-
在我国,肺炎链球菌是引起中国婴幼儿和老年人发病和死亡的重要病因,是社区获得性肺炎(community-acquired pneumonia, CAP)、菌血症、儿童化脓性脑膜炎的常见病原菌[1]。2012年亚太地区病原体耐药监测网络数据显示,肺炎链球菌(Streptococcus pneumoniae, S.p)在亚洲地区总体多重耐药比例为59.3%,而在中国的多重耐药比例高达83.3%[2],且部分地区肺炎链球菌耐药率呈逐年增长趋势[3-4]。
莫西沙星属第四代喹诺酮类抗菌药物,DNA拓扑异构酶抑制剂,抗菌谱广,对常见呼吸道病菌特别是肺炎链球菌抗菌作用强大,2016年中国成人CAP诊治指南推荐可选择莫西沙星等喹诺酮类药物作为初始经验性抗感染药物[5]。莫西沙星所有适应证口服给药的常规剂量均为400 mg/d。随着莫西沙星上市以来临床研究的深入,不良反应事件也有所增加[6]。本研究采用微透析方法获取肺炎大鼠肺组织间液中的游离药物浓度,旨在模拟莫西沙星在感染患者靶器官中的药动学变化,探究正常与感染状态下的靶器官药物分布的差异,分析链球菌感染状态下莫西沙星体内代谢动力学的变化。
-
取Wistar大鼠24只,雄性,SPF级,4~6周龄,其体质量为200~220g(上海斯莱克实验动物有限公司,合格证编号:2007000514232)。随机分为健康组及肺炎组各12只,两组大鼠体质量分别为(210.92±5.95)g和(208.58±5.33)g,无统计学差异(P>0.05)。实验前各组大鼠禁食12 h过夜,动物饲养遵从中华人民共和国实验动物使用协议。
-
CMA402型微量泵、CMA820型微量收集器、血管探针、肺探针(瑞典 CMA公司);ALC-V8S小动物呼吸机(上海奥尔科特生物科技有限公司);安捷伦1100高效液相色谱仪,配有Chemstation工作站;XW-80型涡旋混合器(其林贝尔);Thermo LEGEND Micro 17高速离心机(赛默飞);METTLER AE240电子天平(梅特勒)。莫西沙星标准品(中国食品药品检定研究院,纯度>99%,批号1448606),莫西沙星片(拜耳医药保健有限公司,批号BJ13520);甲醇(HPLC级,Burdick & Jackson公司),乙腈(HPLC级,Merck公司),甲酸(Fluka公司,瑞士)。
-
肺炎链球菌由第二军医大学附属长海医院微生物实验室提供,于接种前1 d接种于血琼脂平板,置于37 ℃ CO2培养箱中培养24 h,用无菌生理盐水稀释成含细菌浓度为0.6×108 cfu/ml的混悬液,备用。质控菌株为肺炎链球菌标准株(ATCC49619 上海宝米科生物科技有限公司提供)。
-
造模:采用气管穿刺法注入菌液建立肺炎大鼠模型。腹腔麻醉后,切开颈部皮肤暴露气管,经气管软骨环间穿刺,注入肺炎链球菌混悬液 0.2 ml(约0.12×108cfu/只),将大鼠直立位20 s,再使大鼠保持右侧卧位10 min,促使菌液充分流入右肺。于接种后第5~7天建立大鼠右侧肺炎模型。所有大鼠实验结束后行病理解剖及肺组织匀浆培养证实建模成功。
-
取造模成功的肺炎大鼠麻醉后,固定于保温垫,在气管上段做一T型切口,插入气管导管,接小动物呼吸机辅助通气,频率75~80次/min,潮气量2.5 ml。于大鼠右侧胸壁做斜行切口,止血钳离断第5肋骨前肋,充分暴露右肺。用注射器针尖稍刺破右肺中叶脏层胸膜,将肺探针向肺门方向钝性植入肺组织,复位肺叶,固定探针并关闭胸腔。切开左侧股静脉,植入血管探针推送至下腔静脉固定。
-
取莫西沙星1片,刮去包衣后磨成细粉末状,加入0.5%羧甲基纤维素钠无菌注射用水溶解,制成混悬溶液,浓度为10 mg/ml。
两组大鼠分别通过灌胃给药的方式注入莫西沙星混悬液,给药剂量按4 ml/kg计算,5 s内注入完毕,立即开始收集血浆及肺组织透析样品。采用HPLC法分别测定前5 h的莫西沙星浓度。
-
(1)色谱条件 色谱柱:Agilent SB-C18 (250 mm×4.6 mm,5.0 µm),流动相:乙腈: 0.1%甲酸水(25:75,V/V);流速:1.0 ml/min,分析时间10 min,柱温:30 ℃,进样量:5 μl,检测波长295 nm。
(2)透析液处理 精密量取100 μl透析液样品,置1.5 ml塑料离心管中,加入200 μl甲醇,漩涡混合30 s后,12000 r/min离心10 min,取200 μl上清液于进样瓶中,进样5 μl进行HPLC分析。
(3)标准曲线与线性范围 取空白透析液100 μl,精密加入莫西沙星标准对照品溶液20 μl旋涡混匀,配成莫西沙星浓度分别为5.00、2.00、1.00、0.50、0.20、0.10及0.05 µg/ml标准含药肺透析液,除不加200μl醇外,其余按“透析液样品处理方法”项下操作,进样分析,记录色谱图,计算莫西沙星峰面积。莫西沙星以肺透析液中待测物浓度(X)为横坐标,莫西沙星峰面积(Y)为纵坐标,求得回归方程:
