-
海绵是具有代表性的海洋生物,其共附生微生物也是近年来研究的热点。在海洋高盐、高压、低温、寡营养的生存环境下,海绵共附生微生物能够产生结构新颖、生物活性良好的次级代谢产物。其中海绵共附生真菌是海绵化学多样性的重要来源[1]。
曲霉属 (Aspergillus sp)真菌分布广泛而且研究丰富。海洋曲霉属真菌的次级代谢产物主要包括聚酮类[2]、生物碱类[3]、肽类[4]、萜类[5]等化合物,具有抗肿瘤[6]、抗菌[7]、抗病毒[4]等生物活性。本课题的土曲霉(Aspergillus terreus)是从我国南海西沙永兴岛海域的棕色扁海绵Phakellia fusca中分离得到的,属于散囊菌目(Eurotiales)发菌科(Tri-chocomaceaez)的一种真菌,在海洋动植物和陆地植物中均有分布。该菌的次级代谢产物具有多样性,包括生物碱类化合物[8]、丁烯酸内酯类化合物[9]、萜类化合物[10]、环肽类化合物[11]等。本文采用硅胶柱色谱、Sephadex LH-20凝胶柱色谱、高效液相色谱等多种分离方法从土曲霉Aspergillus terreus中共分离得到8个单体化合物。通过理化常数测定、波谱数据分析等方法确定了化合物的结构。化合物1~8的结构见图1。
-
菌株来源于棕色扁海绵Phakellia fusca,由上海交通大学海洋药物研究中心鉴定为Aspergillus terreus,菌株保存在上海交通大学医学院附属仁济医院药学部海洋药物研究中心(菌株编号152805)。
-
Agilent 600核磁共振波谱仪(美国 Agilent 公司);Waters高效液相色谱仪(美国Waters公司);XBridge C18半制备型液相色谱柱(10 mm×250 mm,5 μm);快速制备色谱仪(法国Interchim公司);OSB-2100旋转蒸发仪(日本EYELA 公司);振荡培养箱(上海知楚)。薄层硅胶、200~300目柱色谱用硅胶(青岛海洋化工厂);Sephadex LH-20凝胶(瑞典GE Healthcare公司);色谱纯试剂(天津康科德科技有限公司);其他分析纯有机试剂(上海化学试剂公司);氘代试剂(剑桥同位素实验室)。
-
取Aspergillus terreus单菌落接种到装有100 ml PDB培养液的250 ml三角瓶中,28 ℃,220 r/min震荡培养3 d,以该发酵液10%的接种量接到装有500 ml的真菌2号培养液(甘露醇20 g,麦芽糖20 g,CaCO3 15 g,葡萄糖10 g,谷氨酸钠10 g,酵母提取物3 g,玉米浆1 g,KH2PO4 0.5 g,MgSO4·7H2O 0.3 g,海盐30 g,蒸馏水1 L)的1 L三角瓶中,28 ℃,220 r/min震荡培养10 d,获得菌株的发酵物。收集发酵液24 L,用等体积的乙酸乙酯萃取3次,浓缩后得到乙酸乙酯相浸膏9.3 g。
-
乙酸乙酯相浸膏首先经Sephadex LH-20凝胶柱色谱分离,以二氯甲烷-甲醇(体积比为1∶1)作为溶剂进行洗脱,得到组分Fr.1~Fr.4。组分Fr.2经硅胶柱色谱(石油醚:丙酮 = 100∶1~0∶100)分离得到组分Fr.2-1~Fr.2-9。组分Fr.2-5经反相中压柱色谱分离得到8个亚组分,其中Fr.2-5d经重结晶得到化合物3 (2.5 mg)。组分Fr.2-6经LH-20凝胶柱色谱和反相半制备HPLC(38%乙腈-水)分离得到化合物1 (3.5 mg, tR = 21.0 min)。化合物2 (3.5 mg, tR = 13.0 min)由组分Fr.2-7经反相半制备HPLC,以33%乙腈-水为流动相等梯度洗脱得到。组分Fr.2-8以乙腈-水 (体积比10∶90~100∶0)为流动相,经反相中压柱色谱和反相半制备HPLC(20%乙腈-水)分离得到化合物4 (2.0 mg, tR=30.0 min)、 化合物5 (4.0 mg, tR=28.0 min)和化合物6 (9.0 mg, tR=14.0 min)。Fr.3经过硅胶柱色谱分离得到7个组分,其中Fr.3-3经反相半制备HPLC进一步纯化得到化合物7 (1.7 mg, tR=12.0 min)。组分Fr.3-4以20%~100%的乙腈-水为流动相,经反相中压柱色谱和反相半制备HPLC(15%乙腈-水)分离得到化合物8 (18.0 mg, tR = 8.0 min)。
-
化合物1为黄色粉末(甲醇),硫酸/香草醛显色为黄色,ESIMS给出的分子离子峰[M+H]+m/z 466.15。1H NMR (600 MHz, CDCl3)中,δH 12.23 (1H, s)为氨基质子信号;一组邻位二取代的苯环质子信号δH 8.82 (1H, dd, J=8.5, 0.8 Hz, H-3), 7.89 (1H, dd, J=7.9, 1.3 Hz, H-6), 7.60 (1H, td, J=8.5, 1.3 Hz, H-4), 7.22 (1H, m, H-5),芳香质子信号δH 9.21 (1H, brs, H-9), 8.70 (1H, d, J=4.5 Hz, H-1′), 8.25 (1H, dt, J=8.0, 2.2 Hz, H-3′), 7.36 (1H, dd, J=8.0, 4.5 Hz, H-2′),提示3-取代吡啶环的存在;1个芳香质子信号δH 7.27 (1H, s, H-10′);4个甲氧基质子信号δH 3.97 (3H, s, 4″-OCH3), 3.91 (3H, s, 3″-OCH3), 3.90 (3H, s, 5″-OCH3), 3.82 (3H, s, 7″-OCH3)。13C NMR (150 MHz, CDCl3)共显示24个碳信号,结合DEPT谱,推断δC 168.2, 167.2, 164.0为羰基碳信号;17个芳香碳信号;δC 61.3, 61.3, 56.5, 52.7为4个甲氧基碳信号。碳信号归属为:δC 168.2 (C-7)、167.2 (C-7′′)、164.0 (C-7′)、152.6 (C-4′)、151.5 (C-5′′)、149.3 (C-2′)、148.8 (C-3′′)、146.9 (C-4′′)、140.4 (C-2)、135.2 (C-6′)、133.6 (C-4)、130.3 (C-1′)、127.9 (C-6)、125.8 (C-2′′)、123.8 (C-5)、123.6 (C-5′)、121.8 (C-3)、120.4 (C-1′′)、119.0 (C-1)、108.8 (C-6′′)、61.3 (3″-OCH3)、61.3 (4″-OCH3)、56.5 (5″-OCH3)、52.7 (7″-OCH3)。该化合物核磁数据与参考文献[11]对照基本一致,确定化合物为methyl-3,4,5-trimethoxy-2-(2-(nicotinamido)benzamido) benzoate。
