-
对各种药品生产相关的数据进行统计分析,可以有效地对药品质量进行宏观控制。能力六合图是质量控制图中的一种,“六合图”包含单值控制图、极差控制图、最后25个观测值、能力直方图、正态概率图及能力图。Minitab软件能力分析的“六合图”,能对数据进行自动分析、对过程稳定性和过程能力进行综合评估[1],通过判定一个过程的过程能力绩效,起到对生产过程的改进与提高作用。此方法快速准确,是制药行业实施新版GMP时进行产品质量回顾的有效工具,也是提升质量管理水平的较好途径。
硫酸镁口服溶液为我院院内制剂,临床上主要用于利胆、导泻。硫酸镁口服溶液生产工艺流程图见图1。通过能力六合图分析27批次硫酸镁口服溶液中硫酸镁含量的质量数据,判断在生产过程中对硫酸镁含量是否达到控制状态、硫酸镁口服溶液的生产工艺是否处于稳定状态。
-
查阅我院2015年2月至2020年1月生产的硫酸镁口服溶液的工艺规程、主要生产设备的标准操作规程、检验操作规程和记录等文件,确定药品是在同一生产工艺及同一检验环境下完成,生产记录和检验结果真实可靠。统计2015年2月至2020年1月我院生产的连续27批次硫酸镁口服溶液的检验结果,分析项目包括:性状、鉴别、装量、微生物限度、硫酸镁含量[2-3]。
-
根据《中国人民解放军医疗机构制剂规范》(2015年版)中硫酸镁口服溶液的质量标准,对27批次的硫酸镁口服溶液进行质量考察。硫酸镁口服溶液质量标准见表1。其中,性状、鉴别、装量和微生物限度等检查项目依据标准直接进行判定,硫酸镁含量使用Minitab软件的六合图功能进行分析[4]。
表 1 硫酸镁口服溶液质量标准
项目名称 标准 性状 无色、澄清液体,味苦、咸 镁盐、硫酸盐 阳性、阳性 装量 ≥97%的标示量 微生物限度 菌数≤100 cfu/ml,不得检出大肠杆菌 硫酸镁含量 标示量的95.0%~105.0% -
2015年2月至2020年1月生产的27批次硫酸镁口服溶液的性状、鉴别、装量、微生物限度均合格,各批次硫酸镁含量结果汇总见表2。打开Minitab软件,输入数据,硫酸镁口服溶液中硫酸镁含量的能力六合图见图2。
表 2 27批次硫酸镁口服溶液含量的检验结果(2015年2月至2020年1月)
序号 批号 含量
(%)序号 批号 含量
(%)序号 批号 含量
(%)1 150203 99.7 10 161219 97.9 19 180507 101.0 2 150616 102.4 11 170316 99.7 20 181129 102.0 3 150824 98.7 12 170515 101.0 21 190226 100.0 4 151030 101.6 13 170629 98.5 22 190506 99.2 5 151224 102.0 14 170925 99.9 23 190624 98.2 6 160411 102.3 15 171113 100.8 24 190628 97.3 7 160614 100.5 16 180119 98.9 25 191101 101.9 8 160808 98.1 17 180307 99.3 26 200106 102.6 9 161017 99.8 18 180402 100.4 27 200111 97.4 -
Minitab软件依据统计理论的小概率事件原理,对控制图有8项检验标准[4-5]:①超出上下控制界限;②连续9点落在中心线同一侧;③连续6点递增或递减;④连续14点上下交错;⑤连续3点中有2个点距离中心线(同侧)大于2个标准差;⑥连续5点中有4个点距离中心线(同侧)大于1个标准差;⑦连续15点在距离中心线(任意一侧)1个标准差之内;⑧连续8点距离中心线(任一侧)大于1个标准差。以上8项检验标准的意义在于:①是公认的、用于检测失控情况的必要检验;②可以标识过程居中或变异中的偏移,可创建一个敏感度更高的控制图;③用于检测趋势;④可检测系统变异;⑤和⑥用于检测过程中的较小偏移;⑦可检测是否存在控制限过宽的现象;⑧检测混合模式。在混合模式中,这些点趋于避开中心线,而落在控制限附近。
为了使硫酸镁含量的控制图敏感度更高,我们选择对其进行8项检验。由图2知,硫酸镁含量的移动极差控制图、单值控制图上所有的点在控制限内随机分布,进行8项检验亦无异常值,说明该组数据处于控制状态,即硫酸镁口服溶液中硫酸镁含量处于受控状态。
-
由图2知,硫酸镁含量的最后25个观测值显示数据波动在正常范围内,能力直方图显示工艺过程受控,正态概率图显示数据分布密集且呈正态分布(P>0.05)。
-
能力图用于计算工序能力指数(Cpk)。传统统计控制理论将工序能力分为5级[6]:①Cpk≥1.67,工序能力过剩;②1.33<Cpk<1.67,一般加工工序能力富裕,可维持现状;③1<Cpk≤1.33,工序能力尚可,但有缺陷发生;④0.67<Cpk≤1,工序能力不足;⑤Cpk≤0.67,工序能力严重不足,需采取紧急措施。
硫酸镁含量的能力六合图显示Cpk为1.06,工序能力尚可,但提示有缺陷发生。在该能力指数下,单值图的上下控制线分别为95.34和104.74,几乎和规格线95、105重叠,因此,该控制限起不到控制的作用,只能用于分析用。
-
应用Minitab软件制作的硫酸镁含量的能力六合图显示,在硫酸镁口服溶液生产过程中对硫酸镁成分达到控制状态,硫酸镁口服溶液的生产工艺处于受控状态,但能力图同时也提示了该品种的工艺过程有潜在缺陷发生。