Y=14.273X+0.555,r=0.999
结果表明莫西沙星在0.05~5.00 µg/ml浓度范围内线性关系良好。
-
配制莫西沙星浓度为0.05 µg/ml的标准含药透析液5份,进行分析,依照当日标准曲线方程求得实测浓度为(0.051 ± 0.004)µg/ml,准确度90.8%~116.66%。结果表明莫西沙星在血浆中的定量下限为0.05 µg/ml,S/N>10,线性关系良好。经逐级稀释,按S/N>3测得莫西沙星在血浆中的检测限为0.015 µg/ml。
-
制备含莫西沙星的浓度分别为0.05、0.50、5.00 µg/ml的标准含药肺透析液(每个浓度做5份),按“肺透析液样品预处理方法”项下操作,进样分析,连续做3 d,计算日内和日间精密度。测得日内精密度RSD分别为6.6281%、2.6247%、2.8282%;日间精密度分别为2.3793%、1.0271%、2.4221%,均小于10%,符合精密度要求。
-
以相对回收率表示,按“标准曲线制备”项下制备含有莫西沙星浓度分别为0.05、0.50、5.00 µg/ml的标准含药肺透析液,按“肺透析液样品预处理方法”项下操作,进样分析,记录色谱峰面积,代入标准曲线方程,计算实测浓度与实际浓度的比值即为相对回收率。结果分别为105.21%、104.82%、106.45%,均在80%~120%范围内,且RSD<10%,符合要求。
-
莫西沙星浓度分别为0.05、0.5、5.0 µg/ml的肺透析液样品各3份,分别进行室温、4 ℃及冻融稳定性考察,RSD均<10%。结果表明样品在上述条件下保持稳定。
-
采用反向透析法测定探针回收率(Rdial),体内实际药物浓度(Cu)由所得透析液浓度(Cm)按公式计算,Cu=Cm/Rdial转化获得。采用Pksolver 2.0软件,以非房室模型计算以下药动学数据:曲线下面积(AUC)、平均滞留时间(MRT)、药物消除半衰期(t1/2)、药物峰浓度(Cmax)、药物在肺部的穿透率(PR=C肺/C血液)、药物的分布系数(AUC肺/AUC血液)。
采用SPSS 17.0版统计学软件分析,计量资料采用均值±标准差(
$\bar{x}\pm s$ )表示。药动学参数先经方差齐性分析,符合正态分布者,采用两样本t检验,P<0.05表示其差异有统计学意义。 -
经灌胃给予莫西沙星后,正常大鼠及肺炎大鼠肺组织药物浓度迅速上升,约1 h达峰,随后两者同步下降。整个实验过程肺炎大鼠肺组织浓度均高于正常大鼠,肺炎大鼠肺组织Cmax约为正常大鼠的3.4倍。两组大鼠肺组织中莫西沙星的浓度-时间数据分布情况见图1。
-
灌胃给予莫西沙星后,正常大鼠及肺炎大鼠血浆游离药物浓度明显上升,Cmax无明显差异,两组大鼠血浆中莫西沙星的血药浓度-时间数据分布情况见图2。
-
计算各时间点在肺组织中的穿透率(PR值),正常大鼠和肺炎大鼠肺组织穿透率最高分别为0.27和1.87;最低分别为0.16和0.89,平均值分别为0.18±0.10和1.26±0.32(P<0.05),见图3。
-
大鼠灌胃莫西沙星后,正常大鼠及肺炎大鼠药动学参数采用非房室模型进行分析,结果见表1。
表 1 灌胃给予莫西沙星的正常大鼠与肺炎大鼠血浆和肺组织中的药动学参数
参数 单位 血浆 肺组织 正常组 肺炎组 正常组 肺炎组 Lambda_z 1/h 0.2±0.13 0.32±0.01 0.4±0.15 0.21±0.06 t1/2 h 5.27±4.38 2.15±0.07 1.9±0.63 3.39±0.79 Tmax h 0.67±0.14 1±0 0.89±0.2 0.94±0.1 Cmax μg/ml 4.94±0.98 4.83±0.05 1.42±0.05 4.84±0.02## Tlag h 0±0 0±0 0±0 0±0 Clast_obs/Cmax 0.02±0.03 0.27±0.04## 0.18±0.09 0.33±0.01 AUC 0-t μg/ml·h 22.33±2.02 12.88±1.19# 3.06±1.07 13.16±0.53## AUC 0-inf_obs μg/ml·h 23.51±1.41 16.96±1.71 3.77±1.29 20.93±1.35 AUC0-t/0-inf_obs 0.95±0.08 0.76±0.01 0.81±0.09 0.63±0.07# AUMC 0-inf_obs μg/ml·h2 151.89±92.76 62.01±8.56 11.93±5.14 107.01±25.39# MRT 0-inf_obs h 6.41±3.77 3.65±0.14 3.17±0.77 5.07±0.92 Vz/F_obs (mg/kg)/(μg/ml) 13.51±10.9 7.76±0.97 33.98±20.28 9.74±1.72 CL/F_obs (mg/kg)/(μg/ml)·h 1.79±0.11 2.49±0.26# 12.02±3.9 2.01±0.13 #P<0.05,##P<0.01,与正常组比较 正常大鼠及肺炎大鼠肺组织Cmax分别为(1.42±0.05)μg/ml、(4.84±0.02)μg/ml(P<0.01),t1/2分别为(1.9±0.63)h、(3.39±0.79)h(P>0.05),一阶矩曲线下面积AUMC分别为(11.93±5.14)μg/ml·h2、(107.01±25.39)μg/ml·h2(P<0.05),AUC0-t分别为(3.06±1.07)μg/ml·h、(13.16±0.53)μg/ml·h(P<0.01)