化合物2为黄色粉末(甲醇),ESIMS给出的分子离子峰[M+H]+m/z 457.14。1H NMR (600 MHz, DMSO-d6)中,δH 12.19 (1H, s, 3-NH), 11.10 (1H, s, 1′′-NH), 8.52 (1H, d, J = 8.1 Hz, 1′-NH)为氨基质子信号;1个芳香质子单峰信号δH 9.29 (1H, s, H-7);一组邻位二取代的苯环质子信号δH 8.44 (1H, d, J = 8.5 Hz, H-7′′), 7.92 (1H, dd, J = 7.9, 1.5 Hz, H-4′′), 7.63 (1H, td, J = 7.9, 1.5 Hz, H-6′′), 7.20 (1H, td, J = 7.6, 1.5 Hz, H-5′′);2个相邻的连接杂原子的次甲基质子信号δH 4.55 (1H, dd, J = 8.1, 2.9 Hz, H-2′), 4.41 (1H, m, H-4′);3个甲基质子信号δH 3.70 (3H, s, H-9′′), 3.52 (3H, s, H-9), 1.19 (3H, d, J = 6.4 Hz, H-5′)。13C NMR (150 MHz, DMSO-d6)共显示20个碳信号,结合DEPT谱,推断δC 168.8, 167.3, 162.7, 159.5, 150.1为羰基碳信号;10个芳香碳信号;δC 65.9, 59.8为2个连杂原子的次甲基碳信号;δC 52.4, 28.6, 20.5为3个甲基碳信号,结合氢谱信号,确定有一个甲氧基和一个氮甲基。碳信号归属为:δC 168.8 (C-3′)、167.3 (C-8″)、162.7 (C-10)、159.5 (C-4)、151.2 (C-8a)、150.1 (C-2)、146.3 (C-7)、139.3 (C-2′′)、138.2 (C-6)、134.2 (C-6′′)、130.7 (C-4′′)、127.2 (C-4a)、123.4 (C-5′′)、120.7 (C-7′′)、117.1 (C-3′′)、65.9 (C-4′)、59.8 (C-2′)、52.4 (C-9″)、28.6 (C-9)、20.5 (C-5′)。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ +98 (c 0.1, MeOH)。该核磁数据与参考文献[12]对照基本一致,确定该化合物为terrelumamide A。化合物3为白色结晶(甲醇),ESIMS给出的分子离子峰[M+H]+m/z 323.13。1H-NMR (600 MHz, CDCl3)中,δH 7.2-7.5 (10H, m, H-3′-H-7′, H-3′′-H-7′′)为10个芳香质子信号,提示存在2个单取代苯基;2个亚甲基质子信号δH 4.20 (2H, brs, H-1′′), 3.94 (2H, brs, H-1′);1个甲氧基质子信号δH 3.92 (3H, s, 2-OCH3)。13C-NMR (150 MHz, CDCl3)共显示19个碳信号,结合DEPT谱推断δC 158.2为羰基碳信号;12个芳香碳信号;δC 34.0, 30.4为2个亚甲基碳信号,提示结构中存在两个苄基基团;δC 61.8为甲基碳信号;δC 144.2, 140.6, 129.4为3个烯碳信号。碳信号归属为:δC 158.2 (C-5), 144.2 (C-6), 140.6 (C-2), 136.5 (C-2′′), 135.6 (C-1′), 129.6 (C-3′, 7′), 129.4 (C-3, 3′′, 7′′), 128.6 (C-4′, 6′), 127.8 (C-4′′, 6′′), 126.9 (C-5′, 5′′), 61.8 (2-OCH3), 34.0 (C-1′′), 30.4 (C-1′)。该化合物核磁数据与参考文献[13]对照基本一致,确定化合物为emeheterone。
化合物4为黄色粉末(甲醇),硫酸/香草醛显色为紫色,ESIMS给出的分子离子峰[M+H]+m/z 240.12。1H NMR (600 MHz, CD3OD)中,给出1个芳香质子信号δH 6.13 (1H, d, J = 0.7 Hz, H-5);3个次甲基氢信号δH 6.07 (1H, d, J = 3.0 Hz, H-8), 3.89 (1H, dt, J = 10.5, 3.0 Hz, H-9), 1.90 (1H, m, H-11);1个亚甲基质子信号δH 1.58 (1H, ddd, J = 12.2, 10.5, 4.6 Hz, H-10), 1.36 (1H, ddd, J = 12.2, 10.5, 3.0 Hz, H-10);3个甲基质子信号δH 2.28 (3H, s, H-7), 0.99 (3H, d, J = 6.7 Hz, H-13), 0.96 (3H, d, J = 6.7 Hz, H-12)。13C NMR (150 MHz, CD3OD)共显示12个碳信号,结合DEPT谱推断δC 155.0为羰基碳信号;4个芳香碳信号;δC 115.8, 70.5, 25.2为3个次甲基脂肪碳信号,结合对应的氢信号提示结构中存在1个缩醛碳信号和一个连氧次甲基碳信号;δC 40.4为亚甲基碳信号;δC 24.0, 21.8, 18.8为3个甲基碳信号。碳谱信号归属为:δC 157.9 (C-4)、155.0 (C-2)、143.5 (C-6)、132.7 (C-3)、115.8 (C-8)、95.0 (C-5)、70.5 (C-9)、40.4 (C-10)、25.2 (C-11)、24.0 (C-12)、21.8 (C-13)、18.8 (C-7)。该化合物的ECD曲线显示在217 nm处有负的Cotton 效应(Δε −5.86),其核磁和ECD数据与参考文献[14]对照基本一致,最终确定该化合物为(8R, 9S)-dihydroisoflavipucine。
