留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志计划于2025年8月中旬至9月底进行系统升级,请作者持续关注稿件状态,已退修稿件尽快修回!

基于药物重定位建立以α1酸性糖蛋白为靶点的高通量筛选平台及潜在减肥药物的发现

陈枫 杨慈荣 张圳 陈飞 刘霞

张艳霞, 陈泉金, 宋洪涛. 环孢素注射液在肾移植患者中的血药浓度与基因多态性的相关性研究[J]. 药学实践与服务, 2020, 38(4): 334-339. doi: 10.12206/j.issn.1006-0111.201911107
引用本文: 陈枫, 杨慈荣, 张圳, 陈飞, 刘霞. 基于药物重定位建立以α1酸性糖蛋白为靶点的高通量筛选平台及潜在减肥药物的发现[J]. 药学实践与服务, 2024, 42(3): 114-120. doi: 10.12206/j.issn.2097-2024.202309057
ZHANG Yanxia, CHEN Quanjin, SONG Hongtao. Study on correlation between plasma concentration of cyclosporine injection and gene polymorphism in renal transplant patients[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(4): 334-339. doi: 10.12206/j.issn.1006-0111.201911107
Citation: CHEN Feng, YANG Cirong, ZHANG Zhen, CHEN Fei, LIU Xia. Establishment of a high-throughput screening platform based on drug repurposing targeting alpha-1-acid glycoprotein and discovery of potential weight loss drugs[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(3): 114-120. doi: 10.12206/j.issn.2097-2024.202309057

基于药物重定位建立以α1酸性糖蛋白为靶点的高通量筛选平台及潜在减肥药物的发现

doi: 10.12206/j.issn.2097-2024.202309057
详细信息
    作者简介:

    陈 枫,硕士研究生, Email:chenfens@qq.com

    通讯作者: 刘 霞,教授,博士生导师,研究方向:心脑血管药理学,Email:lxflying@aliyun.com

Establishment of a high-throughput screening platform based on drug repurposing targeting alpha-1-acid glycoprotein and discovery of potential weight loss drugs

  • 摘要:   目的  α1酸性糖蛋白(ORM)是减肥药物研发的新靶点。基于药物重定位,拟从已上市药物的化合物库中寻找可以靶向ORM的潜在减肥药物。  方法  构建pGL4.20-ORM1 启动子重组质粒,验证后利用慢病毒载体构建稳定表达ORM1 启动子-LUC-PURO的AML12细胞株,利用该细胞株对上市药物库中化合物进行高通量筛选,通过酶标仪对细胞的荧光值进行表征。  结果  对1 470种化合物进行初筛和复筛,发现42种化合物可以提高ORM1启动子表达,可用于进一步的减肥效应评估。  结论  通过慢病毒载体成功构建了LV-AML12-ORM1 启动子-LUC-PURO稳定表达细胞株,为高效、稳定筛选靶向ORM的减肥药物奠定了基础。
  • 环孢素(cyclosporine A, CsA)是肾移植术后三联免疫抑制方案中的基础用药之一。环孢素个体差异大、治疗窗窄,静脉给药虽能更快达到目标浓度,但也更容易使血药浓度偏离治疗窗。研究表明,环孢素血药浓度的个体间差异受患者生理、病理、遗传等因素的影响[1],尤其是与其体内过程相关的基因多态性,如CYP3A4*18B、CYP3A5*3、ABCB1(C1236T、G2677T/A、C3435T)、POR*28、PXR(C5705T、C39823T)和NFKB1-94 ins/del ATTG等。然而,目前如何根据基因型调整用药尚不明确,且针对环孢素注射液基因多态性的研究尚未见报道。因此,探究基因多态性对环孢素注射液血药浓度的影响,尝试建立以基因多态性为基础的个体化给药方案对优化临床用药具有一定的意义。

    回顾性收集了某三甲医院泌尿外科收住的行肾移植术的患者144例。纳入标准:①患者年龄≥18岁;②住院期间使用环孢素注射液联合霉酚酸类药物和糖皮质激素。排除标准:①严重肝功能不全者(ALT或AST值≥3倍正常上限);②无法获取病案资料的患者;③同时服用显著影响环孢素血药浓度的药物,如氟康唑、伏立康唑、伊曲康唑及地尔硫䓬。

    环孢素注射液连续多次给药后应用酶增强免疫分析法(EMIT)测定全血谷浓度,取稳态时的浓度作为最终的谷浓度(C0)。将剂量以体表面积进行校正,计算剂量校正谷浓度(C0/D′),即环孢素血药谷浓度/剂量×体表面积。

    采用离心柱型全血DNA快速提取试剂盒提取全血样本中的基因组DNA,获得DNA样本浓度为10~60 ng/ml。基因分型采用Sequenom Mass ARRAY®SNP检测系统进行检测,由上海吉凯基因化学技术公司完成。

    采用SPSS 24.0软件进行统计分析。计量资料以($\bar x \pm s$)或Me(IQR)表示。采用独立样本t检验,比较单独使用环孢素注射液和联合使用环孢素注射液及糖皮质激素冲击治疗患者的C0及降低幅度的差异;采用χ2检验对各基因型分布进行Hardy-Weinberg平衡(HWE)检验;采用在线软件SHEsis(http://analysis.bio-x.cn/myAnalysis.php)分析各SNP位点间连锁不平衡(linkage disequilibrium,LD)状况;采用方差分析来计算各位点不同基因型患者间C0/D′的差异;采用Spearman相关性分析及多重线性回归分析建立基于基因多态性的个体化给药模型。

    入组患者共144例,其中男性109例,女性35例,患者基本信息见表1

    表  1  研究对象的一般临床资料(n=144)
    指标统计描述百分率(%)
    年龄(岁)37.5(15)
    性别(男/女,例)109/3575.7/24.3
    体重(kg)59.46±10.47
    体表面积(m21.65(0.28)
    BMI(kg/ m221.21±3.14
    血红蛋白(g/L)101.56±24.05
    血细胞比容(%)30.84±7.16
    供体类型(尸体/亲属,例)122/2284.7/15.3
    环孢素使用天数(d)11(7)
    是否激素冲击(是/否,例)80/6455.6/44.4
    血肌酐是否降低(是/否,例)112/3277.7/22.3
      注:数据以($\bar x \pm s$)或Me(IQR)表示
    下载: 导出CSV 
    | 显示表格