-
由于该产品的数据收集时间跨度长,潜在异常原因分析难度大,如果仅依靠经验判断,难以提出有针对性的预防措施。基于风险管理理念,我们需要系统地识别、查找潜在风险来源,做好质量风险的前瞻性管理。在本制剂室现有的风险管理程序下,我们采用失败模式和效应分析(FMEA)为本次风险管理工具[7],对风险的严重程度(S)、发生概率(O)以及风险被检测的可能性(D)评分,评分实行5分制[8-10],建立的风险评估表见表3。风险指数(RPN)=严重程度(S)×发生概率(O)×风险被检测的可能性(D),风险指数下的风险级别见表4。采用头脑风暴法列出可能发生硫酸镁含量偏差的因素,最后确定潜在的失效模式与潜在风险因素,并对风险进行分析分级,结果见表5。
表 3 风险评估表
严重程度(S) 发生概率(O) 可检测性(D) 评分 严重危害:直接影响产品质量,导致产品不可使用 极高:每批次发生或每年发生3批次以上 不能或极小 5 高:影响产品质量,导致产品质量不可控 高:每年发生1批次 可能性较低 4 中等:间接影响产品质量,导致产品质量可控但不稳定 中等:每3年发生1批次 中等可能性 3 低:较小影响产品质量,导致产品质量可控,较少出现不稳定 低:每5年发生1批次 可能性较大 2 微小:不影响产品质量 微小:几乎不发生 可能性非常大或几乎肯定能 1 表 4 风险级别表
风险指数 风险级别 评估 ≤25 低 可接受 26≤RPN≤59 中 考虑改进措施 ≥60 高 不可接受,需要整改 表 5 硫酸镁含量偏差风险因素分级结果
风险项目 失效模式 严重程度(S) 发生几率(O) 可检测性(D) RPN 风险等级 失败影响 评分 失败原因 评分 现有控制措施 评分 人员 配制、检验岗位人员岗位职责不熟悉、操作失误 不能准确称量投药量、准确测定含量 5 岗位职责不明确、管理规程指导性差、操作规程不切实际、人员培训未到位 3 岗位职责、管理规程、操作规程等文件齐全;定期进行各项操作培训,每年度进行各项考核。 2 30 中 原辅料 原辅料质量不合格 原辅料硫酸镁含量不合格或杂质超标,导致产品质量不可控 5 未按照入库规程进行原辅料入库;原辅料库环境不符合要求 1 原辅料入库实行双人验收,且药检人员对原辅料进行抽检。原辅料库每天监测温湿度并有防虫防霉措施 2 10 低 设备 天平未定期及时校准 硫酸镁含量可控但不稳定 3 设备管理人员因各种原因未及时进行天平校准 3 设备管理人员职责规定必须及时校验设备;天平侧部贴有校准结果和时效 1 9 低 方法 含量测定方法未验证 含量测定结果不准确,导致产品质量不可控 4 相关法规变更、检测方法变更、首次使用未验证 3 制订了相关岗位职责和操作规程 2 24 低 根据硫酸镁含量偏差风险因素分级结果,人员是硫酸镁口服溶液中硫酸镁含量偏差风险控制的关键。对此,我们进行如下改进措施:重新审核岗位职责、管理规程及操作规程等文件,由岗位人员、管理人员共同参与修订,增强文件的可操作性;人员培训时:理论培训需结合实际案例进行,同时注重现场操作的讲解且讲解结束后需进行全员实际技能操作,培训考核以笔试和实际操作相结合,并不定期进行考核,随时保证岗位人员的操作水平和理论知识水平。
-
医院制剂的很多品种为小批量、经常性生产品种,结合医院制剂的国家政策、制剂本身、医药市场等因素影响,原有的经常性生产品种也可能因为政策变化导致大幅减产[11]。在对医院制剂进行质量分析时,存在医院制剂年生产批次少,难以进行趋势分析的问题。因此,我们采用在年度产品批次少于10批时,对这些批次的生产数据进行罗列,避免因人员更替等原因导致数据丢失,同时可确保产品年度质量回顾工作的开展。但该阶段只确认年度该产品所有质量数据未超出标准范围,不进行趋势分析。当10≤批次<25时,采用单值-移动极差控制图(I-MR控制图)对数据进行分析[12-13],此时,对比第一阶段单纯的罗列数据,控制图可以直接反映单值、控制限、规格限、移动极差的分布,以及数据是否存在异常波动,可反映生产过程的大概趋势及稳定程度,判断过程是否受控。当数据足够多,即能收集25批次以上数据时,用Minitab软件中六合图对数据进行分析,除了可以有效观测到第二阶段情况外,还可考察样本正态分布情况,观察数据波动情况,以及从能力图中获得Cpk和工序性能指数(Ppk)等相关数据,为科学的评价工艺、流程的稳定性和可靠性提供数据支持。
常规控制图按用途可分为分析用控制图和控制用控制图。前者用来控制生产过程中有关质量特性值的变化情况,判断工序是否处于受控状态,后者主要用于发现生产过程是否有异常情况出现,以防不合格品产生。实际工作中,当数据积累足够多时,若与产品生产相关的各项因素没有发生变更,且控制图性能良好,绘制出的控制图就可用于生产过程的控制。在本文中,我们所绘制的控制图因控制限与规格线几乎重叠,且过程能力指数较低,只能用于分析用而不能转化成控制用控制图。
我们通过将能力六合图应用于医院制剂硫酸镁口服溶液的质量分析,发现虽然硫酸镁口服溶液的生产工艺处于受控状态,但存在潜在缺陷。基于风险管理理念,采用FMEA进行风险的前瞻性管理,并针对风险等级提出改进措施。但风险管理是一个持续、动态的过程,该改进措施能否有效控制风险还需进行一段时间的验证。只有风险得到有效控制,风险管理能力不断提高,才能使硫酸镁口服溶液的生产工艺更稳定,质量更优异。