化合物5为黄色结晶(甲醇),硫酸/香草醛显色为紫色,ESIMS给出的分子离子峰[M+H]+m/z 240.12。1H NMR (600 MHz, CD3OD)中,给出1个芳香质子信号δH 6.13 (1H, d, J = 0.7 Hz, H-5);3个次甲基氢信号δH 6.06 (1H, d, J = 3.0 Hz, H-8), 3.90 (1H, dt, J = 10.5, 3.0 Hz, H-9), 1.90 (1H, m, H-11);1组亚甲基质子信号δH 1.56 (1H, ddd, J = 12.3, 10.5, 4.6 Hz, H-10), 1.36 (1H, ddd, J = 12.3, 10.5, 3.0 Hz, H-10);3个甲基质子信号δH 2.28 (3H, s, H-7), 0.99 (3H, d, J = 6.6 Hz, H-13), 0.95 (3H, d, J = 6.6 Hz, H-12)。13C NMR (150 MHz, CD3OD)共显示12个碳信号,结合DEPT谱推断δC 155.0为羰基碳信号;4个芳香碳信号;δC 115.8, 70.5, 25.2为3个次甲基碳信号,结合对应的氢信号提示结构中存在1个次甲二氧基碳信号和一个连氧次甲基碳信号;δC 40.5为亚甲基碳信号;δC 24.0, 21.8, 18.8为3个甲基碳信号。碳信号归属为:δC 157.8 (C-4)、155.0 (C-2)、143.4 (C-6)、132.8 (C-3)、115.8 (C-8)、95.1 (C-5)、70.5 (C-9)、40.5 (C-10)、25.2 (C-11)、24.0 (C-12)、21.8 (C-13)、18.8 (C-7)。该化合物的核磁数据与化合物4对比基本一致,ECD曲线显示在217 nm处有正的Cotton 效应(Δε +25.34),提示为化合物4的差向异构体。将此化合物的核磁和ECD数据与参考文献[14]对照基本一致,最终确定化合物为(8S, 9S)-dihydroisoflavipucine。
化合物6为黄色粉末(甲醇),硫酸/香草醛溶液无明显显色,ESIMS给出的分子离子峰[M+H]+m/z 245.12。1H NMR (600 MHz, CDCl3)中,给出1组单取代的苯环芳香质子信号δH 7.32 (2H, t, J = 7.5 Hz, H-5′), 7.26 (1H, t, J = 7.5 Hz, H-4′), 7.20 (2H, d, J = 7.5 Hz, H-6′);2个次甲基氢信号δH 4.25 (1H, dd, J=10.5, 2.9 Hz, H-9), 4.04 (1H, t, J = 7.8 Hz, H-6);4组亚甲基质子信号δH 3.65-3.50 (2H, m, H-3); 3.65-3.50 (1H, m, H-10), 2.76 (1H, dd, J=14.5, 10.5 Hz, H-10); 2.30 (1H, m, H-5), 1.88 (1H,m, H-5); 1.98 (2H, m, H-4)。13C NMR (150 MHz, CDCl3)共显示14个碳信号,结合DEPT谱推断δC 169.6, 165.3为酰胺羰基碳信号;6个芳香碳信号;δC 59.3, 56.4为2个连氮次甲基碳信号;δC 45.6, 37.0, 28.5, 22.7为4个亚甲基碳信号,提示结构中存在苯丙氨酸和脯氨酸片段。碳信号归属为:δC 169.6 (C-7)、165.3 (C-1)、136.1 (C-1′)、129.4 (C-2′)、129.4 (C-6′)、129.3 (C-3′)、129.3 (C-5′)、127.7 (C-4′)、59.3 (C-6)、56.4 (C-9)、45.6 (C-3)、37.0 (C-10)、28.5 (C-5)、22.7 (C-4)。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ -47 (c 0.1, MeOH),将核磁数据与参考文献[15]对照基本一致,最终确定化合物为cyclo(S-Pro-S-Phe)。化合物7为浅黄色粉末(甲醇),硫酸/香草醛显色不明显,ESIMS给出的分子离子峰[M+H]+m/z 284.13。1H NMR (600 MHz, DMSO-d6)中给出2个氨基质子信号δH 10.83 (1H, s, H-1′), 7.71 (1H, s, H-8);1组邻二取代的苯环芳香质子信号δH 7.54 (1H, d, J = 8.0 Hz, H-5′), 7.30 (1H, d, J = 8.0 Hz, H-8′), 7.03 (1H, t, J = 7.3 Hz, H-7′), 6.94 (1H, t, J = 7.3 Hz, H-6′);1个芳香质子单峰信号δH 7.16 (1H, s, H-2′);2个次甲基氢信号δH 4.28 (1H, t, J = 5.0 Hz, H-9), 4.04 (1H, t, J = 8.5 Hz, H-6);4组亚甲基质子信号δH 3.36 (1H, m, H-3), 3.23 (1H, m, H-10), 3.21(1H, m, H-3), 3.05 (1H, m, H-10), 1.95 (1H, m, H-5), 1.66 (1H, m, H-4), 1.59 (1H, m, H-4), 1.36 (1H, m, H-5)。13C NMR (150 MHz, DMSO-d6)共显示16个碳信号,结合DEPT谱推断δC 169.0, 165.5为酰胺羰基碳信号;8个芳香碳信号;δC 58.4, 55.2为2个连氮次甲基碳信号;δC 44.6, 27.7, 25.8, 21.8为4个亚甲基碳信号。碳信号归属为:δC 169.0 (C-7)、165.5 (C-1)、136.0 (C-9′)、127.3 (C-4′)、124.4 (C-2′)、120.8 (C-7′)、118.6 (C-5′)、118.2 (C-6′)、111.2 (C-8′)、109.3 (C-3′)、58.4 (C-6)、55.2 (C-9)、44.6 (C-3)、27.7 (C-5)、25.8 (C-10)、21.8 (C-4)。