    对患者环孢素注射液C0及用药后的血肌酐降低幅度进行统计分析。结果显示,单独使用环孢素注射液(单独用药组)后肌酐降低的患者比例为68.8%;联合使用环孢素注射液和糖皮质激素冲击治疗(联合用药组)后肌酐降低的患者比例为85.0%。单独用药组比联合用药组具有更高的C0〔(189.50±38.56)ng/ml vs(172.87±44.27)ng/ml〕,经独立样本T检验,两组患者C0的差异具有统计学意义(P<0.05)。然而,对两组患者的肌酐降低幅度进行Mann-Whitney U检验发现,单独用药组患者的肌酐降低幅度显著低于联合用药组〔19.27(22.84)% vs 45.25(50.38)%;P<0.01〕(见表2)。

    表  2  单独用药与联合用药方案的血肌酐降低幅度差异
    用药方案例数及比例(N/%)肌酐降低例数及比例(N/%)C0(ng/ml)肌酐降低幅度(%)
    环孢素注射液64(44.4)44(68.8)189.50±38.5619.27(22.84)
    环孢素注射液+糖皮质激素80(55.6)68(85.0)172.87±44.27*45.25(50.38)**
     注:*P<0.05,**P<0.01,与单用环孢素注射液比较
    下载: 导出CSV 
    | 显示表格

    入组患者的CYP3A4*18B、CYP3A5*3、ABCB1 C1236T、ABCB1 G2677T/A、ABCB1 C3435T、PXR C5705T、PXR C25385T、NFKB1 -94 ins /del ATTG及POR*28(仅64例患者)等9个SNPs的基因型频率分布及HWE遗传平衡吻合度计算见表3。9个SNPs均符合HWE(P>0.05),说明研究对象来自同一孟德尔群体,具有良好的群体代表性。

    表  3  肾移植患者中9个SNPs基因分型以及等位基因频率(n=144)
    SNP(ID)基因型频率(%)等位基因频率(%)χ2P
    野生/野生野生/突变突变/突变野生突变
    CYP3A4*18BGG(*1*1)GA(*1*18B)AA(*18B*18B)GA0.0460.830
    rs224248080(55.6%)54(37.5%)10(6.9%)74.3%25.7%
    CYP3A5*3AA(*1*1)AG(*1*3)GG(*3*3)AG0.0050.945
    rs77674611(7.6%)57(39.6%)76(52.8%)27.4%72.6%
    ABCB1 C1236TCCCTTTCT0.9850.321
    rs112850314(9.7%)70(48.6%)60(41.7%)34.0%66.0%
    ABCB1G 2677T/AGGGT+GATT+TA+AAGT+A0.0700.791
    rs203258223(16.0%)71(49.3%)50(34.7%)40.6%59.4%
    ABCB1 C3435TCCCTTTCT1.2490.264
    rs104564254(37.5%)63(43.8%)27(18.7%)59.4%40.6%
    PXR C5705TCCCTTTCT2.9180.088
    rs381405587(60.4%)45(31.3%)12(8.3%)76.0%24.0%
    PXR C39823TCCCTTTCT2.2500.134
    rs227670740(27.8%)80(55.6%)24(16.6%)55.6%44.4%
    NFKB1-94 ins /delATTGII ID DD ID0.0360.849
    rs2836249145(31.3%)72(50.0%)27(18.7%)56.3%43.7%
    POR*28CCCTTTCT2.1930.139
    rs105786826(40.6%)25(39.1%)13(20.3%)60.2%39.8%
      注:①. 指插入突变纯合子;②. 指插入突变杂合子;③. 指缺失突变纯合子。
    下载: 导出CSV 
    | 显示表格

    各位点不同基因型患者之间使用环孢素注射液的C0/D′的差异见表4。在9个SNPs中,CYP3A4*18B基因多态性与环孢素注射液的C0/D′具有显著相关性,*1/*1基因型患者的C0/D′显著高于*18B/*18B基因型患者(P<0.05);CYP3A5*3、ABCB1 C1236T、ABCB1 G2677T/A、ABCB1 C3435T、PXR C5705T、PXR C39823T、NFKB1-94 ins/del ATTG及POR*28基因多态性均与肾移植患者环孢素注射液的C0/D′无显著相关性(P>0.05)。

    表  4  各位点不同基因型对环孢素C0/D′的影响
    位点(ID)基因型例数/占比[n,(%)]C0/D′[(ng/ml)/(mg/kg)]P
    CYP3A4*18B
    rs2242480
    *1/*180(55.6)1.52±0.420.044
    *1/*18B54(37.5)1.42±0.42
    *18B/*18B10(6.9)1.19±0.26*
    CYP3A5*3
    rs776746
    *1/*111(7.6)1.36±0.460.647
    *1/*357(39.6)1.45±0.37
    *3/*376(52.8)1.48±0.45
    ABCB1 C1236T
    rs1128503
    CC14(9.70)1.43±0.480.486
    CT70(48.6)1.50±0.41
    TT60(41.7)1.41±0.42
    ABCB1 G2677T/A
    rs2032582
    GG23(16.0)1.40±0.410.674
    GA+GT71(49.3)1.49±0.40
    AA+AT+TT50(34.7)1.44±0.46
    ABCB1 C3435T
    rs1045642
    CC54(37.5)1.46±0.410.596
    CT63(43.8)1.43±0.43
    TT27(18.7)1.53±0.43
    PXR C5705T
    rs3814055
    CC87(60.4)1.43±0.410.442
    CT45(31.3)1.48±0.45
    TT12(8.30)1.58±0.36
    PXR C39823T
    rs2276707
    CC40(27.8)1.55±0.490.262
    CT80(55.6)1.43±0.40
    TT24(16.6)1.38±0.35
    NFKB1(-94 ins/del ATTG)
    rs28362491
    II45(31.3)1.49±0.460.300
    ID72(50.0)1.41±0.41
    DD27(19.7)1.54±0.39
    POR*28
    rs1057868
    *1/*126(40.6)1.63±0.450.491
    *1/*2825(39.1)1.48±0.43
    *28/*2813(20.3)1.54±0.38
      注:*P<0.05,与*1/*1型比较。
    下载: 导出CSV 
    | 显示表格

