留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

外泌体用于疾病诊疗和药物递送的研究进展

王宏播 卞康晴 郭灵怡 代宇 俞媛

许翔, 陈旭, 柯月娇, 刘志宏, 陈钰芳, 周欣, 宋洪涛. 基于层次分析法和正交设计优选长效缓释口腔溃疡膜的制备工艺研究[J]. 药学实践与服务, 2023, 41(8): 501-508. doi: 10.12206/j.issn.2097-2024.202109069
引用本文: 王宏播, 卞康晴, 郭灵怡, 代宇, 俞媛. 外泌体用于疾病诊疗和药物递送的研究进展[J]. 药学实践与服务, 2023, 41(5): 265-272, 320. doi: 10.12206/j.issn.2097-2024.202207022
XU Xiang, CHEN Xu, KE Yuejiao, LIU Zhihong, CHEN Yufang, ZHOU Xin, SONG Hongtao. Study on preparation technology of long-acting sustained-release oral ulcer membrane based on analytic hierarchy process and orthogonal design[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(8): 501-508. doi: 10.12206/j.issn.2097-2024.202109069
Citation: WANG Hongbo, BIAN Kangqing, GUO Lingyi, DAI Yu, YU Yuan. Progress on exosomes in the diagnosis and treatment of disease and drug delivery system[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 265-272, 320. doi: 10.12206/j.issn.2097-2024.202207022

外泌体用于疾病诊疗和药物递送的研究进展

doi: 10.12206/j.issn.2097-2024.202207022
基金项目: 国家自然科学基金(82273487);全军医学科技青年培训计划(21QNPY051)
详细信息
    作者简介:

    王宏播,硕士研究生,研究方向:仿生纳米药物对胶质瘤的靶向治疗,Email:525723127@qq.com

    通讯作者: 俞 媛,博士,副教授,研究方向:仿生纳米药物的靶向策略和疾病治疗,Email:pharmyuu@163.com
  • 中图分类号: R96

Progress on exosomes in the diagnosis and treatment of disease and drug delivery system

  • 摘要: 外泌体是细胞外囊泡的一种,作为特殊的细胞间通讯介质,携带蛋白质、核酸及脂质等,在生物体内各种生理、病理过程中发挥着重要作用。作为内源性纳米囊泡,外泌体具有体循环稳定性、良好的生物相容性、对组织和细胞的特异性靶向等优点,是理想的药物递送载体。外泌体为多种疾病的诊断和预后评估提供支持,同时作为一种非常有潜力的、安全、特异性强的内源性纳米药物载体具有广阔的应用前景。本文阐述外泌体的产生机制,对其提取分离方法特点进行总结,并围绕外泌体在免疫和炎症相关疾病、心血管系统疾病、神经系统疾病、肿瘤等疾病的应用机制进行讨论,以及作为药物载体的工程化修饰和主动靶向药物递送进行综述。
  • 阿弗他溃疡(RAU)又称为复发性口腔溃疡,其发病率高,约占口腔黏膜病的20%[1],发病人群主要是青壮年,女性居多,春、冬季发病率较高[2]。表现为口腔黏膜反复发作的溃疡,呈假膜覆盖的凹陷面,中间为白色炎症,边缘红肿。目前病因病机尚不明确[3],被广泛接受的诱发因素有气候环境、食物营养、心理精神和免疫因素等[4],研究发现口腔溃疡的发病可能与口腔微生物密切相关[5],可通过纠正口腔菌群平衡达到加速愈合、控制炎症、抑制复发。经过前期研究,选用硫酸新霉素,针对口腔菌群中异常增多的G菌;克霉唑对引起口腔黏膜疾病的白念珠菌针对性强;选用不发生双硫仑反应的奥硝唑作为抗厌氧菌药物;达克罗宁作为局麻药,黏膜穿透性强,局麻时间长;采用冰片作为创口收敛剂,兼具抗炎、消肿、改善气味的功能;甘草次酸作为抗炎剂,与糖皮质激素相比长期使用副作用较低。以上6种成分之间无配伍禁忌,其中硫酸新霉素和克霉唑口服均不吸收,安全性高[4]。采用物理凝聚法分散水不溶性成分,通过溶剂浇铸法制备膜剂[6-9]。本课题采用层次分析法结合单因素考察对不同成膜材料的黏附时间、溶蚀时间等9项考察指标综合评分,优选出最合适的成膜材料;采用层次分析与正交试验相结合,优选成膜材料的最佳配比,兼顾使用舒适性和生产适用性的同时,重点筛选出黏附性好且缓释时间较长的成膜材料配比。

    AE240精密电子天平(瑞士METTLER公司);磁力搅拌器(宁波市鄞州群安实验仪器有限公司);托盘天平(福州天平仪器厂);DHG-9145A电热恒温鼓风干燥箱(上海一恒科学仪器有限公司);水浴恒温振荡器(上海智城分析仪器制造有限公司);OS2O-Pro型搅拌器(北京大龙试验仪器有限公司);拉力测试仪(和晟仪器科技有限公司);游标卡尺(上海台海工量具有限公司)。

    聚乙烯醇1788(上海阿拉丁生化科技股份有限公司,批号:20170318);羧甲基纤维素钠(国药集团化学试剂有限公司,批号:20180412);海藻酸钠(国药集团化学试剂有限公司,批号:20190810);羟丙基纤维素(上海阿拉丁生化科技股份有限公司,批号:20170415);羟丙甲基纤维素钠(上海阿拉丁生化科技股份有限公司,批号:20170318);明胶(上海阿拉丁生化科技股份有限公司,批号:20180517);水胶体敷料(康维德医疗用品有限公司,批号:9F04020)。硫酸新霉素(南京都莱生物技术有限公司,批号:20180312);克霉唑(上海阿拉丁生化科技股份有限公司,批号:20170518);奥硝唑(上海阿拉丁生化科技股份有限公司,批号:20180522);盐酸达克罗宁(苏州裕元生物科技有限公司,批号:20170215);甘草次酸(天津希恩思生化科技有限公司);冰片(亳州寿言斋健康科技有限公司,批号:20191021)。

    取聚乙烯醇1788(PVA-1788)、羟丙基纤维素(HPC)、羟丙甲基纤维素(HPMC)、甲基纤维素(MC)、海藻酸钠(SA)、羧甲基纤维素钠(CMC-Na)、明胶(GEL)各3 g置于60 ml水中搅拌1 h,然后加热至60 ℃,搅拌至完全溶解得成膜材料凝胶,采用溶剂浇铸法铺展于培养皿中,置60 ℃烘箱烘干。从外观、拉伸性能、厚度、成膜时间、脱模效果、溶胀系数、溶蚀时间、黏附力和黏附时间9个方面进行评价。

    2.1.1   外观评价

    膜剂成品外观评价标准:①气泡:无气泡得5分;少量气泡,易除去,得4分;少量气泡,经1 h静置可除去,得3分;需大于1 h静置、抽真空、离心等方法才能将气泡除去,得2分;采用各种方法处理后膜剂中仍存在大量气泡得1分;气泡较多,干燥后无法成完整膜剂得0分。②颜色:无色透明得5分;半透明得4分;半透明且带有黄色或其他较浅颜色得3分;半透明且有絮状、颗粒状纹路得2分;呈不透明颜色,且有絮状、颗粒状纹路得1分;外观颜色较深、纹理较多、不透明得0分。③柔软度:柔软、不卷曲得5分;柔软稍有卷曲得4分;反向卷曲后缓慢恢复原来形状得3分;膜较硬,卷曲后快速恢复原来形状得2分;卷曲可能碎裂,得1分;硬度较大无法制得膜剂得0分。从表1图1可知,PVA-1788和HPC颜色透明,气泡较少,柔软度较好,外观较其他材料好。

    表  1  成膜材料的外观评价
    成膜材料气泡颜色柔软度总评分
    (分)
    性状评分
    (分)
    性状评分
    (分)
    性状评分
    (分)
    PVA-17885透明5很柔软515
    HPC5透明5很柔软515
    HPMC5透明5厚、硬212
    MC大量2白色4较硬39
    SA少量4黄色2厚、硬28
    CMC-Na少量4白色5很柔软514
    GEL5淡黄色4厚、硬211
    注:PVA-1788:聚乙烯醇1788;HPC:羟丙基纤维素;HPMC:羟丙甲基纤维素;MC:甲基纤维素;SA:海藻酸钠;CMC-Na:羧甲基纤维素钠;GEL:明胶
    下载: 导出CSV 
    | 显示表格
    图  1  成膜材料外观比较
    2.1.2   膜剂拉伸性能的考察

    取各实验组膜剂1片(2 cm×1 cm),利用拉力测试仪测量各实验组膜剂的拉伸长度与断点力,通过拉伸长度/断点力的比值判断拉伸性能,数值越大,可拉伸距离越大,膜剂拉断所需力相对越小,与口腔黏膜贴敷时顺应性越高。以拉伸长度/断点力比值的最大值作为100%,采用归一化法对其他各组进行评价,各实验组测定3次求平均值。结果见表2,PVA-1788的拉伸性能明显优于其他材料。