Application of capability sixpack in quality analysis of hospital preparation magnesium sulfate oral solution
-
摘要:
目的 应用能力六合图对医院制剂硫酸镁口服溶液进行质量分析。 方法 运用Minitab软件中能力分析的“六合图”功能,以硫酸镁口服溶液的硫酸镁含量为指标,判断生产过程中硫酸镁含量是否达到控制状态,硫酸镁口服溶液的生产工艺是否稳定。 结果 硫酸镁含量及硫酸镁口服溶液的生产工艺处于受控状态,但存在潜在缺点。基于风险管理理念,应用失败模式和效应分析(FMEA)进行了潜在风险的前瞻性管理。 结论 应用能力六合图于医院制剂硫酸镁口服溶液的质量分析,有助于我们发现生产工艺受控状态下的潜在风险,有利于制剂生产过程的改进以及制剂质量的保证。 Abstract:Objective To analyze the quality of the hospital preparation magnesium sulfate oral solution by using capability sixpack. Methods By using the capability sixpack of Minitab, the content of magnesium sulfate in the magnesium sulfate oral solution was used as an indicator to determine whether the magnesium sulfate composition reached a controlled state during the production process and whether the production process of magnesium sulfate oral solution was stable. Results The content of magnesium sulfate and the production process of magnesium sulfate oral solution was under control, but there were potential disadvantages. Based on the concept of risk management philosophy, The failure model and effect analysis (FMEA) were applied to the prospective management of potential risks. Conclusion The application of the capability sixpack in the quality analysis of the hospital preparation of magnesium sulfate oral solution is helpful for us to discover the potential risks under the controlled state of the production process, which is beneficial to the improvement of the preparation production process and the assurance of the quality of the preparation. -
超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。
1. 材料与仪器
1.1 材料与试剂
丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。
1.2 仪器
85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。
1.3 实验动物
雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。
2. 方法与结果
2.1 超多孔水凝胶(SPH-IPN)的制备[5]
依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。
2.2 SPH-IPN的结构表征
将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。
2.3 SPH-IPN的溶胀性能测定
取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):
$$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$ 其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。
2.4 SPH-IPN孔隙率测定
采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:
$$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$ 其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。
2.5 载胰岛素SPH-IPN的制备及含量测定
2.5.1 载胰岛素SPH-IPN的制备
取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。
2.5.2 载药量的测定
取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:
$$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$ 其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。
2.6 载胰岛素SPH-IPN降血糖实验
2.6.1 不同方法载药SPH-IPN的制备
按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。
2.6.2 糖尿病大鼠模型的建立
给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。
2.6.3 分组、给药及血糖测定
取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。
3. 实验结果
3.1 IPN结构表征
3.1.1 傅立叶变换红外光谱(FTIR)
图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。
3.1.2 核磁共振(13C-NMR)
图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。
由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]。
综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。
3.2 SPH-IPN的溶胀性能
图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]。
3.3 SPH-IPN孔隙率的测定
表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。
表 1 SPH-IPN的孔隙率测定结果干重M1
(m/g)湿重M2
(m/g)乙醇密度
(g/cm3)体积
(V/cm3)孔隙率
(%)平均值
(%)RSD
(%)0.5425 0.6327 0.816 0.13 85.03 81.63 3.88 0.5751 0.6779 0.816 0.16 78.74 0.5628 0.6621 0.816 0.15 81.13 3.4 SPH-IPN载胰岛素含量测定结果
37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2。
表 2 SPH-IPN对胰岛素的载药量试验组 载药量(w/w,%) 平均值(w/w,%) RSD(%) 1 3.13 3.19 1.88 2 3.25 3 3.20 3.5 载胰岛素凝胶降血糖实验
图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。
4. 讨论
4.1 SPH-IPN的制备
本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。
4.2 水凝胶的载药方法
水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。
4.3 超多孔水凝胶的释药性能
文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。
笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。
将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。
载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。
4.4 SPH-IPN载胰岛素的微针给药展望
文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。
与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。
-
表 1 硫酸镁口服溶液质量标准
项目名称 标准 性状 无色、澄清液体,味苦、咸 镁盐、硫酸盐 阳性、阳性 装量 ≥97%的标示量 微生物限度 菌数≤100 cfu/ml,不得检出大肠杆菌 硫酸镁含量 标示量的95.0%~105.0% 表 2 27批次硫酸镁口服溶液含量的检验结果(2015年2月至2020年1月)
序号 批号 含量
(%)序号 批号 含量
(%)序号 批号 含量