    参考单因素和多因素分析方法,将3个人口统计学指标(性别、年龄、体重)、3个临床指标(血红蛋白、血细胞比容、供体类型)和上述9个SNPs基因多态性定义为自变量,与环孢素注射液的C0/D′进行单因素相关分析。结果显示,在以上指标中,血红蛋白、血细胞比容和CYP3A4*18B基因多态性与环孢素注射液的C0/D′呈正相关,CYP3A4*18B与环孢素注射液的C0/D′呈负相关。其他12个指标与环孢素注射液C0/D′均没有显著相关性,详见表5

    表  5  各观察指标与环孢素注射液C0/D′的相关性
    指标相关系数(r决定系数(R2P
    年龄0.1140.0130.175
    性别−0.0710.0050.400
    体重0.1400.0200.094
    血红蛋白0.4630.2140.000*
    血细胞比容0.4540.2060.000*
    供体类型0.1120.0130.180
    CYP3A4*18B−0.1760.0310.035
    CYP3A5*30.0430.0020.610
    ABCB1 C1236T−0.0560.0030.504
    ABCB1 G2677T/A0.0060.0000.943
    ABCB1 C3435T0.0220.0000.798
    PXR C5705T0.1000.0100.235
    PXR C39823T−0.1360.0180.103
    NFKB1(-94 ins/del ATTG)0.0030.0000.971
    POR*28−0.1300.0170.305
    下载: 导出CSV 
    | 显示表格

    对上述3个相关因素与环孢素注射液C0/D′进行的初步多重逐步回归分析,排除存在共线性问题的因素,得到最佳模型。在最佳回归模型中,血红蛋白和CYP3A4*18B基因多态性对环孢素注射液C0/D′均有统计学意义(P值分别为0.000和0.024)。根据最佳回归模型得到的回归方程即环孢素注射液C0/D′的预测算法,方程式如下:

    Y=0.695+0.008X1−0.112X2,

    式中因变量Y为环孢素注射液C0/D′,因此,应用环孢素注射液的肾移植患者环孢素注射液维持剂量预测模型为:

    D′(mg/m2)=C/(0.695+0.008X1−0.112X2

    公式中:X1代表用药前患者的血红蛋白含量,X2代表CYP3A4*18B基因多态性;CYP3A4 *1/*1型患者X2=0,CYP3A4*1/*18B型患者X2=1,CYP3A4*18B/*18B型患者X2=2;C为临床TDM目标谷浓度值。

    糖皮质激素冲击治疗是肾移植术后发生急性排斥反应的一线治疗方案。然而,由于糖皮质激素冲击治疗不良反应多且发生率高,对于临床上仅发生或疑似发生亚临床或临界排斥反应的患者可能并不是最佳用药。蔡治涛等[2]收录在《2012年中国器官移植大会论文汇编》中的研究指出以静脉环孢素为基础的免疫抑制治疗方案是一种安全、有效的治疗手段。为探究环孢素注射液在临床上的疗效,本研究对两种治疗方案(环孢素注射液单药vs环孢素注射液和糖皮质激素联合用药)对肾移植术后发生亚临床或临界排斥反应的临床疗效进行研究,结果发现,环孢素注射液单药组在降低患者肌酐水平方面的疗效不及环孢素注射液和糖皮质激素联合用药组〔肌酐降低比例:68.8% vs 85.0%;肌酐降低幅度:19.27(22.84)% vs 45.25(50.38)%;P<0.01〕,但单药组具有更高的稳态谷浓度C0〔(189.50±38.56)ng/ml vs (172.87±44.27)ng/ml〕。该研究结果表明对于肾移植术后发生亚临床或临界排斥反应的患者,单用环孢素注射液仍然具有较好的临床疗效,且血药浓度处于比较安全的剂量范围,可能是比较适合该类患者的治疗方案。

    大量研究表明,遗传因素如编码药物转运体、代谢酶、作用靶点和核受体的基因多态性[3]是引起药物在人体内的处置和药物反应的个体性差异的主要原因,其中CYP3A4*18B、CYP3A5*3、ABCB1(C1236T、G2677T/A、C3435T)、POR*28、PXR(C5705T、C39823T)以及NFKB1-94 ins/del ATTG对环孢素药动学的影响较为重要。

    CYP3A4和CYP3A5是环孢素的主要代谢酶,其编码基因的多态性可能影响酶的表达,进而影响环孢素的药动学。研究表明,CYP3A4*18B(或称CYP3A4*1G,82266G>A;rs2242480),是与环孢素的体内代谢相关的SNPs之一,在中国人群中突变频率为29.5%[4],该位点的突变可能会提高CYP3A4的活性[5],增加环孢素的代谢从而降低其血药浓度。Li等[6]研究发现,携带CYP3A4*18B/*18B基因型患者的环孢素血药浓度显著低于*1/*1及*1/*18B基因型患者,但*1/*1与*1/*18B基因型患者间差异无统计学意义。本研究结果显示,*1/*1基因型患者的环孢素注射液的C0/D′显著高于*18B/* 18B基因型患者(P<0.05),但*1/*1与*1/*18B基因型患者间差异无统计学意义。该结果与文献报道一致。CYP3A5*3(6986A>G;rs776746)是另一个与环孢素的体内代谢相关的SNP,在中国人群中的突变频率高达75.4%[7]。当*1突变为*3时可导致mRNA剪接发生改变和蛋白质截断,使CYP3A5酶活性降低或消失,减少环孢素经CYP3A5酶的代谢,从而使环孢素血药浓度升高。目前该位点基因多态性与环孢素血药浓度相关性的研究结论尚不统一[8-11]。本研究结果显示,CYP3A5*3基因多态性均与环孢素注射液的C0/D′无相关性。出现这一结果可能主要是环孢素由CYP3A酶系中的CYP3A4代谢,其对环孢素的清除率是CYP3A5的2.3倍[12]所导致。

    P糖蛋白(P-gp)在环孢素的转运中发挥着重要作用,静脉给药可被肝脏P-gp将药物转移至胆道使药物胆汁排泄增加,从而使血药浓度降低。P-gp是多重耐药基因ABCB1编码的产物,因此ABCB1基因多态性可影响P-gp的表达从而影响环孢素的血药浓度。本研究结果显示,ABCB1 C1236T、ABCB1 C3435T和ABCB1 G2677T/A基因多态性与环孢素注射液的C0/D′无相关性,分析原因可能是由于P-gp主要位于小肠黏膜成熟上皮细胞的刷状缘上,只有小部分分布于肝细胞,因此,由ABCB1基因多态性导致的P-gp表达和活性的改变对环孢素注射液血药浓度的影响较小。