-
结合相关报道的最低抑菌浓度(MIC)[7]及防耐药突变浓度(mutant prevention concentration,MPC)[8]值,将本实验结果Cmax和AUC0-∞与之相比,莫西沙星对肺炎链球菌的PK/PD参数见表2 [莫西沙星对肺炎链球菌的MIC90为0.125 mg/L;莫西沙星对肺炎链球菌的MPC90为2 mg/L]。
表 2 正常大鼠和肺炎大鼠体内莫西沙星的PK/PD参数比较
PK/PD参数 血浆 肺组织 正常组 肺炎组 肺炎组/正常组 正常组 肺炎组 肺炎组/正常组 Cmax/MIC90 39.52 38.64 0.98 11.36 38.72 3.41 AUC0-∞/MIC90 188.08 135.68 0.72 30.16 167.44 5.54 Cmax/MPC90 2.47 2.42 0.98 0.71 2.42 3.41 AUC0-∞/MPC90 11.76 8.48 0.72 1.89 10.47 5.54 -
我国的多中心研究结果显示,莫西沙星对肺炎链球菌的敏感度达99%,MIC90为0.125 mg/L[7]。莫西沙星和青霉素类、头孢菌素类、氨基糖苷类、大环内酯类、四环素类抗菌药物均无交叉耐药性,口服生物利用度总计91%,可以被快速吸收并分布到血管外隙,稳态时表观分布容积可以达到21/kg。血浆蛋白结合率为45%,其在肺、窦及炎性损伤组织的药物浓度超过血药浓度。相关研究表明,口服莫西沙星400 mg后,在人肺组织[8]、微支气管镜肺泡灌洗液[9]、痰液[10]中的药时曲线与在血浆中的趋势相似,药物在以上样本中的浓度高于血浆,显示出良好组织穿透性,本研究的前期结果也得出相似的结论[11]。
莫西沙星为浓度依赖性抗菌药,抗生素后效应(PAE)较长,喹诺酮类治疗革兰阳性菌所需的AUC0-24h/MIC靶值为30~40。当PK/PD参数Cmax/MIC≥8~10和AUC0~24h/MIC≥125时可以明显减少氟喹诺酮类药物治疗革兰阴性杆菌、包括铜绿假单胞菌耐药菌出现的危险性[12]。本研究结果表明,莫西沙星在正常及肺炎链球菌感染大鼠血浆和肺组织的Cmax/MIC均远大于8~10,在肺炎大鼠的血浆及肺组织的AUC0-24h/MIC为135.68和167.44,正常大鼠血浆为188.08,远大于125。
耐药突变选择窗(MSW)是指防耐药突变浓度(MPC)与最低抑菌浓度(MIC)之间的浓度范围;当治疗药物浓度高于MPC时,在保证疗效的同时也能防止耐药突变;药物浓度如果在突变选择窗内,即使抑制了敏感菌生长,临床治疗可能成功,但还可能导致耐药突变。近年来在优化喹诺酮类给药方案的研究中,常需评价抗菌药物在耐药突变窗中的存在时间百分比和MPC值。TMSW<20%是预测防止出现耐药的有效参数,本研究药动学参数显示,莫西沙星在正常大鼠及肺炎大鼠的血浆和肺组织中的浓度基本保持在莫西沙星耐药突变选择窗之外。
药物常规剂量是在群体药动学结果和有限临床实践上建立的,大多数患者按照常规剂量会获得较好的临床疗效和安全性,但患者个体差异,生理病理状态都会对药动学参数产生一定影响。近年来,关于抗菌药物PK/PD的研究进展迅速,研究发现重症感染患者与健康人的PK/PD数据明显不同,例如万古霉素在重症感染患者群体分布相较正常人群快,患者存在高代谢和高循环动力状态,因而需要对治疗药物监测与给药方案的调整[13]。一项大样本临床研究表明莫西沙星最常见的药物不良反应为胃肠道症状,口服剂量400 mg/d,发生恶心、腹泻和头晕不良反应事件概率分别为7.1%、5.2%和2.6%[14]。国内也有莫西沙星不良反应的文献报道[15-16],此外,莫西沙星的中枢神经系统潜在危险与其他喹诺酮类药物一致[17],因此老年人、中枢神经系统损伤的老年患者(如癫痫、明显动脉硬化)应当谨慎使用,必要时减量,但目前尚无莫西沙星剂量调整的相关依据。