    表  2  成膜材料的拉伸性能评价
    成膜材料拉伸长度
    l/mm)
    断点力
    f/kg)
    拉伸长度/
    断点力
    评分
    (分)
    PVA-178824.242.13711.34100
    HPC4.9351.6443.00226.47
    HPMC0.9254.0630.227 0.020
    MC2.1807.4430.293 0.026
    SA2.6384.5660.578 0.051
    CMC-Na2.6117.7720.336 0.030
    GEL0.4362.0560.212 0.019
    下载: 导出CSV 
    | 显示表格
    2.1.3   膜剂厚度测定

    分别从各实验组中选取10片膜剂,用游标卡尺测量总厚度,计算每片膜剂的平均厚度,取平均厚度的倒数,以最大值作为100%,用归一化法对其他各实验组膜剂进行评分。由表3可知,制备的膜剂中,HPC厚度最薄,MC最厚,其余各组差异较小,膜剂越薄口腔黏膜舒适性越好。

    表  3  各试验组成膜材料的厚度、成膜时间和脱膜效果
    成膜材料膜剂厚度成膜时间脱膜效果
    测定值
    l/mm)
    评分
    (分)
    时间
    t/min)
    评分
    (分)
    面积
    s/cm2
    评分
    (分)
    PVA-17880.1376.9224060.054.0100
    HPC0.10100.0033042.943.280
    HPMC0.1190.91143100.054.0100
    MC0.1566.6725855.754.0100
    SA0.1190.9119572.954.0100
    CMC-Na0.1283.3325555.754.0100
    GEL0.1283.3323860.027.050
    下载: 导出CSV 
    | 显示表格
    2.1.4   成膜时间考察

    对各实验组的成膜时间进行测定,取成膜时间的倒数,以倒数的最大值为100%,用归一化法对其他成膜材料进行评分,成膜时间短,有利于提高生产效率,结果见表3

    2.1.5   脱膜效果考察

    以剥离最大面积的膜的面积占培养皿(半径4.3 cm)的百分比作为评判标准,以完全脱模为100%。结果见表3,PVA-1788、HPMC、MC、SA、CMC-Na可以直接撕取完整膜剂,脱模较容易。

    2.1.6   溶胀试验

    称取0.4 g氯化钠、0.795 g氯化钙、0.4 g氯化钾、1.0 g尿素、0.78 g磷酸钠、0.005 g硫化钠,加热水400 ml溶解,放冷后转移至1000 ml容量瓶中,用纯化水稀释至刻度,用氢氧化钠调节pH至6.8,即得人工唾液。取各试验组膜剂1片(1 cm×1 cm),称量记为m,将膜剂放入培养皿中称重记为W0。将膜剂润湿黏附于培养皿中,加入人工唾液[10-11],分别在10、30、60、120、240 min时,倒去人工唾液,称量培养皿加膜剂的质量Wi。计算公式如下:溶胀系数=(Wi−W0)/m×100%;每组平行3次,求各时间点溶胀系数的平均值,以各组溶胀系数最大的值作为100%,用归一化法对其他各组进行评分。由表4中结果可知,CMC-Na溶胀系数最大。

    表  4  成膜材料的溶胀系数
    成膜材料溶胀系数(%)评分
    (分)
    10 min30 min60 min120 min240 min480 min
    PVA-1788396 429 549* 312 018.35
    HPC731 936* 806 447 031.28
    HPMC6411028* 579 10 034.36
    MC811 88411701456*1660152855.48
    SA14892468*2232 283 082.49
    CMC-Na1023167022622849 2992*2357100
    GEL622 548 553 759* 627025.37
    注:*表示各试验组最大溶胀系数,—表示溶蚀殆尽,实验终止。
    下载: 导出CSV 
    | 显示表格
    2.1.7   溶蚀试验

    取1片膜剂(1 cm×1 cm)称重记为m,称取2 ml EP管称重记为n。将膜剂润湿黏贴在EP管下缘。在EP管中加入2 ml人工唾液,在37 ℃恒温振荡器中以100 r/min振荡10 min,倒出液体,称重记为W0,然后重新加入2 ml纯化水并恒温振荡20 min,如此重复10次,于各时间点倒出管内液体后称重,依次记为Wi。以相邻时间点重量差异计算溶蚀速率,公式如下:溶蚀速率=[(Wi−Wi−1)/20(W0−m−n)]×100%。以各组溶蚀时间最大值作为100%,用归一化法对其他各组进行评分。结果见表5,MC溶蚀时间较长,在200 min内未出现明显溶蚀减重,溶蚀系数出现负数是由于溶胀增重略大于溶蚀损失,这将阻碍药效成分随着膜剂溶蚀的释放。CMC-Na溶蚀速率较小,其溶蚀时间可长达180 min,缓释性能显著优于其他成膜材料,较适合制备缓释膜剂。

    表  5  成膜材料的溶蚀系数
    成膜材料连续时间点的平均溶蚀百分率(%)溶蚀时间
    t/min)
    每分钟溶
    蚀速率(%)
    评分
    (分)
    12345678910
    PVA-178824.6236.9220.0018.460.00801.2540
    HPC37.5024.0438.460.00601.6730
    HPMC54.5545.450.00402.520
    MC0.00−12.260.94−6.60−2.830.00−3.776.60−3.777.55200−0.07100
    SA49.0750.930.00402.520
    CMC-Na−17.71−2.214.7915.4626.1937.1420.8814.201.260.001800.5690
    GEL100.00.00205.010
    注:“—”代表溶蚀殆尽,实验终止。
    下载: 导出CSV 
    | 显示表格
    2.1.8   黏附力考察

    黏附膜剂黏附力测定[10]:取两块同样大小的橡皮,分别固定于天平托盘上及玻璃板下方,调节高度和重量使上下橡皮相互接触时天平平衡。取膜剂(1 cm×1 cm)预先用人工唾液润湿,黏于下橡皮表面,将上橡皮与膜剂接触,天平空托盘加50 g砝码使上下橡皮自然按压膜剂90 s,移去50 g砝码,在下橡皮固定的托盘里依次加入重量逐渐增加的砝码,以5 s内上、下橡皮分离为标准,所加砝码的重量即为黏附力。将各组黏附力最大值作为100%,用归一化法对其他各组进行评分。由表6可知,MC的黏附力最好,其次是PVA-1788。

    表  6  成膜材料的黏附时间
    成膜材料黏附力黏附时间
    称重
    m/g)
    评分
    (分)
    时间
    t/min)
    评分
    (分)
    PVA-178812188.97100100
    HPC10073.536060
    HPMC4029.415050
    MC1361008585
    SA11987.58080
    CMC-Na9066.183838
    GEL6.70.0555
    下载: 导出CSV 
    | 显示表格
    2.1.9   黏附时间考察

    取水胶体敷料(2 cm×2 cm)粘贴于500 ml烧杯内侧,用人工唾液润湿膜剂(1 cm×1 cm),将膜剂按压在水胶体敷料上约20 s,在膜剂表面覆盖一层1 cm×1 cm薄塑料膜用以降低溶蚀对黏附时间的干扰,在烧杯中加入人工唾液,液面没过膜剂。在恒温37 ℃,150 r/min搅拌,于300 min内监测黏附时间[12],各组试验组取3片计算平均值。将各组黏附时间的最大值作为100%,用归一化法对其他各组进行评分。由表6可知,PVA-1788的黏附时间最长,可达100 min。

    2.2.1   根据膜剂考察指标之间的关系建立两两比较优先矩阵

    根据“2.1”项下9个考察指标对缓释膜剂的贡献度,设计两两比较矩阵,见表7

    表  7  各目标按照两两比较重要程度建立指标层矩阵
    指标外观厚度拉伸
    性能
    脱模
    效果
    成膜
    时间
    黏附
    时间
    黏附
    溶胀
    系数
    溶蚀
    速度
    外观111110.50.50.330.25
    厚度111110.50.50.330.25
    拉伸性能111110.50.50.330.25
    脱模效果111110.50.50.330.25
    成膜时间111110.50.50.330.25
    黏附时间22222110.50.5
    黏附力22222110.50.5
    溶胀系数333332211
    溶蚀速度444442211
    下载: 导出CSV 
    | 显示表格
    2.2.2   层次分析法(AHP)各考察指标权重系数的计算

    根据各指标对比的优先矩阵(表3)及公式(1)计算初始权重系数Wi′:

    $$ \mathrm{W}_{t}'=\sqrt{\mathrm{a}_{1} \times \mathrm{a}_{2} \times \mathrm{a}_{3} \cdots \mathrm{a}_{m}} \text{} $$ (1)

    式中m为受检验层次目标数,a1~am为矩阵两两比较的评分,经计算各指标成分初始权重系数分别为:W1′=0.65042、W2′=0.65042、W3′=0.65042、W4′=0.65042、W5′=0.65042、W6′=1.25992、W7′=1.25992、W8′=2.14765、W9′=2.51984。

    按照公式(2)计算归一化权重系数Wi

    $${\rm{W}}_i= \displaystyle\frac{{\rm{W}}_i'}{\sum\limits_{j=1}^{m}}{{\rm{W}}_i'}$$ (2)

    得各指标成分权重系数W1=0.06230、W2=0.06230、W3=0.06230、W4=0.06230、W5=0.06230、W6=0.12069、W7=0.12069、W8=0.20572、W9=0.24138。