    孕烷X受体(PXR)编码基因多态性很可能会影响PXR表达或功能,进而影响CYP3A酶及P-gp的表达,从而影响环孢素的药动学。研究报道[13-14],C5705T(rs3814055)、C39823T(rs2276707)与CYP3A4表型、活性和含量有关,且二者在中国人群中的突变频率分别是38.06%和78.95%[15]。但截至目前,PXR基因多态性是否与环孢素药动学具有相关性尚存在争议。本研究结果显示,PXR C5705T及C39823T基因多态性与环孢素注射液血药浓度无相关性。

    NFKB1-94 ins/del ATTG中ATTG 4个碱基的缺失(deletion)引起启动子活性的降低,进而降低NF-κB的表达和功能,较少炎症反应的发生,从而减少对环孢素代谢的影响。Zhang等[10]研究发现,NFKB1 -94ATTG插入突变的纯合子个体(-94ATTG ins/ins)环孢素的C0/D'显著高于缺失突变(-94ATTG del/del)的个体〔(75.9±32.9)vs.(55.1±15.1)ng/ml per mg/kg,P=0.026〕。然而,本研究却发现缺失突变纯合子患者的C0/D′高于插入突变纯合子患者,但差异无统计学意义(P>0.05)。出现此结果的原因可能是该基因对环孢素的血药浓度的影响主要是通过受NF-κB的炎症反应而实现的,属于间接作用,所以可能对环孢素注射液的C0/D′影响较小,在其他主要影响因素的作用下导致缺失突变纯合子患者的C0/D′高于插入突变纯合子患者。

    POR*28在中国人群中突变率为29.6%[16]。有研究报道,POR*28能够增加CYP3A的活性,从而增加环孢素经CYP3A的代谢使得其血药浓度降低。Elens等[17]分析了174例肾移植患者的POR*28的基因型及环孢素的部分药动学参数,结果发现,POR*28/*28患者的C0/D'较POR*1/*28和*1/*1患者低15.1%(CI 95%=224.8~24.2%;P=0.03),但POR*1/*28型和POR*1/*1型间无显著性差异。然而,本研究结果显示,POR*28/*28基因型患者环孢素的C0/D′与POR*1/*28和*1/*1基因型患者间并无显著性差异。

    本研究所建立的给药剂量模型,只纳入血红蛋白和CYP3A4*18B基因多态性两个因素,经检验模型是有意义的(F=23.85,P<0.001),但该模型只能解释25.3%(R2=0.253)的个体差异,可能存在其他的对环孢素注射液C0/D′具有显著影响的因素,如药物相互作用(保肝药物、胃黏膜保护药物以及活血药物等)、患者术后内环境变化等,这些都可能影响环孢素注射液的体内药动学过程。这也是本研究存在的不足之处。

    综上所述,本研究首次研究了基因多态性与环孢素注射液血药浓度的相关性并发现只有CYP3A4*18B基因多态性与环孢素注射液C0/D′呈显著相关,而其他8个SNPs基因多态性对环孢素注射液C0/D′无影响。但由于目前国内外关于环孢素注射液的相关研究几乎空白,现有参考资料较少,本研究作为初探,其结果仍需进一步进行大样本量的临床验证,对模型进行优化。

  • 图  1  pGL4.20-ORM1 启动子重组质粒图谱

    图  2  报告基因载体pGL4.20与pGL4.20-ORM1 启动子荧光值检测结果

    ***P<0.001,与空白对照组(第一组)比较。

    图  3  稳转细胞株LV-AML12-LUC-PURO与LV-AML12-ORM1 启动子-LUC-PURO的荧光素 mRNA表达情况

    ***P<0.001,与LV-AML12-LUC-PURO组比较。

    图  4  阴性对照组DMSO与阳性对照组DXMS荧光值检测结果

    ***P<0.001,与DMSO组比较。

    图  5  初筛1 470种化合物作用于LV-AML12-ORM1 启动子-LUC-PURO稳转细胞的相对荧光值

    图  6  复筛42种化合物作用于LV-AML12-ORM1 启动子-LUC-PURO稳转细胞的相对荧光值(μmol/L)

    A.抗肿瘤药;B.抗生素;C.消炎药;D.抗病毒药;E.其他药物14~23;F.其他药物24~33;G.其他药物34~42

    表  1  ORM1 启动子基因引物序列

    引物名称 引物序列(5′—3′)
    ORM1-F GGGGTACCGTTCTCAGCATGTTGCATAAAT
    ORM1-R CCAAGCTTGCTGAGGGCACTCAGAGC
    注:F: 正向引物; R: 反向引物。
    下载: 导出CSV

    表  2  LV-ORM1 启动子-LUC-PURO基因引物序列

    引物名称 引物序列(5′—3′)
    LV-ORM1
    启动子-LUC-PURO-F
    GGACAGCAGAGATCCAGTTTATCGATGTTCTCAGCATGTTGCATAAATT
    LV-ORM1
    启动子-LUC-PURO-R
    GAGCGATCGCAGATCCTTAGGATCCTTACACGGCGATCTTGCCGCCCTT
    注:F: 正向引物; R: 反向引物。
    下载: 导出CSV