机体发生感染后,病原菌释放内毒素和外毒素,诱发的全身炎症反应,大量的细胞因子炎性介质释放,引起机体内环境稳态失衡,血管内皮破坏和毛细血管通透性增加,导致体液向第三间隙渗漏迁移[18],这一过程会使组织间分布的亲水性抗生素药物稀释,血浆和组织药物浓度下降,对亲脂性药物影响不大[19]。此外药物在体内以一定比例与血浆蛋白结合, 感染状态下血管通透性增加,蛋白向血管外间隙渗漏增加,以及肝脏合成减少,血浆白蛋白减低引起药物游离比例增多,这可能会增加组织内抗生素分布而增加抗感染效果,但同时可能增加药物的毒性作用[20],莫西沙星是表观分布容积较高的脂溶性药物,在感染状态肺组织浓度较健康状态增高,可能与血管通透性增加,血浆蛋白结合率降低有关。
有研究表明喹诺酮类抗菌药物马波沙星在感染小鼠肺组织的药物浓度是血浆药物浓度的2~3倍[21],多杀性巴氏杆菌感染显著增加了马波沙星的AUC、Cmax、MRT,这与本研究结论相似。肺炎模型大鼠与正常大鼠相比,莫西沙星在血浆中的浓度没有显著差异,而在肺炎大鼠肺组织中的浓度明显高于正常大鼠,最高为正常大鼠肺组织的3.4倍,这提示在肺炎链球菌感染的病理状态下,莫西沙星的肺组织穿透率升高。
莫西沙星在正常小鼠和肺炎链球菌感染小鼠的血浆和肺组织浓度均能够达到杀灭细菌并防止产生耐药性的要求。在感染状态下机体高敏、肝肾功能减退等病理因素可能增加莫西沙星不良反应的发生概率,而在肺炎病理状态下,莫西沙星肺组织AUC0-24h/MIC达到167.44,目前实验数据表明小鼠肺炎链球菌感染时莫西沙星肺组织浓度远高于健康状态,也远大于MIC和MPC,理论上有一定剂量调整的空间,其机制和具体方案还有待进一步实验研究,为优化特殊病人给药方案,调整药物剂量,减少药物不良反应提供可参考的数据。
Comparative of pharmacokinetic of moxifloxacin in the plasma and lung tissues of pneumonia rats and normal rats
-
摘要:
目的 莫西沙星(MXF)口服给药在被肺炎链球菌(S.p)感染肺炎大鼠与正常大鼠的血浆及肺组织中药动学比较研究。 方法 建立肺炎链球菌肺炎大鼠和正常大鼠模型,莫西沙星42 mg/kg灌胃给药,采用微透析技术对肺炎大鼠及正常大鼠的血液及肺组织取样,用高效液相色谱法测定莫西沙星在各样本中的游离药物浓度,计算药动学参数,进行肺炎大鼠和正常大鼠口服莫西沙星的药动学比较。 结果 莫西沙星在正常大鼠及肺炎大鼠血液中的t1/2分别为(5.27±4.38)h、(2.15±0.07)h(P>0.05),Cmax分别为(4.94±0.98)μg/ml、(4.83±0.05)μg/ml(P>0.05),Clast_obs/Cmax分别为0.02±0.03、0.27±0.04(P<0.05),AUC0-t分别为(22.33±2.02)μg/ml·h、(12.88±1.19)μg /ml·h(P<0.05),CL/F 分别为(1.79±0.11)(mg/kg)/(μg/ml)·h、(2.49±0.26)(mg/kg)/(μg/ml)·h(P<0.05);在正常大鼠及肺炎大鼠肺组织中的Cmax分别为(1.42±0.05)μg/ml、(4.84±0.02)μg /ml(P<0.05),t1/2分别为(1.9±0.63)h、(3.39±0.79)h(P>0.05),AUMC分别为(11.93±5.14)μg/ml·h2、(107.01±25.39)μg/ml·h2(P<0.05),AUC0-t分别为(3.06±1.0)7μg/ml·h、(13.16±0.53)μg /ml·h(P<0.01)。 结论 ①在400mg/d剂量条件下,莫西沙星灌胃给药后,血液及肺组织内的游离药物浓度较高,远超过最低抑菌浓度(MIC)和防耐药突变浓度(MPC),可以有效清除肺炎链球菌。②肺炎链球菌感染大鼠肺组织中莫西沙星游离浓度始终高于正常大鼠,Cmax约为正常大鼠的3.4倍,莫西沙星在肺炎大鼠的肺组织穿透率显著高于正常大鼠。 Abstract:Objective To compare the pharmacokinetics of moxifloxacin (MXF) administered orally in the plasma and lung tissues of rats with pneumonia infected by Streptococcus pneumoniae (S.p) and normal rats. Methods To establish a model of Streptococcus pneumoniae pneumonia rats and normal rats. Moxifloxacin was administered by intragastric administration at 42 mg/kg. Microdialysis technique was used to sample the blood and lung tissues of pneumonia rats and normal rats to determine the free drug concentration of