    2.2.3   一致性检验

    CR为随机一致性比率,定义CR=CI/RI作为衡量所得权重系数是否合理的指标,一致性指标CI=(λmax−m)/(m−1),式中m为次级目标数,矩阵的最大特征根$\lambda_{m=x}=1 / m {\sum\limits_{j=1}^{m}}\left[{\sum\limits_{j=1}^{m}}\left(a_{j j} \times W_{j}\right)+W_{j}\right]$,当矩阵阶数=9时,平均随机一致性指标RI=1.45。经计算λmax=9.0153;则CI=(λmax−m)/(m−1)=0.00192;CR=CI/RI=0.00192/1.45=0.00132;CR<0.1则表明9项指标优先比较矩阵满足一致性要求,故所得权重系数有效,结果具有一致性。

    2.2.4   考察指标综合评价

    根据单因素考察所得出的评分(表1~6),结合层次分析法权重系数,对成膜材料性能进行综合评分,其中,CMC-Na和PVA-1788综合评分最高,分别为87.45和64.49。详见表8

    表  8  成膜材料综合评分结果
    成膜材料外观厚度拉伸性能成膜时间脱模效果黏附时间黏附力溶胀系数溶蚀速度评分
    (分)
    PVA-17886.234.796.233.706.2312.1010.743.7710.7364.49
    HPC6.236.231.652.694.987.248.876.448.0552.38
    HPMC4.985.660.1256.236.235.983.557.075.3645.19
    MC3.744.150.1613.456.239.2010.5611.420.0048.90
    SA3.325.660.3174.556.234.377.9916.975.3654.78
    CMC-Na5.825.190.1853.486.239.7712.0720.5724.1487.45
    GEL4.575.190.1173.743.120.570.5955.2222.6825.80
    下载: 导出CSV 
    | 显示表格

    通过单因素考察各种成膜材料,筛选出CMC-Na和PVA-1788,两种膜剂基质各有优点。CMC-Na溶胀系数大、溶蚀时间长,可改善其他基质较快溶解的缺点。PVA-1788黏附力大、黏附时间长,是良好的黏附性材料,可改善膜剂外观和柔软度,提高成膜效率和成品率。

    采用物理凝聚法结合溶剂浇铸法设计膜剂制备工艺如下:取1.56 g的PVA-1788加入12.5 ml水,以300 r/min搅拌30 min,后加热至60 ℃搅拌至完全溶解,得PVA-1788凝胶。取4.68 g的CMC-Na加入117 ml水,以800 r/min在45 ℃下搅拌至完全溶解,得CMC-Na凝胶。将两种凝胶搅拌混合均匀,作为溶液①;分别取硫酸新霉素、盐酸达克罗宁、甘草次酸,分别加入40 ml水溶解,作为溶液②;取克霉唑、奥硝唑与冰片加入30 ml无水乙醇搅拌至溶解,作为溶液③;将溶液②、③缓慢加入45 ℃溶液①中,边加边以1 000 r/min搅拌,得质地均匀的含药混悬凝胶,静置消泡。

    取凝胶16 g,浇铸铺展于半径为4.3 cm的培养皿中。取一份立即放置于烘箱中60 ℃干燥5 h;另取一份凝胶放置4 ℃冰箱12 h后转移至烘箱中60 ℃干燥5 h。待完全干燥后,将膜剂分割成2 cm×1 cm 小片,即得口腔膜剂,结果见图2。物理凝聚法制备的凝胶趁热烘干制得膜剂表面为乳白色不透明,颜色均匀。而物理凝聚法制备的凝胶经低温放置12 h制得膜剂烘干后可看到颗粒较小的沉淀,说明在低温下放置时间过长可能形成较大结晶,影响膜剂质量,趁热烘干可抑制水不溶性药物的析出。

    图  2  物理凝聚法制备膜剂
    A.成膜材料凝胶低温保存12 h后干燥成膜;B. 成膜材料凝胶趁热铺展干燥成膜。
    2.4.1   正交试验设计

    在筛选出CMC-Na和PVA-1788作为成膜材料的基础上配伍一定比例甘油作为增塑剂,可提高膜剂的柔软度和脱膜效果,用量为成膜材料质量的0.5%~2%。按“2.3”方法制备膜剂进行正交试验,正交试验因素水平表见表9

    表  9  正交试验因素水平表
    水平A因素PVA-1788
    用量(m/g)
    B因素CMC-Na
    用量(m/g)
    C因素甘油
    用量(%)
    1110.5
    2221
    3332
    下载: 导出CSV 
    | 显示表格
    2.4.2   正交试验结果

    以外观、厚度、拉伸性能、脱膜效果、成膜时间、溶胀系数、溶蚀速率、黏附时间、黏附力9个方面为评价指标,按照单因素考察的试验方法,结合“2.2.2”项下层次分析法各考察指标的权重系数计算综合评分(表10),通过方差分析(表11)和直观分析(表12)优选膜剂成膜材料的最佳比例。

    表  10  正交试验综合评分结果
    组别外观厚度拉伸性能成膜时间脱模效果黏附时间黏附力溶胀系数溶蚀速度综合评分
    (分)
    15.406.231.585.194.3612.079.0612.4517.2473.58
    25.406.233.505.193.7412.0710.5614.9217.2478.85
    34.986.232.635.563.744.8311.3120.5724.1483.99
    45.826.236.235.993.123.228.307.7720.6967.37
    55.406.232.444.586.2312.078.3011.4824.1480.87
    64.155.190.675.663.7412.0712.0716.0520.6980.29
    75.826.234.365.776.2312.076.037.4620.6974.66
    86.235.190.585.374.9812.079.059.9920.6974.16
    95.396.230.966.234.3612.075.289.9524.1474.61
    下载: 导出CSV 
    | 显示表格
    表  11  正交试验综合评分方差分析
    因素偏差平方和自由度FF临界值P
    PVA-1788用量(m/g)0.00323.00019.000>0.05
    CMC-Na用量(m/g)0.00929.00019.000>0.05
    甘油用量(%)0.00626.00019.000>0.05
    误差0.00 2
    下载: 导出CSV 
    | 显示表格
    表  12  正交试验综合评分直观分析
    序号A因素PVA-
    1788用量(m/g)
    B因素CMC-Na
    用量(m/g)
    C因素甘油
    用量(%)
    综合评分
    (分)
    111173.58
    212278.85
    313383.99
    421267.37
    522380.87
    623180.29
    731374.66
    832174.159
    933274.61
    K1 0.850*0.7810.816
    K20.8210.8380.798
    K30.804 0.855* 0.861*
    R0.0460.0740.063
    注:*表示各因素最优水平条件
    下载: 导出CSV 
    | 显示表格

    从正交试验方差结果显示,PVA-1788用量、CMC-Na用量、甘油用量对综合评分的贡献无显著性差异,三者用量配比需通过直观分析结果进行合理分配,正交试验直观分析显示,CMC-Na用量对综合评分影响较大,其次是甘油的用量,PVA-1788用量对综合评分影响较小。最优条件为A1B3C3,即最佳配比为:PVA-1788与CMC-Na的比例为1∶3,甘油用量为成膜材料用量的2%,与正交试验第3组试验条件一致,综合评分为83.99。

    按照“2.4.2”项下最优配比制备口腔溃疡缓释膜剂(D),依次进行外观评价、厚度、拉伸性能、溶胀速率、溶蚀速率、黏附力和黏附时间的测定,方法见“2.1”项下,并与市售复方庆大霉素膜(A)、复方氯己定地塞米松膜(B)及某医院院内制剂(C)进行对比,结果见表13,外观情况见图3

    表  13  自制膜剂与市售膜剂在不同考察项目的比较
    考察项目复方庆大霉素膜(A)复方氯己定地塞米松膜(B)某医院院内制剂(C)自制膜剂(D)
    气泡较多
    颜色浅蓝黄色浅黄色白色
    柔软度很柔软很柔软较硬软硬
    适中
    平均拉伸长度(l/mm)18.8447.0100.9983.443
    平均断点力(f/kg)0.4721.5131.1901.306
    平均厚度(l/mm)0.1100.1200.1800.130
    最大溶胀系数(%)492.5539.01898.11939.6
    溶蚀时间(t/min)60.060.0140.0120.0
    黏附力(m/g)40.045.05.055.0
    黏附时间(t/min)17.320.753.3101.7
    下载: 导出CSV 
    | 显示表格
    图  3  自制膜剂与市售膜剂外观比较
    A.复方庆大霉素膜;B.复方氯己定地塞米松膜;C.某医院院内制剂;D.自制膜剂