    表  3  qPCR引物设计序列

    引物名称 引物序列(5′—3′)
    Luciferase-F CGCACATATCGAGGTGGACA
    Luciferase-R GCAAGCTATTCTCGCTGCAC
    mGapdh-F GTCAAGGCCGAGAATGGGAA
    mGapdh-R CTCGTGGTTCACACCCATCA
    注:qPCR: 实时荧光定量聚合酶链式反应; mGapdh:小鼠甘油醛-3-磷酸脱氢酶; F: 正向引物; R: 反向引物。
    下载: 导出CSV
  • [1] SERAVALLE G, GRASSI G. Obesity and hypertension[J]. Pharmacol Res, 2017, 122:1-7. doi:  10.1016/j.phrs.2017.05.013
    [2] ALPERT M A, OMRAN J, BOSTICK B P. Effects of obesity on cardiovascular hemodynamics, cardiac morphology, and ventricular function[J]. Curr Obes Rep, 2016, 5(4):424-434. doi:  10.1007/s13679-016-0235-6
    [3] TWIG G, YANIV G, LEVINE H, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood[J]. N Engl J Med, 2016, 374(25):2430-2440. doi:  10.1056/NEJMoa1503840
    [4] WOLFE B M, KVACH E, ECKEL R H. Treatment of obesity: weight loss and bariatric surgery[J]. Circ Res, 2016, 118(11):1844-1855. doi:  10.1161/CIRCRESAHA.116.307591
    [5] BLÜHER M. Obesity: global epidemiology and pathogenesis[J]. Nat Rev Endocrinol, 2019, 15(5):288-298. doi:  10.1038/s41574-019-0176-8
    [6] SQUADRITO F, ROTTURA M, IRRERA N, et al. Anti-obesity drug therapy in clinical practice: evidence of a poor prescriptive attitude[J]. Biomed Pharmacother, 2020, 128:110320. doi:  10.1016/j.biopha.2020.110320
    [7] RUAN Y, XIANG K F, ZHANG H M, et al. Orosomucoid: a promising biomarker for the assessment of exercise-induced fatigue triggered by basic combat training[J]. BMC Sports Sci Med Rehabil, 2022, 14(1):100. doi:  10.1186/s13102-022-00490-6
    [8] 徐栋平. 急性期蛋白ORM在缺血性脑卒中的保护作用及其机制研究[D]. 上海: 第二军医大学, 2018.
    [9] SUN Y, YANG Y L, QIN Z, et al. The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway[J]. Diabetes, 2016, 65(6):1630-1641. doi:  10.2337/db15-1193
    [10] KORT E, JOVINGE S. Drug repurposing: claiming the full benefit from drug development[J]. Curr Cardiol Rep, 2021, 23(6):62. doi:  10.1007/s11886-021-01484-5
    [11] QIU Y, SUN Y M, XU D Q, et al. Screening of FDA-approved drugs identifies sutent as a modulator of UCP1 expression in brown adipose tissue[J]. EBioMedicine, 2018, 37:344-355. doi:  10.1016/j.ebiom.2018.10.019
  • [1] 魏莱, 董国强.  SARS-CoV-2主蛋白酶抑制剂和降解剂研究进展 . 药学实践与服务, 2025, 43(6): 259-269, 297. doi: 10.12206/j.issn.2097-2024.202503064
    [2] 杨金润, 黎翔, 孙旸.  ORM1促肝细胞增殖的作用及其机制探索 . 药学实践与服务, 2025, 43(5): 222-227. doi: 10.12206/j.issn.2097-2024.202410014
    [3] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [4] 詹济华, 颜滢.  低蛋白血症对头孢哌酮舒巴坦血药浓度的影响 . 药学实践与服务, 2025, 43(7): 344-347. doi: 10.12206/j.issn.2097-2024.202309040
    [5] 魏莱, 董国强, 盛春泉.  靶向SARS-CoV-2主蛋白酶的PROTAC设计、合成与蛋白降解活性研究 . 药学实践与服务, 2025, 43(5): 235-241, 258. doi: 10.12206/j.issn.2097-2024.202503063
    [6] 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平.  ANXA3基因及蛋白的研究进展 . 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
    [7] 李锐, 张倩倩, 王瑞冬, 高小峰.  国家集中带量采购政策下样本医院良性前列腺增生治疗药物使用情况分析 . 药学实践与服务, 2025, 43(1): 41-46. doi: 10.12206/j.issn.2097-2024.202408031
    [8] 姜建芳, 王思平, 何新军.  硝苯地平在高血压孕妇中的药物毒性:基于FARES数据库的真实世界研究 . 药学实践与服务, 2025, 43(6): 307-312. doi: 10.12206/j.issn.2097-2024.202501001
    [9] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [10] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [11] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [12] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [13] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [14] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [15] 何亚伦, 祁智, 常杰.  消胀通便膏在晚期肝癌患者阿片类药物相关性便秘中的应用研究 . 药学实践与服务, 2024, 42(12): 520-523. doi: 10.12206/j.issn.2097-2024.202309009
    [16] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [17] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [18] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [19] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [20] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  3720
  • HTML全文浏览量:  1929
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 修回日期:  2024-02-04
  • 网络出版日期:  2024-03-20
  • 刊出日期:  2024-03-25

基于药物重定位建立以α1酸性糖蛋白为靶点的高通量筛选平台及潜在减肥药物的发现

doi: 10.12206/j.issn.2097-2024.202309057
    作者简介:

    陈 枫,硕士研究生, Email:chenfens@qq.com

    通讯作者: 刘 霞,教授,博士生导师,研究方向:心脑血管药理学,Email:lxflying@aliyun.com

摘要:   目的  α1酸性糖蛋白(ORM)是减肥药物研发的新靶点。基于药物重定位,拟从已上市药物的化合物库中寻找可以靶向ORM的潜在减肥药物。  方法  构建pGL4.20-ORM1 启动子重组质粒,验证后利用慢病毒载体构建稳定表达ORM1 启动子-LUC-PURO的AML12细胞株,利用该细胞株对上市药物库中化合物进行高通量筛选,通过酶标仪对细胞的荧光值进行表征。  结果  对1 470种化合物进行初筛和复筛,发现42种化合物可以提高ORM1启动子表达,可用于进一步的减肥效应评估。  结论  通过慢病毒载体成功构建了LV-AML12-ORM1 启动子-LUC-PURO稳定表达细胞株,为高效、稳定筛选靶向ORM的减肥药物奠定了基础。

English Abstract

张艳霞, 陈泉金, 宋洪涛. 环孢素注射液在肾移植患者中的血药浓度与基因多态性的相关性研究[J]. 药学实践与服务, 2020, 38(4): 334-339. doi: 10.12206/j.issn.1006-0111.201911107
引用本文: 陈枫, 杨慈荣, 张圳, 陈飞, 刘霞. 基于药物重定位建立以α1酸性糖蛋白为靶点的高通量筛选平台及潜在减肥药物的发现[J]. 药学实践与服务, 2024, 42(3): 114-120. doi: 10.12206/j.issn.2097-2024.202309057
ZHANG Yanxia, CHEN Quanjin, SONG Hongtao. Study on correlation between plasma concentration of cyclosporine injection and gene polymorphism in renal transplant patients[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(4): 334-339. doi: 10.12206/j.issn.1006-0111.201911107
Citation: CHEN Feng, YANG Cirong, ZHANG Zhen, CHEN Fei, LIU Xia. Establishment of a high-throughput screening platform based on drug repurposing targeting alpha-1-acid glycoprotein and discovery of potential weight loss drugs[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(3): 114-120. doi: 10.12206/j.issn.2097-2024.202309057
    • 肥胖是一种慢性代谢性疾病,是指由于能量摄入超过消耗,导致体内脂肪积聚过多或分布异常而造成体重增加的一种疾病。肥胖会提高 2 型糖尿病、高血压、血脂异常、心血管疾病和某些癌症的发病率[1-3],降低生活质量并增加死亡风险。减肥手术是最有效的减肥方法[4],但手术有潜在的风险和限制,且无法满足全球范围内患者的医疗需求。改善饮食结构、生活方式以及增加身体活动等短期行为干预也不足以达成长期减肥的目的[5]。因此,药物治疗是中、重度肥胖患者以及有并发症的轻度肥胖患者的首要治疗选择[6]