moxifloxacin in each sample, calculate the pharmacokinetic parameters, and compare the pharmacokinetics of oral moxifloxacin in pneumonia rats and normal rats. Results The t1/2 of moxifloxacin in the blood of normal rats and pneumonia rats were (5.27±4.38) h, (2.15±0.07) h (P>0.05), and Cmax were (4.94±0.98) μg/ml, respectively, (4.83±0.05) μg/ml (P>0.05), Clast_obs/Cmax were 0.02±0.03, 0.27±0.04 (P<0.05), AUC0-t were (22.33±2.02)μg/ml·h, (12.88±1.19)μg /ml·h (P<0.05), CL/F are (1.79±0.11)(mg/kg)/(μg/ml)·h, (2.49±0.26)(mg/kg)/(μg/ml)·h (P<0.05); Cmax of lung tissue of normal rats and pneumonia rats were (1.42±0.05) μg/ml, (4.84±0.02) μg/ml (P<0.05), t1/2 are (1.9±0.63)h, (3.39±0.79)h (P>0.05), AUMC are (11.93±5.14)μg/ml·h2, (107.01±25.39)μg/ml·h2 (P<0.05), AUC0-t are (3.06±1.0) 7μg/ml·h, (13.16±0.53)μg/ml·h (P<0.01). Conclusions ① Under the 400 mg/d dose condition, after intragastric administration of moxifloxacin, the concentration of free drugs in the blood and lung tissues is higher, far exceeding the minimum inhibitory concentration (MIC) and anti-drug resistance concentration (MPC), can effectively remove Streptococcus pneumoniae. ②The free concentration of moxifloxacin in the lung tissue of rats infected with Streptococcus pneumoniae is always higher than that of normal rats, and the Cmax is about 3.4 times that of normal rats. The penetration rate of moxifloxacin in lung tissue of pneumonia rats is significantly higher than that of normal rats. -
Key words:
- moxifloxacin /
- pneumococcal pneumonia /
- microdialysis /
- pharmacokinetics
-
超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。
1. 材料与仪器
1.1 材料与试剂
丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。
1.2 仪器
85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。
1.3 实验动物
雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。
2. 方法与结果
2.1 超多孔水凝胶(SPH-IPN)的制备[5]
依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。
2.2 SPH-IPN的结构表征
将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。
2.3 SPH-IPN的溶胀性能测定
取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):