    以往对制剂进行研究一般仅以其中1~2种考察指标对制剂的性能进行评价,而考察指标的重要程度则常以主观设定权重,这样评价一种制剂性能的优劣不仅不全面,而且受到主观因素影响较大,往往评价重点考察指标的同时无法兼顾一般的考察指标。正如本课题筛选成膜材料需根据膜剂制备目标综合考察外观、厚度、拉伸性能、成膜时间、脱膜效果、黏附力、黏附时间、溶胀系数和溶蚀时间9个方面的考察指标,面对种类繁多、重要程度各不相同的考察指标,再采用以往的主观评价显得逻辑混乱且无说服力。因此,本课题采用单因素考察结合层次分析法,通过建立指标层不同指标两两比较矩阵,将不同重要性的指标进行统计学处理,得出科学合理的权重系数,以降低主观因素引起的误差,使评价更加全面、合理、客观。通过成膜材料单因素考察可知PVA-1788的弹性、拉伸性能、黏附力和黏附时间优于其他成膜材料,CNC-Na能使得膜剂吸水溶胀逐渐转变成凝胶状,提高膜剂的溶蚀时间。在单因素考察的基础上,设计正交试验,筛选出成膜材料的最佳配比为PVA-1788:CNC-Na为3∶1,并加入两者用量2%的甘油。

    物理凝聚法是将分子或离子状态分散的药物溶液加入另一种分散介质中凝聚形成混悬液的方法,可制得10 μm以下的微粒。本试验将不溶于水的克霉唑、奥硝唑和冰片溶于无水乙醇中,在高速搅拌下缓慢加入水溶液中,使药物快速分散成极小的微粒,再利用成膜材料水凝胶的高黏度,抑制结晶增大和沉淀,并采用溶剂浇铸法迅速铺展和干燥,在药物微粒在尚未形成较大结晶前即完成膜剂的干燥,使不溶性药物均匀嵌入膜剂中。

    自制膜剂为白色,外观均匀,无气泡,弹性适中,质地柔软,厚度较薄,气味清香,口味微甜,患者顺应性高,在口腔内使用舒适性好。市售复方氯己定地塞米松膜色素含量过高,溶蚀较快,使用后口感较差,对口腔有严重染色现象。市售复方庆大霉素膜具有较大的柔软度和拉伸长度,在实际使用中发现过于柔软,在口腔中易发生皱缩和折叠,在口腔粘贴过程中失败率较高。此外市售两种膜剂的黏附时间和溶蚀时间均较短,实际使用时无法起到长效缓释的作用。某医院院内制剂成膜材料为CMC-Na,因此具有较大的溶胀系数和较长的溶蚀时间,具有良好的缓释作用。单纯使用CMC-Na也存在一些缺陷,如气泡较多、拉伸性能较差、厚度较大、质地较硬等,其中最大的缺陷是CMC-Na初始黏附性较差,在试验过程中初始贴敷成功率较低,极易掉落,需要较长时间吸水溶胀形成凝胶后,才具有一定黏附性。本试验自制膜剂采用PVA-1788与CMC-Na配伍,使膜剂同时具备了较长的黏附时间和溶蚀时间,从黏附和缓释两方面确保膜剂对溃疡创面的滞留,改善了膜剂的外观、柔软度和拉伸性能,起到长效物理隔离和治疗作用。