(%)1 150203 99.7 10 161219 97.9 19 180507 101.0 2 150616 102.4 11 170316 99.7 20 181129 102.0 3 150824 98.7 12 170515 101.0 21 190226 100.0 4 151030 101.6 13 170629 98.5 22 190506 99.2 5 151224 102.0 14 170925 99.9 23 190624 98.2 6 160411 102.3 15 171113 100.8 24 190628 97.3 7 160614 100.5 16 180119 98.9 25 191101 101.9 8 160808 98.1 17 180307 99.3 26 200106 102.6 9 161017 99.8 18 180402 100.4 27 200111 97.4 表 3 风险评估表
严重程度(S) 发生概率(O) 可检测性(D) 评分 严重危害:直接影响产品质量,导致产品不可使用 极高:每批次发生或每年发生3批次以上 不能或极小 5 高:影响产品质量,导致产品质量不可控 高:每年发生1批次 可能性较低 4 中等:间接影响产品质量,导致产品质量可控但不稳定 中等:每3年发生1批次 中等可能性 3 低:较小影响产品质量,导致产品质量可控,较少出现不稳定 低:每5年发生1批次 可能性较大 2 微小:不影响产品质量 微小:几乎不发生 可能性非常大或几乎肯定能 1 表 4 风险级别表
风险指数 风险级别 评估 ≤25 低 可接受 26≤RPN≤59 中 考虑改进措施 ≥60 高 不可接受,需要整改 表 5 硫酸镁含量偏差风险因素分级结果
风险项目 失效模式 严重程度(S) 发生几率(O) 可检测性(D) RPN 风险等级 失败影响 评分 失败原因 评分 现有控制措施 评分 人员 配制、检验岗位人员岗位职责不熟悉、操作失误 不能准确称量投药量、准确测定含量 5 岗位职责不明确、管理规程指导性差、操作规程不切实际、人员培训未到位 3 岗位职责、管理规程、操作规程等文件齐全;定期进行各项操作培训,每年度进行各项考核。 2 30 中 原辅料 原辅料质量不合格 原辅料硫酸镁含量不合格或杂质超标,导致产品质量不可控 5 未按照入库规程进行原辅料入库;原辅料库环境不符合要求 1 原辅料入库实行双人验收,且药检人员对原辅料进行抽检。原辅料库每天监测温湿度并有防虫防霉措施 2 10 低 设备 天平未定期及时校准 硫酸镁含量可控但不稳定 3 设备管理人员因各种原因未及时进行天平校准 3 设备管理人员职责规定必须及时校验设备;天平侧部贴有校准结果和时效 1 9 低 方法 含量测定方法未验证 含量测定结果不准确,导致产品质量不可控 4 相关法规变更、检测方法变更、首次使用未验证 3 制订了相关岗位职责和操作规程 2 24 低 -
[1] 季哲, 衣明永. 运用能力六合图优化生产过程绩效[J]. 世界最新医学信息文摘, 2019, 19(19):194. [2] 中国人民解放军总后勤部卫生部. 中国人民解放军医疗机构制剂规范(2002年版)[M]. 北京: 人民军医出版社, 2003: 13. [3] 中央军委后勤保障部卫生局. 中国人民解放军医疗机构制剂规范[M]. 北京: 人民军医出版社, 2016: 334. [4] GITLOWA H S, OPPENHEIM A J, OPPENHEIM R, et al. 质量管理[M]. 张杰, 译. 北京: 机械工业出版社, 2008:95-111. [5] 王春涛, 唐静, 陈伟. Minitab软件在药品生产质量控制中的应用[J]. 中国执业药师, 2012, 9(11):42-46. [6] 贾新章, 李京苑. 统计过程控制与评价—Cpk、SPC和PPM技术[M]. 北京: 电子工业出版社, 2004: 37-39. [7] 翟铁伟. 药品生产中的关键工艺参数确认和控制方法探讨[J]. 化工与医药工程, 2019, 40(3):35-38. [8] 李宵, 任炳楠, 崔赛, 等. 失效模式和效应分析在医院冷链药品风险管理中的应用[J]. 中国医院药学杂志, 2019, 39(21):2216-2221. [9] 乔晓芳, 杨胜亚, 王志超. 药品生产质量风险管理现状分析及改进措施[J]. 化工与医药工程, 2019, 40(2):53-58. [10] 樊蓉, 袁偲偲, 张海莲. 基于失效模式和效应分析的高锰酸钾外用制剂用药错误风险点研究[J]. 药物不良反应杂志, 2019, 21(2):123-128. doi: 10.3760/cma.j.issn.1008-5734.2019.02.009 [11] 陶春, 宋洪涛. 新医改形势下医院制剂的发展思路[J]. 药学实践杂志, 2016, 34(6):574-576. doi: 10.3969/j.issn.1006-0111.2016.06.023 [12] 曹玲, 吴莉, 王玉, 等. 药品检验中常用的统计学方法及其应用[J]. 中南药学, 2019, 17(9):1508-1513. [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 实验室质量控制 利用统计质量保证和控制图技术 评价分析测量系统的性能: GB/T 27407—2010[S]. 北京: 中国标准出版社, 2011:8. -