      多年来,减肥药物有着坎坷曲折的研发历程,获批数量有限且许多已经上市的药物最终因心血管问题等不良反应而撤市,如盐酸氯卡色林(5-羟色胺2C受体激动剂)、西布曲明(抑制去甲肾上腺素和5-羟色胺再摄取)等。因此,全球各大药物监管机构对减肥药物的批准一直非常严格。目前,全球共有8种上市的减肥药物,包括赛利司他(脂肪酶抑制剂)、奥利司他(脂肪酶抑制剂)、复方芬特明-托吡酯(肾上腺素受体激动剂与α-氨基-3-羟基-5-甲基-4-异噁唑丙酸受体拮抗剂)、复方纳曲酮-安非他酮(肾上腺素吸收抑制剂与多巴胺摄取抑制剂)、二甲双胍(单磷酸腺苷活化蛋白激酶激动剂)、苄非他明(肾上腺素受体激动剂)以及最新批准的利拉鲁肽和司美格鲁肽(GLP-1受体激动剂)。然而,这些上市减肥药物的耐受性和安全性也受到挑战,如奥利司他会导致严重的脂肪泻;利拉鲁肽价格昂贵,存在恶心等胃肠道反应,不易推广。匮乏的减肥药物市场亟需基于新靶点的全新减肥药物以应对肥胖日益严峻的发病形势。

      ORM(Orosomucoid),也称为α1酸性糖蛋白(AGP),是肝脏急性期反应蛋白[7]。ORM在人体中有2种亚型(ORM1和ORM2),小鼠中有3个亚型(ORM1、ORM2和ORM3),大鼠中仅有1种型。在人和小鼠体内,ORM1的组成水平远高于ORM2(5倍),并且只有ORM1可以被急性期刺激诱导。ORM具有转运药物、调节免疫、维持毛细血管屏障等功能[8]。团队前期研究发现,ORM具有能量代谢的调节作用,循环中的ORM可以作用于下丘脑的瘦素受体,激活JAK2-STAT3通路,抑制摄食、降低体重、改善胰岛素抵抗[9]。本团队进一步以ORM为靶点,筛选到了一个靶向上调内源性ORM的全新小分子化合物HMS-01,在瘦素缺陷的ob/ob肥胖小鼠和高脂喂食的肥胖小鼠上,均展示了良好的减肥效果,在国家重大新药创制资助下,已经进入到临床前研究阶段。这些研究均提示,ORM是一个治疗肥胖的全新潜在靶点[9], 靶向上调内源性ORM的小分子有可能发展为新型减肥药物。

      然而,新的减肥药物研发面临高投入、低回报的困境,传统新药研发需要消耗10~15年的时间,以及约25亿美元的投入,而达到Ⅲ期临床试验最后阶段的药物中有 50% 最终无法被批准上市[10],每一次失败都会消耗大量的时间与资源。药物重定位是一种药物发现和开发的策略,旨在重新评估已经开发或研究的药物,以寻找其在新的疾病领域或治疗应用中的潜在价值。该策略的目的是最大化已有药物的利用,降低新药开发的时间和成本。本研究利用基因重组技术构建了含有ORM1启动子上游2 000个碱基对序列的荧光素酶报告基因,由于ORM主要由肝脏合成,通过血液分泌至全身发挥作用,于是选用AML12小鼠正常肝细胞构建了稳定表达LV-ORM1 启动子-LUC-PURO的细胞株,从而建立了一个以ORM为靶点的药物筛选平台和评价体系,用于高通量筛选上市药物库中靶向ORM的药物,为药物重定位发现潜在减肥药物奠定基础。

    • AML12小鼠正常肝细胞、HEK-293T上皮细胞、载体pGL4.20[luc2/Puro] 与pHBLV-CMV-MCS-EF1-puro、慢病毒包装辅助质粒pMD2.G和psPAX2均为实验室保存;DH5α感受态细胞(天根生化科技有限公司);ORM1 启动子基因序列来自NCBI数据库(NC_000070.7)。

    • Veriti™ 96 孔快速热循环仪(Thermo Fisher Scientific公司,美国);移液器、低温高速台式离心机(EPPENDORF公司,德国);电热恒温培养箱(上海跃进医疗器械有限公司);琼脂糖凝胶电泳仪、多功能水平电泳槽(上海天能科技有限公司);电热恒温水浴锅(上海一恒科技有限公司);倒置生物显微镜(重庆光电仪器总公司);全波长多功能酶标仪(BMG,德国)。

    • PCR引物和基因合成(生工生物工程股份有限公司);RNA提取试剂盒RNAeasy™动物RNA抽提试剂盒(上海碧云天生物技术有限公司);限制性内切酶KpnI、限制性内切酶Hind Ⅲ、限制性内切酶AgeI、限制性内切酶ApaI、限制性内切酶ClaI、限制性内切酶BamHI、转染试剂Lipofectamine 3000试剂盒(Thermo Fisher Scientific公司,美国);高保真聚合酶phanta Max-Super-Fidlity DNA polymerase(南京诺唯赞生物科技股份有限公司);PCR试剂盒2X Pro Taq 预混液、反转录试剂盒Evo M-MLV 反转录试剂预混液、SYBR Green Pro Taq HS 预混型 qPCR 试剂盒(湖南艾科瑞生物工程有限公司);琼脂糖凝胶 DNA 纯化回收试剂盒、质粒小提试剂盒(天根生化科技有限公司);HB-infusionTM 无缝克隆试剂盒(汉恒生物科技有限公司);转染试剂polybrene(Sigma,美国);Firefly-Glo萤光素酶报告基因检测试剂盒(大连美仑生物技术有限公司);FDA 上市药物库(陶术生物科技有限公司);测序由赛业生物科技有限公司完成。