  • 表  1  外泌体的分离方法及特点

    方法原理优势耗时纯度产率不足
    超速离心法[8]大小和密度不同的组分具有不同的沉积速度金标准,适用于大批量样品,技术成熟>4 h仪器昂贵、操作繁琐耗时、产量低,可能会破坏外泌体[9]
    密度梯度离心法大小和密度不同的组分具有不同的沉积速度高纯度,避免外泌体损伤>16 h前期准备、操作繁琐、耗时[10]
    超滤法[11]不同粒子粒径和相对分子质量的差异操作简便,不需要特殊设备和试剂<4 h滤膜易堵塞,小粒径外泌体
    易丢失[12]
    色谱法不同粒子粒径和相对分子质量的差异简单、经济,能较好保持外泌体生物功能和结构[13]<0.3 h需要特殊的柱子和填料,存在脂蛋白污染
    免疫亲和法[14]抗体与外泌体特异性膜蛋白的相互作用特异性分离外泌体4~20 h昂贵,耗时,分离效果取决于抗体的特异性
    聚合物沉淀法[15]外泌体在高亲水性聚合物影响下溶解度或分散性的变化操作简单,适用于大体积
    样品
    0.3~12 h潜在污染物(提纯蛋白质聚集体或残留聚合物)
    下载: 导出CSV
  • [1] HARDING C, HEUSER J, STAHL P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes[J]. J Cell Biol,1983,97(2):329-339. doi:  10.1083/jcb.97.2.329
    [2] PAN B T, TENG K, WU C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J]. J Cell Biol,1985,101(3):942-948. doi:  10.1083/jcb.101.3.942
    [3] GANGODA L, BOUKOURIS S, LIEM M, et al. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic?[J]. Proteomics, 2015, 15(2-3): 260-271.
    [4] ISOLA A L, CHEN S. Exosomes: the messengers of health and disease[J]. Curr Neuropharmacol,2017,15(1):157-165. doi:  10.2174/1570159X14666160825160421
    [5] ZHANG Y, LIU Y F, LIU H Y, et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell Biosci,2019,9:19. doi:  10.1186/s13578-019-0282-2
    [6] KAHLERT C, KALLURI R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med (Berl),2013,91(4):431-437. doi:  10.1007/s00109-013-1020-6
    [7] VAN NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol,2018,19(4):213-228. doi:  10.1038/nrm.2017.125
    [8] ZAROVNI N, CORRADO A, GUAZZI P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches[J]. Methods,2015,87:46-58. doi:  10.1016/j.ymeth.2015.05.028
    [9] JEPPESEN D K, HVAM M L, PRIMDAHL-BENGTSON B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation[J]. J Extracell Vesicles,2014,3:25011. doi:  10.3402/jev.v3.25011
    [10] GUPTA S, RAWAT S, ARORA V, et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells[J]. Stem Cell Res Ther,2018,9(1):180. doi:  10.1186/s13287-018-0923-0
    [11] LI P, KASLAN M, LEE S H, et al. Progress in exosome isolation techniques[J]. Theranostics,2017,7(3):789-804. doi:  10.7150/thno.18133
    [12] BUSATTO S, VILANILAM G, TICER T, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid[J]. Cells,2018,7(12):273. doi:  10.3390/cells7120273
    [13] BATRAKOVA E V, KIM M S. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release,2015,219:396-405. doi:  10.1016/j.jconrel.2015.07.030
    [14] RUIVO C F, ADEM B, SILVA M, et al. The biology of cancer exosomes: insights and new perspectives[J]. Cancer Res,2017,77(23):6480-6488. doi:  10.1158/0008-5472.CAN-17-0994
    [15] RYU K J, LEE J Y, PARK C, et al. Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation[J]. Ann Lab Med,2020,40(3):253-258. doi:  10.3343/alm.2020.40.3.253
    [16] TÖGEL F, WEISS K, YANG Y, et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury[J]. Am J Physiol Renal Physiol,2007,292(5):F1626-F1635. doi:  10.1152/ajprenal.00339.2006
    [17] NIU L J, ZHANG Y M, HUANG T, et al. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression[J]. Ann Transl Med,2021,9(2):137. doi:  10.21037/atm-20-7787
    [18] CHEN L S, HUANG Y, DUAN Z X, et al. Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2[J]. Front Cell Dev Biol,2021,9:716209. doi:  10.3389/fcell.2021.716209
    [19] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway[J]. Stem Cell Res Ther,2019,10(1):98. doi:  10.1186/s13287-019-1204-2
    [20] DAMANIA A, JAIMAN D, TEOTIA A K, et al. Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury[J]. Stem Cell Res Ther,2018,9(1):31. doi:  10.1186/s13287-017-0752-6
    [21] NI Z H, KUANG L, CHEN H G, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis[J]. Cell Death Dis,2019,10(7):522. doi:  10.1038/s41419-019-1739-2
    [22] CASADO J G, BLÁZQUEZ R, VELA F J, et al. Mesenchymal stem cell-derived exosomes: immunomodulatory evaluation in an antigen-induced synovitis porcine model[J]. Front Vet Sci,2017,4:39.
    [23] QIN Y H, WANG L, GAO Z L, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo[J]. Sci Rep,2016,6:21961. doi:  10.1038/srep21961
    [24] CHEN Y H, XUE K, ZHANG X D, et al. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells[J]. Stem Cell Res Ther,2018,9(1):318. doi:  10.1186/s13287-018-1047-2
    [25] HERGENREIDER E, HEYDT S, TRÉGUER K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol,2012,14(3):249-256. doi:  10.1038/ncb2441
    [26] ONG S G, LEE W H, HUANG M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer[J]. Circulation, 2014, 130(11 Suppl 1): S60-S69.
    [27] BI S J, WANG C Y, JIN Y W, et al. Correlation between serum exosome derived miR-208a and acute coronary syndrome[J]. Int J Clin Exp Med,2015,8(3):4275-4280.
    [28] LAI R C, ARSLAN F, LEE M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res,2010,4(3):214-222. doi:  10.1016/j.scr.2009.12.003
    [29] ZOU L Y, MA X K, LIN S, et al. Bone marrow mesenchymal stem cell-derived exosomes protect against myocardial infarction by promoting autophagy[J]. Exp Ther Med,2019,18(4):2574-2582.
    [30] CHEN F, LI X L, ZHAO J X, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling[J]. In Vitro Cell Dev Biol Anim,2020,56(7):567-576. doi:  10.1007/s11626-020-00481-2
    [31] JIANG Y, XIE H, TU W, et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p[J]. Am J Transl Res,2018,10(11):3529-3541.
    [32] XIN H Q, LI Y, CUI Y S, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab,2013,33(11):1711-1715. doi:  10.1038/jcbfm.2013.152
    [33] ZHANG Y L, CHOPP M, ZHANG Z G, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury[J]. Neurochem Int,2017,111:69-81. doi:  10.1016/j.neuint.2016.08.003
    [34] CUI G H, WU J, MOU F F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J,2018,32(2):654-668. doi:  10.1096/fj.201700600R
    [35] SALA FRIGERIO C, LAU P, SALTA E, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease[J]. Neurology,2013,81(24):2103-2106. doi:  10.1212/01.wnl.0000437306.37850.22
    [36] KOJIMA R, BOJAR D, RIZZI G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment[J]. Nat Commun,2018,9(1):1305. doi:  10.1038/s41467-018-03733-8
    [37] HANEY M J, KLYACHKO N L, ZHAO Y L, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy[J]. J Control Release,2015,207:18-30. doi:  10.1016/j.jconrel.2015.03.033
    [38] ROCCARO A M, SACCO A, MAISO P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. J Clin Invest,2013,123(4):1542-1555. doi:  10.1172/JCI66517
    [39] ZHOU W Y, FONG M Y, MIN Y F, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis[J]. Cancer Cell,2014,25(4):501-515. doi:  10.1016/j.ccr.2014.03.007
    [40] WOLFERS J, LOZIER A, RAPOSO G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med,2001,7(3):297-303. doi:  10.1038/85438
    [41] ALTIERI S L, KHAN A N H, TOMASI T B. Exosomes from plasmacytoma cells as a tumor vaccine[J]. J Immunother,2004,27(4):282-288. doi:  10.1097/00002371-200407000-00004
    [42] BINENBAUM Y, FRIDMAN E, YAARI Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Res,2018,78(18):5287-5299. doi:  10.1158/0008-5472.CAN-18-0124
    [43] YANG S J, CHE S P Y, KURYWCHAK P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer[J]. Cancer Biol Ther,2017,18(3):158-165. doi:  10.1080/15384047.2017.1281499
    [44] THEODORAKI M N, YERNENI S S, HOFFMANN T K, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res,2018,24(4):896-905. doi:  10.1158/1078-0432.CCR-17-2664
    [45] LUDWIG S, FLOROS T, THEODORAKI M N, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res,2017,23(16):4843-4854. doi:  10.1158/1078-0432.CCR-16-2819
    [46] CHEN G, HUANG A C, ZHANG W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature,2018,560(7718):382-386. doi:  10.1038/s41586-018-0392-8
    [47] PERETS N, BETZER O, SHAPIRA R, et al. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders[J]. Nano Lett,2019,19(6):3422-3431. doi:  10.1021/acs.nanolett.8b04148
    [48] TIAN Y H, LI S P, SONG J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J]. Biomaterials,2014,35(7):2383-2390. doi:  10.1016/j.biomaterials.2013.11.083
    [49] YANG T Z, MARTIN P, FOGARTY B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio[J]. Pharm Res,2015,32(6):2003-2014. doi:  10.1007/s11095-014-1593-y
    [50] ALVAREZ-ERVITI L, SEOW Y, YIN H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol,2011,29(4):341-345. doi:  10.1038/nbt.1807
    [51] KAMERKAR S, LEBLEU V S, SUGIMOTO H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. Nature,2017,546(7659):498-503. doi:  10.1038/nature22341
    [52] SHTAM T A, KOVALEV R A, VARFOLOMEEVA E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro[J]. Cell Commun Signal,2013,11:88. doi:  10.1186/1478-811X-11-88
    [53] LI S P, LIN Z X, JIANG X Y, et al. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools[J]. Acta Pharmacol Sin,2018,39(4):542-551. doi:  10.1038/aps.2017.178
    [54] WANG X Y, ZHANG H Y, YANG H O, et al. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy[J]. Curr Cancer Drug Targets,2018,18(4):347-354. doi:  10.2174/1568009617666170710120311
    [55] STERZENBACH U, PUTZ U, LOW L H, et al. Engineered exosomes as vehicles for biologically active proteins[J]. Mol Ther,2017,25(6):1269-1278. doi:  10.1016/j.ymthe.2017.03.030
    [56] MANFREDI F, DI BONITO P, ARENACCIO C, et al. Incorporation of heterologous proteins in engineered exosomes[J]. Methods Mol Biol,2016,1448:249-260.
    [57] ZHANG H Y, BAI M, DENG T, et al. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma[J]. Cancer Lett,2016,375(2):331-339. doi:  10.1016/j.canlet.2016.03.026
    [58] LV L H, WAN Y L, LIN Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro[J]. J Biol Chem,2012,287(19):15874-15885. doi:  10.1074/jbc.M112.340588
    [59] ZHANG Y J, LIU D Q, CHEN X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration[J]. Mol Cell,2010,39(1):133-144. doi:  10.1016/j.molcel.2010.06.010
    [60] BERENGUER J, LAGERWEIJ T, ZHAO X W, et al. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8[J]. J Extracell Vesicles,2018,7(1):1446660. doi:  10.1080/20013078.2018.1446660
    [61] GRANGE C, TAPPARO M, BRUNO S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging[J]. Int J Mol Med,2014,33(5):1055-1063. doi:  10.3892/ijmm.2014.1663
    [62] RAYAMAJHI S, ARYAL S. Surface functionalization strategies of extracellular vesicles[J]. J Mater Chem B,2020,8(21):4552-4569. doi:  10.1039/D0TB00744G
    [63] BAEK G, CHOI H, KIM Y, et al. Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform[J]. Stem Cells Transl Med,2019,8(9):880-886. doi:  10.1002/sctm.18-0226
    [64] RAMASUBRAMANIAN L, KUMAR P, WANG A J. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine[J]. Biomolecules,2019,10(1):48. doi:  10.3390/biom10010048
    [65] VILLATA S, CANTA M, CAUDA V. EVs and bioengineering: from cellular products to engineered nanomachines[J]. Int J Mol Sci,2020,21(17):6048. doi:  10.3390/ijms21176048
    [66] SUSA F, LIMONGI T, DUMONTEL B, et al. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine[J]. Cancers,2019,11(12):1979. doi:  10.3390/cancers11121979
    [67] KIM M S, HANEY M J, ZHAO Y L, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations[J]. Nanomedicine,2018,14(1):195-204. doi:  10.1016/j.nano.2017.09.011
    [68] CHEN L K, MIAO W, TANG X Y, et al. The expression and significance of neuropilin-1 (NRP-1) on glioma cell lines and glioma tissues[J]. J Biomed Nanotechnol,2013,9(4):559-563. doi:  10.1166/jbn.2013.1624
    [69] TIAN T, ZHANG H X, HE C P, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials,2018,150:137-149. doi:  10.1016/j.biomaterials.2017.10.012
    [70] SMYTH T, PETROVA K, PAYTON N M, et al. Surface functionalization of exosomes using click chemistry[J]. Bioconjug Chem,2014,25(10):1777-1784. doi:  10.1021/bc500291r
    [71] BISCANS A, HARASZTI R A, ECHEVERRIA D, et al. Hydrophobicity of lipid-conjugated siRNAs predicts productive loading to small extracellular vesicles[J]. Mol Ther,2018,26(6):1520-1528. doi:  10.1016/j.ymthe.2018.03.019
    [72] VANDERGRIFF A, HUANG K, SHEN D L, et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J]. Theranostics,2018,8(7):1869-1878. doi:  10.7150/thno.20524
    [73] PI F M, BINZEL D W, LEE T J, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression[J]. Nat Nanotechnol,2018,13(1):82-89. doi:  10.1038/s41565-017-0012-z
    [74] LIANG Y J, DUAN L, LU J P, et al. Engineering exosomes for targeted drug delivery[J]. Theranostics,2021,11(7):3183-3195. doi:  10.7150/thno.52570
    [75] LUAN X, SANSANAPHONGPRICHA K, MYERS I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin,2017,38(6):754-763. doi:  10.1038/aps.2017.12
    [76] VAKHSHITEH F, ATYABI F, OSTAD S N. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy[J]. Int J Nanomedicine,2019,14:2847-2859. doi:  10.2147/IJN.S200036
    [77] KOOIJMANS S A A, ALEZA C G, ROFFLER S R, et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting[J]. J Extracell Vesicles,2016,5:31053. doi:  10.3402/jev.v5.31053
    [78] SHIMBO K, MIYAKI S, ISHITOBI H, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration[J]. Biochem Biophys Res Commun,2014,445(2):381-387. doi:  10.1016/j.bbrc.2014.02.007
    [79] LIN Y, WU J H, GU W H, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Adv Sci (Weinh),2018,5(4):1700611. doi:  10.1002/advs.201700611
    [80] SATO Y T, UMEZAKI K, SAWADA S, et al. Engineering hybrid exosomes by membrane fusion with liposomes[J]. Sci Rep,2016,6:21933. doi:  10.1038/srep21933
    [81] MENTKOWSKI K I, SNITZER J D, RUSNAK S, et al. Therapeutic potential of engineered extracellular vesicles[J]. AAPS J,2018,20(3):50. doi:  10.1208/s12248-018-0211-z
    [82] PIFFOUX M, SILVA A K A, WILHELM C, et al. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems[J]. ACS Nano,2018,12(7):6830-6842. doi:  10.1021/acsnano.8b02053
    [83] KHONGKOW M, YATA T, BOONRUNGSIMAN S, et al. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration[J]. Sci Rep,2019,9(1):8278. doi:  10.1038/s41598-019-44569-6
    [84] WANG J, CHEN P, DONG Y, et al. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy[J]. Biomaterials,2021,276:121056. doi:  10.1016/j.biomaterials.2021.121056
    [85] CHENG G, LI W Q, HA L, et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins[J]. J Am Chem Soc,2018,140(23):7282-7291. doi:  10.1021/jacs.8b03584
    [86] PENG H, JI W H, ZHAO R C, et al. Exosome: a significant nano-scale drug delivery carrier[J]. J Mater Chem B,2020,8(34):7591-7608. doi:  10.1039/D0TB01499K
  • [1] 段禹, 刘爱军.  活血化瘀法治疗血管性痴呆的研究进展 . 药学实践与服务, 2025, 43(4): 1-6. doi: 10.12206/j.issn.2097-2024.202408045
    [2] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2025, 43(1): 10-16. doi: 10.12206/j.issn.2097-2024.202404008
    [3] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [4] 周娇, 郑建雨, 王思真, 杨峰.  mRNA肿瘤疫苗非病毒递送系统研究进展 . 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
    [5] 李锐, 张倩倩, 王瑞冬, 高小峰.  国家集中带量采购政策下样本医院良性前列腺增生治疗药物使用情况分析 . 药学实践与服务, 2025, 43(1): 41-46. doi: 10.12206/j.issn.2097-2024.202408031
    [6] 陈春娟, 郑志新, 李骊.  平喘方联合孟鲁司特钠治疗儿童支气管哮喘的临床疗效观察 . 药学实践与服务, 2024, 42(12): 524-527, 532. doi: 10.12206/j.issn.2097-2024.202405035
    [7] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [8] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [9] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [10] 石晓萍, 吕迁洲, 李晓宇, 许青.  泊沙康唑对比伏立康唑经验治疗或诊断驱动治疗免疫功能低下患者侵袭性霉菌病的成本-效果分析 . 药学实践与服务, 2024, 42(12): 512-519. doi: 10.12206/j.issn.2097-2024.202401050
    [11] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [12] 何亚伦, 祁智, 常杰.  消胀通便膏在晚期肝癌患者阿片类药物相关性便秘中的应用研究 . 药学实践与服务, 2024, 42(12): 520-523. doi: 10.12206/j.issn.2097-2024.202309009
    [13] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [14] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [15] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 457-460, 502. doi: 10.12206/j.issn.2097-2024.202405059
    [16] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [17] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [18] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [19] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [20] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
  • 加载中
计量
  • 文章访问数:  11195
  • HTML全文浏览量:  7904
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-09-06
  • 刊出日期:  2023-05-25