$$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$ 其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。
2.4 SPH-IPN孔隙率测定
采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:
$$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$ 其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。
2.5 载胰岛素SPH-IPN的制备及含量测定
2.5.1 载胰岛素SPH-IPN的制备
取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。
2.5.2 载药量的测定
取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:
$$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$ 其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。
2.6 载胰岛素SPH-IPN降血糖实验
2.6.1 不同方法载药SPH-IPN的制备
按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。
2.6.2 糖尿病大鼠模型的建立
给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。
2.6.3 分组、给药及血糖测定
取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。
3. 实验结果
3.1 IPN结构表征
3.1.1 傅立叶变换红外光谱(FTIR)
图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。
3.1.2 核磁共振(13C-NMR)
图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。
由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]。
综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。
3.2 SPH-IPN的溶胀性能
图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]。
3.3 SPH-IPN孔隙率的测定
表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。
表 1 SPH-IPN的孔隙率测定结果干重M1
(m/g)湿重M2
(m/g)乙醇密度
(g/cm3)体积
(V/cm3)孔隙率
(%)平均值
(%)RSD
(%)0.5425 0.6327 0.816 0.13 85.03 81.63 3.88 0.5751 0.6779 0.816 0.16 78.74 0.5628 0.6621 0.816 0.15 81.13 3.4 SPH-IPN载胰岛素含量测定结果
37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2。
表 2 SPH-IPN对胰岛素的载药量试验组 载药量(w/w,%) 平均值(w/w,%) RSD(%) 1 3.13 3.19 1.88 2 3.25 3 3.20 3.5 载胰岛素凝胶降血糖实验
图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。
4. 讨论
4.1 SPH-IPN的制备
本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。
4.2 水凝胶的载药方法
水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。
4.3 超多孔水凝胶的释药性能
文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。
笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。
将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。
载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。
4.4 SPH-IPN载胰岛素的微针给药展望