    • 提取小鼠新鲜的肝组织,使用RNAeasy™动物RNA抽提试剂盒提取总RNA,反转录为cDNA,用作PCR模板,保存于−20 ℃冰箱。

    • 根据同源重组引物设计原则和参考小鼠ORM1(NC_000070.7)基因组序列设计引物(选取起始位点上游2 000个碱基对),采用同源重组法设计引物,上游引物加入KpnI酶切位点,下游引物加入Hind Ⅲ酶切位点,引物序列见表1。产物进行琼脂糖凝胶电泳,使用琼脂糖凝胶DNA回收试剂盒回收目的基因。

      表 1  ORM1 启动子基因引物序列

      引物名称 引物序列(5′—3′)
      ORM1-F GGGGTACCGTTCTCAGCATGTTGCATAAAT
      ORM1-R CCAAGCTTGCTGAGGGCACTCAGAGC
      注:F: 正向引物; R: 反向引物。
    • 将PCR产物与载体质粒pGL4.20 [luc2 Puro](插入位点选择AgeI与ApaI)于37 ℃双酶切5 h,用同源重组酶将目的片段与载体质粒连接。使用DH5α感受态细胞将重组质粒进行转化后,接种于含有嘌呤霉素抗性的固体平板,用涂布器将重组质粒涂抹均匀,倒置37 ℃恒温箱培养12~16 h。将筛选出来的阳性克隆进行测序,随后进行菌液扩增和质粒抽提纯化。对提取的质粒进行浓度检测和A260/280检测,把质粒保存于−20 ℃冰箱。构建成功的重组载体命名为 pGL4.20-ORM1 启动子。根据Lipofectamine 3000试剂盒说明书,分别将pGL4.20-ORM1 启动子和pGL4.20转染至AML12小鼠正常肝细胞中,使用地塞米松(DXMS)来验证报告基因的有效性和可行性。

    • 以pGL4.20-ORM1 启动子重组质粒为模板,设计引物,引物序列见表2。产物进行琼脂糖凝胶电泳,使用琼脂糖凝胶DNA回收试剂盒回收目的基因。

      表 2  LV-ORM1 启动子-LUC-PURO基因引物序列

      引物名称 引物序列(5′—3′)
      LV-ORM1
      启动子-LUC-PURO-F
      GGACAGCAGAGATCCAGTTTATCGATGTTCTCAGCATGTTGCATAAATT
      LV-ORM1
      启动子-LUC-PURO-R
      GAGCGATCGCAGATCCTTAGGATCCTTACACGGCGATCTTGCCGCCCTT
      注:F: 正向引物; R: 反向引物。

      将PCR产物与载体质粒pHBLV-CMV-MCS-EF1-PURO(插入位点选择ClaI与BamHI)于37 ℃双酶切5 h,用同源重组酶将目的片段与载体质粒连接。使用DH5α感受态细胞将重组质粒进行转化后,接种于含有嘌呤霉素抗性的固体平板,用涂布器将重组质粒涂抹均匀,倒置37 ℃恒温箱培养12~16 h。将筛选出来的阳性克隆,送赛业生物科技有限公司进行测序。测序成功之后,进行菌液扩增和质粒抽提纯化。对提取的质粒进行浓度检测和A260/280检测,把质粒保存于−20 ℃冰箱。构建成功的重组载体命名为LV-ORM1 启动子-LUC-PURO。同样方法构建LV-LUC-PURO作为对照载体。

    • 提前传代HEK-293T细胞用于转染,将慢病毒包装辅助质粒pMD2.G 10 μg、psPAX2 5 μg和LV-ORM1 启动子-LUC-PURO 10 μg以及转染试剂75 µl混匀后静置,在室温下温育15 min后缓慢滴加至293T细胞中,于37 ℃、5% CO2细胞培养箱中培养。转染后16 h更换含10 % 胎牛血清 FBS的新鲜完全培养基。转染后 48 h和72 h,分别收集两次病毒上清液(48 h收集后置换新鲜完全培养基),将两次收集的上清液混合,进行离心浓缩和病毒管分装,−80°C冰箱保存。

    • 将生长状态良好的HEK-293T细胞消化计数后稀释至 1×105个/ml, 加入96孔板,100 µl/孔,为每个病毒准备6个孔。放入37°C 、5% CO2 培养箱中培养。将病毒进行3倍梯度稀释,共6个稀释度,接种于293T细胞,继续培养48 h后,在荧光显微镜下观察结果。在观察结果前6 h需更换新鲜10% FBS完全培养基,从孔中吸出80 µl培养基,然后加入80 µl新鲜10 % FBS完全培养基,放入37°C、5% CO2 培养箱中培养。6 h后荧光显微镜下观察结果,荧光或活细胞百分比在10%~50% 的孔计算病毒滴度。目的病毒命名为LV-ORM1 启动子-LUC-PURO。同样方法,阴性对照病毒命名为LV-LUC-PURO。

    • 将AML12小鼠正常肝细胞在含有10% FBS、1% ITS(10 µg/ml胰岛素+5.5 µg/µl转铁蛋白+5 ng/ml硒)、1% 双抗以及40 ng/ml DXMS的DMEM 培养基,于37 ℃、5% CO2饱和湿度的细胞培养箱内培养。AML12细胞在10 cm培养皿中细胞长满以后,用0.25%胰蛋白酶消化,离心收集细胞后稀释成密度为1.5×105个/ml的细胞悬液,接种于6孔板,每孔2 ml,使得第2天细胞的融合率在60% 左右,利于感染。设置实验组LV-ORM1 启动子-LUC-PURO和阴性对照组LV-LUC-PURO,为促进病毒的感染效率,首先,感染时弃原有培养基,添加含5% FBS的新鲜培养液2 ml,其次,添加助感染试剂polybrene,使其最终浓度为7 μg/ml。设置2个(10/20)感染复数(MOI)组,感染24 h后换新鲜完全培养基。在感染48 h后,观察慢病毒颗粒感染效率,倒置荧光显微镜下观察荧光比例以确定最佳感染效率,最终选定MOI=20的分组进行后续实验。

      待细胞融合率达60% 时,用嘌呤毒素(0.8 μg/ml)浓度处理48 h,然后换新鲜的嘌呤毒素培养基继续处理,细胞密度超过80%时则进行传代处理,后续每隔2~3 d更换含嘌呤毒素培养基扩大培养,经过反复挑取抗药性细胞后获得的稳定转染细胞,命名为LV-AML12-ORM1 启动子-LUC-PURO。同样方法,阴性对照细胞株命名为LV-AML12-LUC-PURO。