外泌体用于疾病诊疗和药物递送的研究进展

doi: 10.12206/j.issn.2097-2024.202207022
    基金项目:  国家自然科学基金(82273487);全军医学科技青年培训计划(21QNPY051)
    作者简介:

    王宏播,硕士研究生,研究方向:仿生纳米药物对胶质瘤的靶向治疗,Email:525723127@qq.com

    通讯作者: 俞 媛,博士,副教授,研究方向:仿生纳米药物的靶向策略和疾病治疗,Email:pharmyuu@163.com
  • 中图分类号: R96

摘要: 外泌体是细胞外囊泡的一种,作为特殊的细胞间通讯介质,携带蛋白质、核酸及脂质等,在生物体内各种生理、病理过程中发挥着重要作用。作为内源性纳米囊泡,外泌体具有体循环稳定性、良好的生物相容性、对组织和细胞的特异性靶向等优点,是理想的药物递送载体。外泌体为多种疾病的诊断和预后评估提供支持,同时作为一种非常有潜力的、安全、特异性强的内源性纳米药物载体具有广阔的应用前景。本文阐述外泌体的产生机制,对其提取分离方法特点进行总结,并围绕外泌体在免疫和炎症相关疾病、心血管系统疾病、神经系统疾病、肿瘤等疾病的应用机制进行讨论,以及作为药物载体的工程化修饰和主动靶向药物递送进行综述。

English Abstract

许翔, 陈旭, 柯月娇, 刘志宏, 陈钰芳, 周欣, 宋洪涛. 基于层次分析法和正交设计优选长效缓释口腔溃疡膜的制备工艺研究[J]. 药学实践与服务, 2023, 41(8): 501-508. doi: 10.12206/j.issn.2097-2024.202109069
引用本文: 王宏播, 卞康晴, 郭灵怡, 代宇, 俞媛. 外泌体用于疾病诊疗和药物递送的研究进展[J]. 药学实践与服务, 2023, 41(5): 265-272, 320. doi: 10.12206/j.issn.2097-2024.202207022
XU Xiang, CHEN Xu, KE Yuejiao, LIU Zhihong, CHEN Yufang, ZHOU Xin, SONG Hongtao. Study on preparation technology of long-acting sustained-release oral ulcer membrane based on analytic hierarchy process and orthogonal design[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(8): 501-508. doi: 10.12206/j.issn.2097-2024.202109069
Citation: WANG Hongbo, BIAN Kangqing, GUO Lingyi, DAI Yu, YU Yuan. Progress on exosomes in the diagnosis and treatment of disease and drug delivery system[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 265-272, 320. doi: 10.12206/j.issn.2097-2024.202207022
  • 外泌体(exosome)是细胞产生的胞外囊泡的一种,在20世纪80年代末首次被描述[1-2]。外泌体作为一种细胞间近距离通讯的特殊介质,在包括免疫反应、抗原递呈和信号转导[3]等各种生理过程中发挥着重要作用。几乎所有真核细胞都可以分泌外泌体,包括脂肪细胞、上皮细胞、成纤维细胞、神经元、星形胶质细胞等,外泌体几乎存在于所有体液如脑脊液、尿液、精子、唾液、血液、玻璃体和乳汁等[4],含有丰富的核酸、蛋白、脂质和代谢物等。外泌体所携带的物质由于源细胞的类型及其所处状态(例如转化、分化、刺激和压力)不同而存在很大差异,由其大小、内容物含量、对受体细胞的功能影响以及细胞来源来概念化,因此是一个高度异质性的群体,具有独特的诱导生物学反应的能力,也为一些疾病如代谢性疾病、心血管疾病、神经退行性疾病、肿瘤等提供诊断和预后信息[5]。此外,作为一种纳米粒径的内源性囊泡,高生物相容性、天然的归巢性能、以及进行功能化修饰后实现更特异性的组织器官和病灶部位的富集,都使得外泌体作为一种新型药物递送载体具有很好的研究价值。本文就外泌体的提取分离方法,在疾病中的诊疗作用以及工程化修饰后用于药物递送做一综述。

    • 外泌体的发生机制主要涉及质膜的双重内陷。质膜的第一次内陷形成早期分选内含体(ESEs),此时ESEs膜内表面上附着细胞表面蛋白和细胞外环境相关的可溶性蛋白,有时新形成的ESEs可直接与预先存在的ESEs合并。ESEs在高尔基体和内质网的帮助下形成晚期分选内含体(LSEs)并再次内陷形成多泡体(MVBs),MVBs包含数个腔内小泡(ILVs)。MVBs可以与溶酶体或自噬体融合以被降解,也可以与质膜融合以释放包含的ILVs,ILVs释放后即形成直径约40~160 nm的外泌体[6-7]

      目前常用的外泌体分离方法有超速离心法、密度梯度离心法、超滤法、色谱法、免疫亲和法、聚合物沉淀法等,分别采用不同的分离机制,所得到的外泌体具有不同的得率和纯度,其主要原理和优缺点见表1

      表 1  外泌体的分离方法及特点

      方法原理优势耗时纯度产率不足
      超速离心法[8]大小和密度不同的组分具有不同的沉积速度金标准,适用于大批量样品,技术成熟>4 h仪器昂贵、操作繁琐耗时、产量低,可能会破坏外泌体[9]
      密度梯度离心法大小和密度不同的组分具有不同的沉积速度高纯度,避免外泌体损伤>16 h前期准备、操作繁琐、耗时[10]
      超滤法[11]不同粒子粒径和相对分子质量的差异操作简便,不需要特殊设备和试剂<4 h滤膜易堵塞,小粒径外泌体
      易丢失[12]
      色谱法不同粒子粒径和相对分子质量的差异简单、经济,能较好保持外泌体生物功能和结构[13]<0.3 h需要特殊的柱子和填料,存在脂蛋白污染
      免疫亲和法[14]抗体与外泌体特异性膜蛋白的相互作用特异性分离外泌体4~20 h昂贵,耗时,分离效果取决于抗体的特异性
      聚合物沉淀法[15]外泌体在高亲水性聚合物影响下溶解度或分散性的变化操作简单,适用于大体积
      样品
      0.3~12 h潜在污染物(提纯蛋白质聚集体或残留聚合物)
    • 外泌体与免疫和炎症反应相关疾病、心血管疾病、神经系统疾病以及肿瘤等的发生发展有关,递送至受体细胞的蛋白质、代谢物和核酸有效地改变了它们的生物反应,这种外泌体介导的反应可以促进或抑制疾病的进程。作为一种通讯介质,外泌体具有调节复杂细胞内通路的特性。作为一种治疗工具,外泌体避免了如不受控制的细胞分裂、致瘤性以及血管栓塞等与细胞治疗相关的安全问题[16]。除了治疗因素,外泌体具有辅助疾病诊断的特性,它们存在于几乎所有生物体液中,通过对生物体液取样很容易获得并检测其内容物组成,从而对疾病进展做出判断以及确定治疗方法。