将核磁数据与化合物6对比,化合物7中吲哚基取代了化合物6中的苯基。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ -90 (c 0.1, MeOH),将该核磁数据与参考文献[16]对照基本一致,最终确定化合物为brevianamide F。化合物8为棕黄色油状(甲醇),ESIMS给出的分子离子峰[M+Na]+m/z 177.06。1H NMR (600 MHz, DMSO-d6)中,给出3个烯氢信号δH 6.72 (1H, m, H-7), 6.37 (1H, d, J = 15.8 Hz, H-6), 6.00 (1H, s, H-2),其中一对为反式烯氢;2个羟基信号δH 5.80 (1H, s, 5-OH), 5.68 (1H, s, 4-OH);2个连氧次甲基质子信号δH 4.50 (1H, m, H-4), 3.89 (1H, m, H-5);1个甲基质子信号δH 1.88 (3H, d, J = 6.3 Hz, H-8)。13C NMR (150 MHz, DMSO-d6)共显示8个碳信号,结合DEPT谱,推断δC 203.7为酮羰基碳信号;4个双键碳信号;δC 80.8, 76.4为2个连氧次甲基碳信号;δC 19.1为甲基碳信号。碳信号归属为:δC 203.7 (C-1)、168.5 (C-3)、139.4 (C-7)、125.5 (C-6)、124.8 (C-2)、80.8 (C-5)、76.4 (C-4)、19.1 (C-8)。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ +78 (c 0.1, MeOH),将该化合物核磁数据与参考文献[17]对照基本一致,确定化合物为terrein。 -
对分离得到的化合物进行α-葡萄糖苷酶抑制活性的测试。采用PBS缓冲液为反应体系,利用α-葡萄糖苷酶,以4-硝基苯基-α-D吡喃葡萄糖苷(PNPG)为特异性底物,以阿卡波糖作为阳性药,分别设立空白对照组、α-葡萄糖苷酶空白组和PNPG空白组,评价化合物的α-葡萄糖苷酶的抑制活性。结果表明,化合物3具有较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L。其他化合物没有明显的α-葡萄糖苷酶的抑制活性。另外,还对化合物的抗氧化活性进行测试。采用DPPH的方法,以抗氧化剂N-乙酰半胱氨酸作为阳性药对分离得到的化合物进行了体外抗氧化活性测试。结果显示这些化合物抗氧化活性不明显。
-
本研究从棕色扁海绵共附生真菌土曲霉中分离得到了8个化合物,其中化合物3、4、5、7为首次从该菌中分离得到,丰富了土曲霉次级代谢产物的多样性,为进一步探索该属真菌的化学成分和生源途径提供了理论依据。
根据文献报道,化合物2可以提高胰岛素的敏感性[13],化合物4和5测试了多个肿瘤细胞系,均显示细胞毒活性不明显[15],化合物6对大肠杆菌、金黄色葡萄球菌、黄体微球菌、白色念珠菌和隐球菌等具有很好的抗菌活性[16],化合物7对PaCa-2胰腺细胞的抗癌活性和抗菌活性都不明显[17],化合物8能够抑制雄激素依赖性前列腺癌细胞LNCaP-CR的血管生成素分泌,能够抑制人脐静脉内皮细胞的血管形成[18]。为了更好的探究该真菌代谢产物的活性,对分离得到的化合物进行了α-葡萄糖苷酶抑制活性和抗氧化活性测试。其中化合物3显示了较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L,其α-葡萄糖苷酶抑制活性的机制有待于进一步研究。
Study on chemical constituents of sponge-associated Aspergillus terreus
-
摘要:
目的 对海绵共附生真菌土曲霉Aspergillus terreus中的化学成分进行研究。 方法 采用葡聚糖凝胶柱色谱、硅胶柱色谱和高效液相色谱等手段分离纯化;通过波谱数据鉴定化合物结构;采用PNPG法和DPPH法分别对分离得到的化合物进行α-葡萄糖苷酶抑制活性和抗氧化活性测试。 结果 从土曲霉Aspergillus terreus中分离得到8个化合物,分别鉴定为methyl-3,4,5-trimethoxy-2-(2-(nicotinamido) benzamido) benzoate ( 1 )、terrelumamide A ( 2 )、emeheterone ( 3 )、(8R,9S)-dihydroisoflavipucine ( 4 )、(8S,9S)-dihydroisoflavipucine ( 5 )、cyclo(S-Pro-S-Phe) ( 6 )、brevianamide F ( 7 )、terrein ( 8 )。活性测试结果表明,化合物 3 具有较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L。 结论 化合物 3 、 4 、 5 、 7 为首次从土曲霉Aspergillus terreus中分离得到。 -
关键词:
- 土曲霉 /
- 化学成分 /
- α-葡萄糖苷酶抑制活性