文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。
与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。
-
表 1 灌胃给予莫西沙星的正常大鼠与肺炎大鼠血浆和肺组织中的药动学参数
参数 单位 血浆 肺组织 正常组 肺炎组 正常组 肺炎组 Lambda_z 1/h 0.2±0.13 0.32±0.01 0.4±0.15 0.21±0.06 t1/2 h 5.27±4.38 2.15±0.07 1.9±0.63 3.39±0.79 Tmax h 0.67±0.14 1±0 0.89±0.2 0.94±0.1 Cmax μg/ml 4.94±0.98 4.83±0.05 1.42±0.05 4.84±0.02## Tlag h 0±0 0±0 0±0 0±0 Clast_obs/Cmax 0.02±0.03 0.27±0.04## 0.18±0.09 0.33±0.01 AUC 0-t μg/ml·h 22.33±2.02 12.88±1.19# 3.06±1.07 13.16±0.53## AUC 0-inf_obs μg/ml·h 23.51±1.41 16.96±1.71 3.77±1.29 20.93±1.35 AUC0-t/0-inf_obs 0.95±0.08 0.76±0.01 0.81±0.09 0.63±0.07# AUMC 0-inf_obs μg/ml·h2 151.89±92.76 62.01±8.56 11.93±5.14 107.01±25.39# MRT 0-inf_obs h 6.41±3.77 3.65±0.14 3.17±0.77 5.07±0.92 Vz/F_obs (mg/kg)/(μg/ml) 13.51±10.9 7.76±0.97 33.98±20.28 9.74±1.72 CL/F_obs (mg/kg)/(μg/ml)·h 1.79±0.11 2.49±0.26# 12.02±3.9 2.01±0.13 #P<0.05,##P<0.01,与正常组比较 表 2 正常大鼠和肺炎大鼠体内莫西沙星的PK/PD参数比较
PK/PD参数 血浆 肺组织 正常组 肺炎组 肺炎组/正常组 正常组 肺炎组 肺炎组/正常组 Cmax/MIC90 39.52 38.64 0.98 11.36 38.72 3.41 AUC0-∞/MIC90 188.08 135.68 0.72 30.16 167.44 5.54 Cmax/MPC90 2.47 2.42 0.98 0.71 2.42 3.41 AUC0-∞/MPC90 11.76 8.48 0.72 1.89 10.47 5.54 -
[1] 王华庆, 安志杰. 肺炎球菌性疾病免疫预防专家共识(2017版)[J]. 中国预防医学杂志, 2018, 19(3):161-191. [2] KIM S H, SONG J H, CHUNG D R, et al. Changing trends in antimicrobial resistance and serotypes of Streptococcus pneumoniae isolates in Asian countries: an Asian Network for Surveillance of Resistant Pathogens (ANSORP) study[J]. Antimicrob Agents Chemother,2012,56(3):1418-1426. doi: 10.1128/AAC.05658-11 [3] LYU S, YAO K H, DONG F, et al. Vaccine serotypes of Streptococcus pneumoniae with high-level antibiotic resistance isola-ted more frequently seven years after the licensure of PCV7 in Beijing[J]. Pediatr Infect Dis J,2016,35(3):316-321. doi: 10.1097/INF.0000000000001000 [4] SONG J H. Advances in pneumococcal antibiotic resistance[J]. Expert Rev Respir Med,2013,7(5):491-498. doi: 10.1586/17476348.2013.816572 [5] 中华医学会呼吸病学分会. 中国成人社区获得性肺炎诊断和治疗指南(2016 年版)[J]. 中华结核和呼吸杂志, 2016, 39(4):1-27. [6] 赵东玲, 屈清慧, 李瑞林, 等. 莫西沙星致不良反应3445例文献分析[J]. 