    • 一些外泌体中的核酸物质可以作为疾病诊断的特异性分子。Niu等[17]发现血清外泌体中的miR-155与肝硬化的进展和肝硬化的临床预后指标密切相关,表明富含miR-155的外泌体可作为肝纤维化诊断和进展的非侵入性生物标志物。在CCl4诱导的肝纤维化小鼠模型中,脂多糖处理的巨噬细胞外泌体高表达miR-500能通过抑制MFN2促进肝星形细胞活化和肝纤维化。因此,血清外泌体的miR-500也可作为肝纤维化的生物标志物[18]。Rong等[19]的研究表明,在SD大鼠肝纤维化模型中,骨髓间充质干细胞外泌体(BMSC-Exo)通过抑制 WNT/β-catenin通路降低了CCl4诱导肝纤维化的能力,能够有效减轻肝纤维化,包括减少胶原蛋白积聚,增强肝功能,抑制炎症和增加肝细胞再生。类似地,Damania等[20]的研究发现,在HepG2细胞的2D/3D培养条件的体外肝损伤模型以及由CCl4引起的大鼠急性肝损伤模型中,大鼠BMSC-Exo具有抗凋亡、抗氧化和促细胞存活作用。能明显减少缺血再灌注损伤,可用于临床肝移植或治疗急性肝功能衰竭。

    • 源自骨关节炎软骨细胞的外泌体可以通过miR-449a刺激炎症小体活化并增加巨噬细胞中成熟的IL-1β产生,可能加重滑膜炎并加速骨关节炎的进展[21]。BMSC-Exo同时具有免疫调节作用和抗炎作用,Casado等[22]在抗原触发的猪滑膜炎模型中发现,BMSC-Exo处理后,模型动物关节中的白细胞数量没有明显变化,但淋巴细胞显著减少,并伴随着滑液中的炎性细胞因子显著下降,对治疗滑膜炎具有积极意义。Qin等[23]测试了BMSC-Exo在体外调节成骨细胞活性和体内骨再生中的作用,与miR-27a和miR-206处理相比,用miR-196a处理的成骨细胞表现出最好的成骨活性。miR-196a是典型的成骨相关miRNA,在BMSC-Exo中高度富集,证明了BMSC-Exo在调节成骨细胞分化和成骨基因表达中的重要作用。Chen等[24]发现软骨细胞的外泌体可以在皮下环境中诱导软骨祖细胞构建体的有效异位软骨形成,这可能代表了一种用于软骨再生的无细胞治疗方法。

    • 动脉粥样硬化是最常见的心血管疾病之一。Hergenreider[25]发现人脐静脉内皮细胞在剪切力刺激下分泌的外泌体富含miR-143/145,其控制共培养平滑肌细胞中靶基因KLF2的表达,从而减少ApoE(-/-)小鼠主动脉粥样硬化的形成。冠状动脉粥样硬化斑块破裂或侵袭后,易产生急性冠状动脉综合征(ACS)。外泌体中的丰富miRNA可以成为诊断和治疗ACS的重要工具[26]。有研究发现ACS患者血清中的外泌体miR-208a水平显著高于健康个体[27]。心肌缺血再灌注损伤是指心肌组织供血中断一段时间后恢复,但心肌组织损伤加重的现象。Lai等[28]在小鼠急性心肌缺血再灌注损伤的心脏模型中发现,间充质干细胞通过减少心肌梗死面积产生心脏保护作用,而其保护作用主要通过旁分泌中的外泌体起效。Zou等[29]以H9C2细胞系建立大鼠心肌缺血再灌注模型用于研究心肌发病过程,BMSC-Exo处理后的缺血再灌注过程中对细胞增殖、迁移以及心肌细胞凋亡的抑制作用,表现为Apaf1(凋亡蛋白酶激活因子1)表达被显著抑制,ATG13(自噬相关蛋白13)表达在体内显著增加,证明BMSC-Exo还可以通过调节自噬机制抑制与心肌梗死相关的心肌损伤。心力衰竭由多种因素带来的心肌收缩功能障碍引起,有研究者在小鼠压力超负荷诱导的心脏肥大模型中发现小鼠BMSC-Exo通过抑制心肌病理性肥大、抑制心肌细胞凋亡和减少心脏纤维化,在抑制心肌重构中产生重要作用,为心力衰竭等疾病提供了全新有效的治疗策略[30]

    • 基于亲代细胞,外泌体可用作神经退行性疾病、脑创伤、卒中等中枢疾病诊断预后的潜在生物标志物,或产生治疗作用。如人脐静脉内皮细胞衍生的外泌体可以通过传递miR-21-3p抑制ATG12信号传导来减弱缺氧/复氧诱导的神经元细胞凋亡[31]。在Wistar大鼠中风模型中,BMSC-Exo处理的动物组皮层和纹状体的缺血边界区轴突密度和突触素阳性区域增加,增强了神经突重塑、神经发生和血管生成,从而实现中风后脑功能恢复[32]。Zhang等[33]在Wistar大鼠受控皮质冲击诱发的创伤性脑损伤(TBI)模型中使用人BMSC-Exo治疗TBI,发现显著增加了病变边界区和齿状回新生内皮细胞的数量,增加了齿状回新生成熟神经元的数量,并减少了神经炎症,同样证明了BMSC-Exo对脑功能恢复和神经血管重塑的促进作用。在神经退行性疾病中,BMSC-Exo可以再生神经并改善神经退行性疾病的认知功能和记忆障碍[34]。Cui等[35]发现经缺氧预处理的间充质干细胞外泌体抑制了β淀粉样蛋白的积累,并增强了转基因APP/PS1阿尔茨海默病模型小鼠大脑中的突触蛋白表达,此外,星形胶质细胞和小胶质细胞的活化减少、炎症因子如抗炎细胞因子IL-4、IL-10增加和促炎细胞因子TNFα和IL-1β的减少得到验证。作为诊断标记物,脑脊液外泌体中的miRNA包括let-7f-5p、miR-27a-3p、miR-125a-5p、miR-151a-3p和miR-423-5p可作为生物标志物用于帕金森病的早期诊断,从分子水平发挥疾病诊断的精确作用。Kojima等[36]发现负载过氧化氢酶mRNA的外泌体能够减轻6-羟基多巴胺(6-OHDA)或LPS诱导的PD小鼠模型中的神经毒性和神经炎症。加载过氧化氢酶的外泌体在体外PC12神经元细胞和PD的体内6-OHDA模型中引发神经保护作用[37]

    • 外泌体携带的DNA、RNA、蛋白质和代谢产物通过自分泌和旁分泌影响受体细胞,从而在肿瘤的发生、发展、免疫、耐药等方面起到重要作用。多发性骨髓瘤患者的骨髓间充质干细胞外泌体含有较高的miRNA-15a及较多的细胞因子和黏附分子,能够促进多发性骨髓瘤细胞增殖[38]。乳腺癌细胞外泌体含有的miR-105降低了ZO1在内皮细胞中的表达,破坏了内皮细胞的紧密连接,从而增强肿瘤细胞的血管内渗透[39]。肿瘤衍生的外泌体或胞外囊泡可激活免疫反应,外泌体将肿瘤抗原热休克蛋白HSP70-80和MHC-I分子转移到DC细胞,从而对小鼠肿瘤产生有效的CD8+T细胞依赖性抗肿瘤作用[40- 41]。巨噬细胞外泌体通过转运miR-365激活了胰腺癌细胞的胞苷脱氨酶,降低其对吉西他滨的敏感性,显示出外泌体在肿瘤耐药性中的作用[42]。外泌体还可以作为肿瘤诊断和预后的生物标志物。例如对循环外泌体DNA检测能够发现KRASG12D和TP53R273H突变,它们是胰腺癌的潜在生物标志物[43]。血浆外泌体的PD-L1水平与头颈癌的疾病进展有关[44-45],还能预测黑色素瘤患者对PD1抗体治疗的反应[46]

    • 外泌体是一种小粒径的内源性微粒,具有靶向组织特异性、体循环稳定性、良好的生物相容性等优点。通过不同的载药方式,外泌体可以负载不同的药物,通过与源细胞特殊的亲和作用、归巢效应等自然趋向作用,将负载的药物运送到靶向组织[47]。而在外泌体中加载其他药物,或者进行工程化修饰,能赋予它们对特定组织、受体细胞的选择性,改变体内分布,实现更高效的药物靶向递送,从而提高治疗效果。