    • 使用TRIzol试剂提取组织总RNA,使用反转录试剂盒将其逆转录成cDNA,然后进行PCR扩增,采用2–ΔΔCT分析目的基因的相对表达量,引物序列见表3

      表 3  qPCR引物设计序列

      引物名称 引物序列(5′—3′)
      Luciferase-F CGCACATATCGAGGTGGACA
      Luciferase-R GCAAGCTATTCTCGCTGCAC
      mGapdh-F GTCAAGGCCGAGAATGGGAA
      mGapdh-R CTCGTGGTTCACACCCATCA
      注:qPCR: 实时荧光定量聚合酶链式反应; mGapdh:小鼠甘油醛-3-磷酸脱氢酶; F: 正向引物; R: 反向引物。
    • 使用二甲基亚砜(DMSO)和DXMS来验证LV-AML12-ORM1 启动子-LUC-PURO作为药物筛选工具的有效性和可行性。将LV-AML12-ORM1 启动子-LUC-PURO稳转细胞株培养于96孔黑色侧壁透明底板,用10 μmol/L DXMS处理12 h,同时用0.1% DMSO作为溶剂对照组。参照荧光素酶报告基因检测试剂盒说明书,加入80 µl检测溶液,细胞充分裂解后在酶标仪中检测荧光素发光值。

      为了评估本高通量细胞筛选平台的精确性和稳定性,使用Z′因子作为度量标准,Z′因子是高通量筛选中常用来评估和验证的主要统计参数之一:

      $$Z^{\prime}=1-\frac{3 \sigma_{\mathrm{DMSO}}+3 \sigma_{\mathrm{DXMS}}}{\left|\mu_{\mathrm{DMSO}}-\mu_{\mathrm{DXMS}}\right|}$$

      式中σDMSO和σDXMS分别为阴性对照组和阳性对照组的标准差,μDMSO和μDXMS分别为阴性对照组和阳性对照组的平均值。若0.5<Z′≤1,则认为此筛选模型具有良好的精确性与稳定性。

    • 基于对美国食品药品监督管理局(FDA)批准的药物库的筛选,选用陶术生物的FDA上市药物库,筛选可靶向升高ORM的药物。

    • 实验数据使用软件 GraphPad Prism 9 进行作图和分析。两组间比较用t检验,以 P<0.05 为差异具有统计学意义。

    • 测序结果表明ORM1的启动子基因插入正确,如图1所示,序列信息无误。根据Lipofectamine 3000试剂盒说明书转染AML12细胞,使用荧光素酶报告基因试剂盒和酶标仪检测发光值,如图2所示,荧光素成功导入报告基因pGL4.20-ORM1 启动子中,并且可以被DXMS激活,证明该启动子的转录活性可用于稳转细胞株的构建。

      图  1  pGL4.20-ORM1 启动子重组质粒图谱

      图  2  报告基因载体pGL4.20与pGL4.20-ORM1 启动子荧光值检测结果

    • 采用qPCR分别对稳转细胞株LV-AML12-LUC-PURO与LV-AML12-ORM1 启动子-LUC-PURO进行荧光素 mRNA水平检测,如图3所示,其中,荧光素基因在LV-AML12-ORM1 启动子-LUC-PURO稳转细胞中的相对表达量是对照组LV-AML12-LUC-PURO的104.06倍。

      图  3  稳转细胞株LV-AML12-LUC-PURO与LV-AML12-ORM1 启动子-LUC-PURO的荧光素 mRNA表达情况

    • 使用荧光素酶报告基因试剂盒和酶标仪检测发光值,如图4所示。DXMS的发光值是DMSO对照组的4.95倍。通过计算数据得Z′=0.77,说明此筛选平台可以作为一种高通量筛选的稳定方法。

      图  4  阴性对照组DMSO与阳性对照组DXMS荧光值检测结果

    • 通过对陶术生物的FDA上市药物库1 470种化合物筛选,以30 μmol/L的较高浓度初筛,将荧光值比率>1.5的135种化合物作为初步命中的化合物,如图5所示。这135种药物中包含40种糖皮质激素类药物,但由于长期服用糖皮质激素易出现向心性肥胖,这与减肥的初衷相悖,所以将这些药物排除。之后将剩余的95种药物进行30、10、1 μmol/L浓度的复筛,避免单一浓度筛选实验出现假阳性。根据复筛结果,42种化合物呈现出量效关系的趋势,如图6所示,这些化合物的类别可分为抗肿瘤药(图6A)、抗生素(图6B)、抗炎药(图6C)、抗病毒药(图6D)以及其他药物(图6E~G)。

      图  5  初筛1 470种化合物作用于LV-AML12-ORM1 启动子-LUC-PURO稳转细胞的相对荧光值

      图  6  复筛42种化合物作用于LV-AML12-ORM1 启动子-LUC-PURO稳转细胞的相对荧光值(μmol/L)

    • 本课题组基于药物重定位的方法,通过构建带有ORM启动子的稳转细胞株作为高通量筛选平台,Z′因子的值为0.77,证明此细胞筛选平台可作为一种高通量筛选的稳定方法。经过初筛和复筛后,筛选出42种小分子药物,这些药物可能是潜在的以ORM作为靶点并能发挥减肥作用的药物。中国科学院上海生命科学研究院和上海中医药大学通过合作研究这种高通量化合物筛选发现的方式,成功发现舒尼替尼作为一种新的激活褐色脂肪组织(BAT)的小分子,是治疗肥胖等相关代谢性疾病的潜在药物[11]

      本课题组下一步将对这42种小分子药物进行体内验证实验,拟使用各个药物临床实验的安全范围内的剂量,在高脂饮食(HFD)小鼠模型中给药,观察药物能否显著抵抗高脂饮食诱导的肥胖,肝脏组织和血清中ORM的含量是否被上调,以及在ORM敲除的肥胖小鼠上观察药物的效应是否消除,从而确定其ORM靶点效应。

      综上所述,本课题组为ORM靶向药物提供了一个快速细胞筛选平台,并从FDA上市药物库中筛选出了靶向上调ORM的潜在治疗肥胖的药物,为下一步减肥作用的观察奠定了基础。对这些药物及其潜在机制的研究可能会为减肥药物的发现和脂肪功能的新调节途径提供新的线索。

参考文献 (11)

目录

/

返回文章
返回