Abstract:Objective To study the chemical constituents of Aspergillus terreus from sponge epiphytic fungal. Methods Sephadex LH-20 column chromatography, silica gel column chromatography and high performance liquid chroma-tography were used to separate and purify the compounds. The structures of compounds were identified by spectroscopic data. The α-glucosidase inhibitory activity and antioxidant activity of the compounds were tested by PNPG and DPPH methods, respectively. Results Eight compounds were isolated from Aspergillus terreus and identified as methyl-3,4,5-trimethoxy-2-(2-(nicotinamido) benzamido) benzoate ( 1 ), terrelumamide A ( 2) , emeheterone ( 3 ), (8R,9S)-dihydroisoflavipucine ( 4 ), (8S,9S)-dihydroisoflavipucine ( 5 ), cyclo(S-Pro-S-Phe) ( 6 ), brevianamide F ( 7 ), terrein ( 8 ). Compound 3 showed strong inhibitory activity against α-glucosidase and the IC50 value was 14.28 μmol/L. Conclusion Compounds 3 , 4 , 5 , and 7 were obtained from Aspergillus terreus for the first time. -
子宫内膜异位症(endometriosis,EM)是临床上最为常见的慢性妇科疾病之一,以慢性盆腔疼痛、月经紊乱和不孕为主要的临床表现。EM本质是血瘀证,临床治疗时以活血化瘀为主,常用的药物有桃仁、红花、泽兰、丹参、益母草、川牛膝、王不留行等,能够有效缓解患者痛经、非经期盆腔痛等症状[1]。
目前活血化瘀类中药对EM治疗的具体机制不是很清晰,其针对的靶点也不是很明了。网络药理学将生物网络作为研究对象,探究药物、靶点、疾病之间的联系,系统完整地研究药物的机制,可展现出药物对于多个靶点、多个通路不同影响。因为和中医整体观念天然契合,网络药理学现已广泛应用于中药研究中[2-3] 。在本研究中,笔者采用网络药理学的方法探究活血化瘀类中药治疗EM的作用机制,构建“化合物-靶标-通路-疾病”网络,并初步探析何种活血化瘀药在EM治疗中更具优势,为临床用药以及进一步实验研究提供理论依据。
1. 材料与方法
1.1 活血化瘀类中药确认
根据卫生部“十一五”规划教材《中药学》分类,确认桃仁、红花、泽兰、丹参、益母草、川牛膝、王不留行七味活血化瘀药为本次主要研究对象。
1.2 中药有效成分以及相关靶点的获取
利用中药化学成分数据库TCMSP平台(http:// lsp.nwu.edu.cn/tcmsp.php),检索七味中药所含活性成分。依据数据库指南要求,将口服生物利用度(oral bioavailability,OB)≥30%以及类药性(drug-like,DL)≥0.18作为筛选条件,对活性成分进行筛选[4]。OB值是评价药物能否发挥药效的重要药动学参数,DL值是指化合物与所有已知药物之间的相似程度。上述2个参数是评价中药化学成分吸收、分布、代谢、排泄的关键参数。获得符合OB、DL参数有效活性成分后,利用TCMSP数据库查询各有效活性成分对应相关靶点。利用Venn图工具(https://bioinfogp.cnb.csic.es/tools/venny/)对药物化学成分以及相关靶点进行共同点分析,寻找活血化瘀中药共有成分和作用靶点。
1.3 EM相关靶点基因确认
利用美国国立生物技术信息中心Gene数据库(https://www.ncbi.nlm.nih.gov/gene/)将所获靶点信息转换成基因名称。查询GeneCards(https://www.genecards.org/)数据库,获得与EM相关基因靶点。最后将每种中药的作用靶点对应的Gene Symbol与EM基因进行比对,获得每种中药可能影响EM的相关基因,利用Cytoscape 3.6.0软件构建化合物-靶点网络[5]。
1.4 构建蛋白互作网络
为进一步研究靶点之间的相互关系,将活血化瘀药共同靶点上传至线上软件 STRING(http://string db.org),构建蛋白互作网络。物种选择为Homosapiens,minimum required interaction score调整为highest confidence,隐藏网络图中游离节点,获取PPI网络。
1.5 KGEE通路分析
利用KEGG数据库(https://www.keg g.jp/)查询每种中药针对EM的相关基因,获得相关KEGG通路信息。筛选各中药KEGG通路中相关基因富集情况,并利用Prism 8.0软件绘制通路靶点富集热图。
2. 结果
2.1 活血化瘀类中药有效成分及对应靶点的获取
按照要求从TCMSP数据库中筛选出各中药有效成分,删除重复项,共有94种有效成分(supplementary materials table S1)。其中丹参有效活性成分达到65个,而泽兰有效活性成分只有2个。未能发现七味活血化瘀药共同有效成分,但β-谷固醇为川牛膝、红花、桃仁、泽兰所共有,槲皮素为川牛膝、红花、王不留行、益母草所共有,是涉及活血化瘀类中药最多的2种有效成分(supplementary materials table S2)。与此同时,我们找到了七味中药所共有的19个作用靶点(表1),包括孕酮受体(progesterone receptor)、前列腺素G/H合成酶1(prostaglandin G/H synthase 1)、前列腺素G/H合成酶2(prostaglandin G/H synthase 2)、凋亡调节剂Bcl-2(apoptosis regulator Bcl-2)、核受体共激活剂(nuclear receptor coactivator 2)等。
