of Chunyang Zhengqi capsules. -
Key words:
- Chunyang Zhengqi capsules /
- hesperidin /
- cinnamaldehyde /
- eugenol /
- content determination
-
超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。
1. 材料与仪器
1.1 材料与试剂
丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。
1.2 仪器
85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。
1.3 实验动物
雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。
2. 方法与结果
2.1 超多孔水凝胶(SPH-IPN)的制备[5]
依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。
2.2 SPH-IPN的结构表征
将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。
2.3 SPH-IPN的溶胀性能测定
取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):
$$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$ 其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。
2.4 SPH-IPN孔隙率测定
采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:
$$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$ 其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。
2.5 载胰岛素SPH-IPN的制备及含量测定
2.5.1 载胰岛素SPH-IPN的制备
取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。
2.5.2 载药量的测定
取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:
$$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$ 其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。
2.6 载胰岛素SPH-IPN降血糖实验
2.6.1 不同方法载药SPH-IPN的制备
按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。
2.6.2 糖尿病大鼠模型的建立
给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。
2.6.3 分组、给药及血糖测定
取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。
3. 实验结果
3.1 IPN结构表征
3.1.1 傅立叶变换红外光谱(FTIR)
图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。
3.1.2 核磁共振(13C-NMR)
图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。
由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]。
综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。
3.2 SPH-IPN的溶胀性能
图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]。
3.3 SPH-IPN孔隙率的测定
表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。
表 1 SPH-IPN的孔隙率测定结果干重M1
(m/g)湿重M2
(m/g)乙醇密度
(g/cm3)体积
(V/cm3)孔隙率
(%)平均值
(%)RSD
(%)0.5425 0.6327 0.816 0.13 85.03 81.63 3.88 0.5751 0.6779 0.816 0.16 78.74 0.5628 0.6621 0.816 0.15 81.13 3.4 SPH-IPN载胰岛素含量测定结果
37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2。
表 2 SPH-IPN对胰岛素的载药量试验组 载药量(w/w,%) 平均值(w/w,%) RSD(%) 1 3.13 3.19 1.88 2 3.25 3 3.20 3.5 载胰岛素凝胶降血糖实验
图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。
4. 讨论
4.1 SPH-IPN的制备
本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。
4.2 水凝胶的载药方法
水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。
4.3 超多孔水凝胶的释药性能
文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。
笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。
将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。
载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。
4.4 SPH-IPN载胰岛素的微针给药展望
文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。
与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。
-
表 1 线性关系考察结果
成分 回归方程 相关系数r 浓度范围(μg/ml) 橙皮苷 Y=17.995 X−8.5625 0.999 9 9.00~144.00 桂皮醛 Y=85.799 X−4.5451 0.999 9 1.02~ 16.32 丁香酚 Y=11.864 X−8.1321 0.999 9 6.34~101.48 表 2 4批次样品含量测定结果(mg/g,n=3)
批号 橙皮苷 桂皮醛 丁香酚 200901 5.04 0.63 3.62 201201 6.30 0.88 3.33 210201 4.14 0.45 3.06 211001 4.56 0.81 3.74 -
[1] 国家药典委员会. 中华人民共和国药典(2020年版)一部[S]. 北京: 中国医药科技出版社, 2020: 1094. [2] 张蔚. 二氢黄酮苷及异黄酮苷与人体肠道细菌的相互作用研究[D]. 南京: 南京中医药大学, 2014. [3] 张恒, 饶坤林, 向韩. 橙皮苷药理活性研究进展[J]. 中南药学, 2016, 14(10):1097-1100. [4] 张利青, 张占刚, 付岩, 等. 桂皮醛药理作用的研究进展[J]. 中国中药杂志, 2015, 40(23):4568-4572. [5] 孔晓军, 刘希望, 李剑勇, 等. 丁香酚的药理学作用研究进展[J]. 湖北农业科学, 2013, 52(3):508-511. [6] 吴博, 王铁柱, 拜年, 等. 用反相高效液相色谱法同时测定复方酮康唑软膏中三组分的含量[J]. 药学实践杂志, 2021, 39(2):152-156. [7] 徐阳, 单柏宇, 徐伟男, 等. HPLC-DAD法同时测定宁泌泰胶囊中5个有效成分的含量[J]. 药物分析杂志, 2019, 39(6):1042-1047. [8] 李柯, 杨蕾, 孟令嘉, 等. RP-HPLC法同时测定五味清浊散中3种成分的含量[J]. 实用药物与临床, 2020, 23(8):744-747. [9] 王也, 裘国丽, 黄华. 高效液相色谱法测定丁桂儿脐贴中丁香酚和桂皮醛含量[J]. 中国药业, 2011, 20(10):43-44. [10] 刘光斌, 毛和平, 姜芳宁, 等. HPLC法测定和胃散中桂皮醛的含量[J]. 中国实验方剂学杂志, 2010, 16(7):67-68. [11] 冯有龙, 房方, 尚姝, 等. HPLC法测定泽桂癃爽胶囊中桂皮醛含量[J]. 中药新药与临床药理, 2010, 21(1):55-57. [12] 石燕飞. HPLC法测定纯阳正气胶囊中橙皮苷和桂皮醛的含量[J]. 解放军药学学报, 2014, 30(5):412-415. -