中国药房, 2015, 26(21):2913-2915. doi: 10.6039/j.issn.1001-0408.2015.21.13 [7] 赵春江, 张菲菲, 王占伟, 等. 2012年中国成人社区获得性呼吸道感染主要致病菌耐药性的多中心研究[J]. 中华结核和呼吸杂志, 2015, 38(1):18-22. doi: 10.3760/cma.j.issn.1001-0939.2015.01.008 [8] SOMAN A, HONEYBOURNE D, ANDREWS J, et al. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibreoptic bronchoscopy[J]. J Antimicrob Chemother,1999,44(6):835-838. doi: 10.1093/jac/44.6.835 [9] 王小均, 刘春涛, 余勤, 等. 盐酸莫西沙星的全身和肺部药代动力学比较研究[J]. 中国呼吸与危重监护杂志, 2008, 7(2):88-92. doi: 10.3969/j.issn.1671-6205.2008.02.002 [10] BREILH D, JOUGON J, DJABAROUTI S, et al. Diffusion of oral and intravenous 400 mg once-daily moxifloxacin into lung tissue at pharmacokinetic steady-state[J]. J Chemother,2003,15(6):558-562. doi: 10.1179/joc.2003.15.6.558 [11] 李奕, 成熙, 曹玉书, 等. 莫西沙星在肺炎大鼠血液及肺组织的药代动力学研究[J]. 中国药物应用与监测, 2017, 14(6):336-340. doi: 10.3969/j.issn.1672-8157.2017.06.003 [12] 郭蓓宁, 郁继诚, 张菁, 等. 氟喹诺酮类药物对临床分离肺炎链球菌的防突变浓度[J]. 中国感染与化疗杂志, 2010, 10(1):13-16. [13] 黄兴富, 童伟, 吴静, 等. 万古霉素在重症感染患者的药动学[J]. 医药导报, 2018, 37(6):745-749. [14] BALL P, STAHLMANN R, KUBIN R, et al. Safety profile of oral and intravenous moxifloxacin: cumulative data from clinical trials and postmarketing studies[J]. Clin Ther,2004,26(7):940-950. doi: 10.1016/S0149-2918(04)90170-1 [15] 陈晓红, 赵志刚, 王慧媛. 122例莫西沙星所致不良反应分析[J]. 中国医院用药评价与分析, 2009, 9(10):782-783. [16] 刘宪军. 1824例莫西沙星不良反应报告分析[J]. 中国药业, 2015, 24(13):56-58. [17] 谷建俐, 王书民, 秦智彬, 等. 莫西沙星引发的神经/精神系统不良反应分析[J]. 医学综述, 2018, 24(19):3937-3940, 3945. doi: 10.3969/j.issn.1006-2084.2018.19.038 [18] BOCHUD P Y, CALANDRA T. Pathogenesis of Sepsis: new concepts and implications for future treatment[J]. BMJ,2003,326(7383):262-266. doi: 10.1136/bmj.326.7383.262 [19] JOYNT G M, LIPMAN J, GOMERSALL C D, et al. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients[J]. J Antimicrob Chemother,2001,47(4):421-429. doi: 10.1093/jac/47.4.421 [20] FLECK A, RAINES G, HAWKER F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury[J]. Lancet,1985,1(8432):781-784. [21] 瞿颖, 卢燕, 孙美珍, 等. 马波沙星在健康小鼠和感染多杀性巴氏杆菌小鼠体内的药动学比较[J]. 华南农业大学学报, 2016, 37(2):14-19. doi: 10.7671/j.issn.1001-411X.2016.02.003 -