表 1 七种活血化瘀中药共有的19个靶点序号 蛋白名称 基因名称 靶点标识码 1 钠通道蛋白5型亚基 SCN5A TAR00070 2 前列腺素G/H合成酶1 PTGS1 TAR00006 3 Beta-2型肾上腺素受体 ADRB2 TAR00261 4 毒蕈碱型乙酰胆碱受体M3 CHRM3 TAR00016 5 孕酮受体 PGR TAR00209 6 半胱天冬酶3 CASP3 TAR04087 7 热休克蛋白HSP 90 HSP90 TAR00444 8 钾电压门控通道亚家族H成员2 KCNH2 TAR00037 9 凋亡调节剂Bcl-2 BCL2 TAR00086 10 PKA催化亚基C-alpha PRKACA TAR00699 11 半胱天冬酶9 CASP9 TAR04090 12 γ-氨基丁酸受体亚基α-1 GABRA1 TAR00309 13 毒蕈碱型乙酰胆碱受体M1 CHRM1 TAR00038 14 前列腺素G/H合酶2 PTGS2 TAR00094 15 转录因子AP-1 JUN,FOS TAR00414 16 磷脂酰肌醇-4,5-双磷酸3-激酶催化亚基,γ亚型 PIK3CG TAR00491 17 毒蕈碱型乙酰胆碱受体M2 CHRM2 TAR00210 18 核受体共激活剂2 NCOA2 TAR03276 19 维甲酸受体RXR-alpha RARA TAR00158 2.2 EM相关靶点确认
利用人类基因数据库查找EM作用靶点,与七味中药有效成分对应靶点进行比对,发现红花所含相关靶点数量最多,达到103个;而桃仁、泽兰所含相关靶点数量最少,为14个(图1A);王不留行所含相关靶点占有效成分作用靶点比例最高,为54.7%;而桃仁最低,为29.8%(图1B)。经过去重处理后,七味中药所含EM相关靶点共119个(supplementary materials table S3)。利用Cytoscape3.6.0软件进行成分-靶点网络分析,获得图2,其中共计216个节点,其中黄色节点为活血化瘀药有效活性成分,而蓝色节点代表EM相关靶点。利用软件自带分析功能,对于网络各节点度值进行分析,网络中某些节点度值较高,提示该节点为网络中的关键节点(supplementary materials table S4)。在各中药所含有效成分中,槲皮素展现出极高的连接度(度值=87),远超其他有效成分,而其余较高连接度值依次是木犀草素(度值=43)、山柰酚(度值=33)、黄芩素(度值=23)、丹参酮A(度值=20)、花生四烯酸(度值=20)、β-谷固醇(度值=18)。中药是一个多有效成分的复杂系统,一个有效成分可作用于多个靶点,协同作用于某种疾病的治疗。而在靶点的分析中,较高连接度的靶点可能在EM的治疗作用中起着重要的作用。前列腺素G/H合酶2(PTGS2,度值=82)、前列腺素G/H合酶1(PTGS1,度值=39)两者拥有最高的度值,是临床上炎性疾病治疗的主要靶点;核受体辅活化子2(NCOA2,度值=35)、核受体辅活化子1(NCOA1,度值=34)紧跟其后,同样在各炎症通路中作用显著;凝血酶(度值=31)是临床上治疗出血的重要靶点,直接作用于血液凝固过程的最后一环;Mu-type阿片受体(OPRM1,度值=30)则涉及到中枢镇痛功能。上述靶点均和EM症状及病机之间有着密切的关系。
2.3 PPI网络的构建与分析
利用STRING软件构建靶点PPI网络,图中包含119个节点,505条边,所有节点平均度值为8.49,具体见图3。根据“度值>均值”筛选出PPI网络中关键节点56个(supplementary materials table S6),前9位关键节点,平均度值为88,见表2,与PPI网络74%节点存在相互作用关系,提示它们在网络调控中起着关键作用,可能是活血化瘀药物治疗EM的关键所在。
表 2 PPI网络中关键节点节点名称 度值 节点名称 度值 节点名称 度值 ALB 97 IL6 92 PTGS2 83 AKT1 95 TNF 86 CASP3 80 VEGFA 94 MAPK8 83 MAPK1 80 2.4 KEGG通路分析
利用KEGG数据库查询每种中药针对EM的相关基因,获得相关KEGG通路信息。整理各中药KEGG通路相关基因富集情况,发现七味中药共有信号通路44条(supplementary materials table S5),筛选出与EM密切相关的19条通路(表3)。从表3中,不难发现,19条通路涉及性激素、炎症、细胞调亡以及血管生成等各个方面,其中炎症相关通路达到7条,为所有通路中最多。利用Prism 8.0软件绘制通路靶点富集热图,根据图4可知,在系列通路中,泽兰与桃仁作用均弱于其他五味中药。而在PI3K-Akt、IL-17、TNF三条信号通路中,多味中药靶点存在高度富集,红花在PI3K-Akt信号通路中显著富集,远超该药其他通路,值得注意。
表 3 七味活血化瘀中药的19条KEGG通路序号 标识码 信号通路名称 类别 1 hsa04151 PI3K-Akt信号通路 炎症相关 2 hsa04668 TNF信号通路 炎症相关 3 hsa04657 IL-17信号通路 炎症相关 4 hsa04625 C型凝集素受体信号通路 炎症相关 5 hsa04064 NF-κB信号通路 炎症相关 6 hsa04115 p53信号通路 炎症相关 7 hsa00590 花生四烯酸代谢 炎症相关 8 hsa01522 内分泌抵抗 激素相关 9 hsa04915 雌激素信号通路 激素相关 10 hsa04919 甲状腺激素信号通路 激素相关 11 hsa04921 催产素信号通路 激素相关 12 hsa04210 细胞凋亡 细胞凋亡 13 hsa04071 鞘脂信号通路 细胞凋亡 14 hsa01521 EGFR酪氨酸激酶抑制剂拮抗 血管相关 15 hsa04370 VEGF信号通路 血管相关 16 hsa01521 血小板活化 血管相关 17 hsa04722 神经营养蛋白信号通路 疼痛相关 18 hsa04725 胆碱能突触 疼痛相关 19 hsa04726 血清素能突触 疼痛相关 3. 讨论
本研究采用网络药理学的研究方法,从TCMSP数据库中提取出了94个符合标准的成分,通过VENE图去重以及分析网络图的拓扑特性后,发现槲皮素为四味活血化瘀药所共有,与83种EM相关靶点存在关联。现代研究表明,槲皮素具有抑制炎症、血小板聚集和血管平滑肌细胞增殖的作用,通过抗氧化作用诱导细胞凋亡,还可通过雌激素受体,调控受体下游多种底物及信号通路而调节雌激素[6-7]。木犀草素与41种EM靶点相关联,具有抗炎、抗纤维化、抑制血管生成等作用[8]。EM发生发展过程中慢性炎症反应一直贯穿始终,且存在纤维化病变,木犀草素或在EM治疗中有一定作用[9-10]。
通过VENE图,发现七味中药共有作用靶点19个,部分共有靶点与Cytoscape网络图以及PPI网络中关键节点高度对应,进一步强调了该部分共有靶点在EM中的作用。如PTGS2,该靶点所调控环氧合酶(COX-2)的高表达会导致细胞的高增殖性、高侵袭性,诱导血管生成从而加重EM的疼痛和不孕症状[11]。NCOA2、NCOA1的水平异常与EM的进展关联密切。趋化因子参与子宫内膜异位种植过程中趋化、黏附、侵袭、血管形成及细胞生长分化等多个重要环节[12]。Xiu等发现,在分泌期,NCOA1和趋化因子CXCL12在异位子宫内膜中的表达明显高于正常子宫内膜;活化血小板对异位内膜具有促炎、促血管生成的作用,促使异位内膜细胞的侵袭和增殖[13-14],子宫内膜基质细胞可分泌F2,以密集依赖的方式诱导血小板活化和聚集,从而影响EM的进展[15-16] 。VEGFA可促进新生血管形成并使血管通透性增加,陈晓莉等[17]研究表明,内异症组血清和腹腔液VEGF水平明显高于对照组,且重度患者腹腔液中VEGF水平高于轻度患者,VEGF在EMT患者血管生成中起促进性作用,在血清与腹腔液中的高表达与疾病发生发展相关。尉伟东等[18]发现CASP3蛋白在异位内膜和在位内膜中的评分明显低于正常对照组,caspase-3的水平下降提示内膜细胞活性下降,促使子宫内膜细胞自发性凋亡增加以及凋亡信号敏感性增强,诱导或加重EM。
利用KEGG数据库,找到了七味活血化瘀药共有EM相关通路19条,涉及性激素、炎症、细胞凋亡以及血管生成等方面。所有通路中,炎症通路达到36%。其中PI3K-Akt、IL-17、TNF三条信号通路是靶点富集最多的通路,提示活血化瘀药主要通过抗炎作用来对EM起治疗作用。与正常女性相比,EM患者的子宫内膜在位和异位内膜细胞的PI3K表达增加,AKT磷酸化水平升高,证实PI3K/AKT信号通路可影响EM进展[19]。EM是一种雌激素依赖性疾病,呈现出慢性炎症反应,多种炎性因子参与其病理过程,包括NF-κB、TNF-α、IL-1、IL-17等[20]。许丽华等[21]通过实验发现,EM患者血清及腹腔液中TNF-α水平显著高于对照组。EM患者Ⅲ和Ⅳ期血清和腹腔液中TNF-α水平均高于Ⅰ和Ⅱ期,证实了TNF-α与子宫内膜异位症的发生发展密切相关,有助于子宫内膜异位症的诊断。IL-1家族在EM发生发展中作用显著,与正常女性相比,EM患者静脉血中IL-1β浓度显著增高。不仅仅是IL-1β,研究显示,IL-1β前体蛋白(proIL-1β)也可以加重炎症反应,EM患者腹腔液中IL-1β、proIL-1β水平均高于健康女性。IL-1家族细胞因子的损伤,导致EM患者腹腔免疫机制的紊乱,局部以及全身IL-1β、IL-18调控机制的缺陷,使得内膜组织的侵袭性以及生长性大幅增加,从而导致EM[22-24]。炎症相关通路的高富集也与之前网络图中TNF、IL-6等炎性相关靶点的高度值相对应,进一步强调了活血化瘀药物通过抗炎作用治疗EM的作用机制。细胞凋亡是一种独特的程序性细胞死亡,细胞的有效清除而不会引起炎症反应,EM特征为异位内膜细胞凋亡率下降。与健康女性子宫内膜相比,EM异位内膜抗凋亡因子表达增加,促凋亡因子表达减少,证实了细胞凋亡在EM的发病中确有作用,并和炎症反应存在一定关联[25]。EM发生发展过程中亦伴随着血管生成增多以及局部病灶周期性出血,EM患者异位内膜血管内皮生长因子(VEGF)表达量增高,抗血管生成因子(sFlt-1)表达量下降,证实VEGF信号通路、血小板激活通路均参与此过程,与前面靶点分析也形成呼应[26-27] 。脑源性神经营养因子是各种慢性疾病中慢性疼痛形成和维持的调节因子,EM伴有疼痛的患者血清和腹膜液中神经营养因子浓度明显高于无疼痛EM患者[28]。利用KEGG通路分析,可以发现活血化瘀药对于炎症、凋亡、疼痛、血管生成等相关通路均具备调控作用,进一步强调了临床上活血化瘀药对于EM的治疗价值。
综上所述,活血化瘀中药可通过多靶点、多通路协同作用方式对EM进行治疗,体现了中医药治疗疾病特色。上述七味中药中,桃仁、泽兰对于EM的作用低于其余活血化瘀药,而红花、益母草在EM治疗体系中,EM相关靶点高于其余中药,可能会起到更好的疗效,在临床上可尝试推广使用。本研究从网络药理学角度出发,根据活血化瘀中药有效成分和作用靶点,在一定程度上对活血化瘀中药治疗EM进行了机制的解析,为指导临床用药提供了一定的依据。但本研究仅仅基于TCMSP数据库,利用计算机软件从理论上对活血化瘀中药治疗EM作用机制做了探析,还需要通过实验和临床实践来进一步证实,而且还需要扩大活血化瘀药物探究范围,结合临床实际,深入剖析活血化瘀药共同点与差异之处。
-
[1] 朱伟明, 王俊锋. 海洋真菌生物活性物质研究之管见[J]. 菌物学报, 2011, 30(2):218-228. [2] LI D H, HAN T, GUAN L P, et al. New naphthopyrones from marine-derived fungus Aspergillus niger 2HL-M-8 and their in vitro antiproliferative activity[J]. Nat Prod Res,2016,30(10):1116-1122. doi: 10.1080/14786419.2015.1043553 [3] GU B B, JIAO F R, WU W, et al. Preussins with inhibition of IL-6 expression from Aspergillus flocculosus 16D-1, a fungus isolated from the marine sponge Phakellia fusca[J]. J Nat Prod,2018,81(10):2275-2281. doi: 10.1021/acs.jnatprod.8b00662 [4] MA X, NONG X H, REN Z, et al. Antiviral peptides from marine Gorgonian-derived fungus Aspergillus sp. SCSIO 41501[J]. Tetrahedron Lett,2017,58(12):1151-1155. doi: 10.1016/j.tetlet.2017.02.005 [5] MIAO F P, LIANG X R, LIU X H, et al. Aspewentins A-C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii[J]. J Nat Prod,2014,77(2):429-432. doi: 10.1021/np401047w [6] 王宇, 李占林, 白皎, 等. 海洋真菌烟曲霉Aspergillus fumigatus YK-7中生物碱类代谢产物及其抗肿瘤活性研究[J]. 中国药学杂志, 2017, 52(15):1308-1312. [7] BUTTACHON S, RAMOS A A, INÁCIO Â, et al. Bis-indolyl benzenoids, hydroxypyrrolidine derivatives and other constituents from cultures of the marine sponge-associated fungus Aspergillus candidus KUFA0062[J]. Mar Drugs,2018,16(4):E119. doi: 10.3390/md16040119 [8] AN X, FENG B M, CHEN G, et al. Two new asterriquinols from Aspergillus sp. CBS-P-2 with anti-inflammatory activity[J]. J Asian Nat Prod Res,2016,18(8):737-743. doi: 10.1080/10286020.2016.1161613 [9] GUO F, LI Z L, XU X W, et al. Butenolide derivatives from the plant endophytic fungus Aspergillus terreus[J]. Fitoterapia,2016,113:44-50. doi: 10.1016/j.fitote.2016.06.014 [10] LIU Z M, CHEN Y, CHEN S H, et al. Aspterpenacids A and B, two sesterterpenoids from a mangrove endophytic fungus Aspergillus terreus H010[J]. Org Lett,2016,18(6):1406-1409. doi: 10.1021/acs.orglett.6b00336 [11] CAPON R J, RATNAYAKE R, STEWART M, et al. Aspergillazines A-E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis[J]. Org Biomol Chem,2005,3(1):123-129. [12] HE F, BAO J, ZHANG X Y, et al. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162[J]. J Nat Prod,2013,76(6):1182-1186. doi: 10.1021/np300897v [13] YOU M, LIAO L J, HONG S H, et al. Lumazine peptides from the marine-derived fungus Aspergillus terreus[J]. Mar Drugs,2015,13(3):1290-1303. doi: 10.3390/md13031290 [14] KAWAHARA N, NOZAWA K, NAKAJIMA S, et al. Emeheterone, a pyrazinone derivative from Emericella heterothallica[J]. Phytochemistry,1988,27(9):3022-3024. doi: 10.1016/0031-9422(88)80722-2 [15] CHEN T, LAM C K, CHEN W D, et al. NMR screening approach for discovery of new 6-methylpyridinone derivatives from the marine-derived fungus Leptosphaerulina sp[J]. Arab J Chem,2017,10(2):288-294. doi: 10.1016/j.arabjc.2015.06.015 [16] WANG G H, DAI S K, CHEN M J, et al. Two diketopiperazine cyclo(pro-phe) isomers from marine bacteria Bacillus subtilis sp. 13-2[J]. Chem Nat Compd,2010,46(4):583-585. doi: 10.1007/s10600-010-9680-8 [17] WANG B, PARK E M, KING J B, et al. Transferring fungi to a deuterium-enriched medium results in assorted, conditional changes in secondary metabolite production[J]. J Nat Prod,2015,78(6):1415-1421. doi: 10.1021/acs.jnatprod.5b00337 [18] ARAKAWA M, SOMENO T, KAWADA M, et al. A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis[J]. J Antibiot (Tokyo),2008,61(7):442-448. doi: 10.1038/ja.2008.60 -