    • 有多种物理方法可以将药物加载到外泌体中,如共孵育法、电穿孔、机械挤压、超声、冻融等。其中共孵育法简单快捷,但效率低且不适合亲水性分子;电穿孔可以同时作用于亲水和疏水物质,但容易引起外泌体聚集并损害外泌体膜的完整性;机械挤压和超声载药效率高,能同时改变外泌体尺寸,但也会引起聚集和膜损伤;冻融方法简单快速,但效率低且对外泌体尺寸有很大影响。

      小的亲脂性分子可以通过与外泌体共孵育被动加载到外泌体中,比如多柔比星(Dox)和紫杉醇(PTX),它们在室温下与外泌体共同孵育即可载入外泌体,其负载能力分别为PTX 7.2%,Dox 11.7%[48- 49]。除此之外,利用物理的辅助手段,可以增加生物活性大分子药物的载入。例如,Haney等[37]用外泌体装载过氧化氢酶治疗帕金森病,外泌体保护了过氧化氢酶不被降解,并使其在病变部位持续释放,从而用于治疗神经疾病。他们研究了包括机械挤压、超声、皂苷透化、冻融循环等机械处理方法对加载过氧化氢酶效率的影响,发现超声和挤压外泌体能最显著提高其过氧化氢酶的加载效率并提高其释放能力,而使用皂苷透化处理能提高其加载效率但降低其释放能力。Alvarez-Erviti等[50]将siRNA通过电穿孔方法加载到外泌体中用于治疗阿尔茨海默病,沉默β-淀粉样蛋白形成相关的BACE1基因,目标蛋白敲除效率达到62%。而Kamerkar等[51]则将沉默KrasG12D的siRNA加载到外泌体中,成功抑制了多种胰腺癌小鼠模型中的肿瘤生长,显著提高了动物的生存率。Shtam等[52-53]分别利用Lipofectamine试剂转染法和电穿孔法将siRNA导入到HeLa细胞外泌体中,而后外泌体可将siRNA转移到受体细胞内,这是一种类似于外源性纳米微粒的核酸递送方法,但转染试剂存在一定毒性,且其载入效率不如电导入方法[54]。Sterzenbach等[55]用WW标签标记目标蛋白Cre重组酶,能使其被含有L结构域的蛋白Ndfip1识别并泛素化,从而将其加载到外泌体中,因此目标蛋白的泛素化能提高外泌体的蛋白装载。

    • 将药物装载于外泌体中最广泛应用的方法是以药物孵育外泌体源细胞,使得分泌的外泌体携带部分药物;或者转染源细胞,源细胞可以过表达特定的产物并将其包装到外泌体中或在外泌体膜上[13]。如利用DNA载体表达能与外泌体蛋白融合的蛋白HPV-E7和Nef,这些融合蛋白富含于外泌体中,从而提高了靶蛋白在外泌体中的特异性和负载效率[56]。通过使用miRNA表达载体或pre-miRNA,将miRNA转染到源细胞中,然后导入外泌体,过表达miR-29的HEK293T细胞所产生的外泌体抑制了胃癌的血管生成[57]。L.H.等[58]分别用PTX、依托泊苷、卡铂、伊立替康、表柔比星和米托蒽醌等孵育HepG2细胞,随后发现该细胞的外泌体与人胰腺细胞系CFPAC-1共孵育,能产生显著的抗增殖活性,外泌体通过源细胞的药物摄取实现载药。此外,刺激源细胞有时也能提高外泌体内有效物质的含量,Zhang等[59]用三种刺激物刺激THP-1单核细胞,导致其分泌的外泌体中miR-150水平升高从而增强其效能。

    • 细胞来源、给药途径和剂量等许多因素都会影响外泌体在体内的生物分布。天然的外泌体通常分布到小鼠的肝脏、脾脏、肠道和肺部,与外源性纳米微粒一样,易被单核吞噬细胞系统捕获从而清除[60]。与对照小鼠相比,在巨噬细胞耗竭的小鼠中,外泌体从循环中清除的速度要慢得多[61]。为了克服这些缺点,进行工程化修饰的外泌体增加了其在被单核吞噬细胞清除之前到达靶细胞/组织的能力,从而提高药物递送效率,减少脱靶/副作用。在外泌体的天然趋向性基础上,研究人员主要通过如共价修饰、基因修饰等方法实现增加外泌体的靶向递送性能[62-63]

    • 点击化学利用炔烃和叠氮残基之间的共价相互作用形成稳定的三唑键,可用于在各种水性缓冲液(包括水、醇和二甲亚砜)中将靶向分子连接到外泌体表面[64-65]。聚乙二醇化是用支链PEG修饰外泌体表面,是使用共价连接的化学偶联方法最常见方法[66]。Kim等[67]用氨基乙基茴香酰胺-PEG(AA-PEG)修饰外泌体,AA-PEG是σ受体的靶向配体,外泌体通过AA-PEG靶向至过度表达σ受体的肺癌。Chen等[68]证明通过点击化学用神经纤毛蛋白-1靶向肽RGE修饰的外泌体可促进其在原位胶质瘤小鼠模型中对血脑屏障的渗透和胶质瘤靶向,肿瘤组织的药物积累量增加了近1.5倍,并且外泌体在肿瘤中的保留时间延长。类似地,c(RGDyK)是一种对整合素avb3具有高亲和力的肽,在缺血后脑血管内皮细胞中表达,Tian等[69]通过点击化学将其结合到MSC-Exo表面,用于治疗中风,c(RGDyK)修饰的外泌体对小鼠缺血性脑损伤区域的趋向性比对照组高11倍。而Smyth等[70]发现Azide-Fluor545荧光分子可以通过基于炔烃的交联反应附着在外泌体表面,而不会改变外泌体的大小和特性。共价键是一种非常稳定的键,但该反应不是位点特异性的,因而无法控制哪些氨基(例如,N-末端氨基、赖氨酸残基的ε-氨基)或哪些蛋白质被修饰,可能会屏蔽一些蛋白质-蛋白质相互作用从而改变外泌体的识别特性。

      通过共价结合将siRNA与脂肪酸、甾醇和维生素等脂质结合物结合,可通过间接的疏水相互作用将靶分子插入外泌体膜[71]。Vandergriff等[72]将心脏干细胞衍生的外泌体通过DOPE-NHS与心脏归巢肽CHP链接,介导外泌体靶向至心脏。与DOPE一样,胆固醇因为具有疏水性也可以自组装成外泌体膜。Pi等[73]用RNA适配子或叶酸缀合的胆固醇对外泌体进行表面修饰,将siRNA和miRNA递送到相应的肿瘤部位并增强了抗肿瘤功效。

    • 除了以上直接修饰外泌体的方法外,还可以通过基因修饰产生外泌体的源细胞从而间接对外泌体进行工程化修饰。与直接修饰外泌体相比,该方法在靶向物表达产量和稳定性方面具有优势[74-75]。研究人员通过转染在外泌体源细胞上表达与外泌体膜成分(如四跨膜蛋白、Lamp2b和乳黏蛋白的C1C2结构域)融合的靶向部分(如肽、受体和抗体),从而产生具有相应靶向物的外泌体[74-76]。如用狂犬病毒糖蛋白RVG修饰Lamp2B的N端,RVG与富含神经元细胞的乙酰胆碱受体特异性结合,将融合了RVG的Lamp2B转染细胞,产生了在膜外表达RVG蛋白的外泌体[50]。Kooijmans等[77]将编码抗表皮生长因子受体(EGFR)的基因转染到Neuro2A细胞内,使该细胞产生的外泌体表达EGFR,使其能与源自衰变加速因子(DAF)的糖基磷脂酰肌醇(GPI)锚定信号肽融合,从而靶向肿瘤细胞。Shimbo等[78]将合成的miR-143转入骨髓间充质干细胞,所分泌的外泌体内miR-143增加,这种过表达miR-143的外泌体递送到人骨肉瘤细胞系143B可以导致其迁移受到抑制。

    • 近年来,多种外泌体-纳米粒杂合体的开发例如外泌体-脂质体、外泌体-无机纳米粒等,极大丰富了外泌体的可塑性,已被用于多种疾病的协同诊断和治疗。

    • 外泌体-脂质体杂合可用于优化外泌体表面的特性,增加其载药性能和胶体稳定性、提高粒子在血液中的稳定性,通过脂质体表面修饰增加靶细胞对外泌体的摄取。Tan等[79]设计了外泌体-脂质体杂化纳米粒从而更有效地输送CRISPR-Cas9表达载体,这些杂化纳米粒被内吞后有效地抑制了MSCs中mRunx2基因和hCTNNB1基因的表达。Sato等[67, 80]等将外泌体和脂质体在液氮中反复多次冻融来产生外泌体-脂质体杂合体,与从RAW264.7细胞或HeLa细胞中分离的原始外泌体相比,外泌体-脂质体杂合体增强了与HeLa细胞的膜融合,证明了这些杂合外泌体提高了对受体细胞的靶向性。但冻融法也有缺点,它有可能改变外泌体上膜蛋白的完整性和方向性,从而削弱它们的生物功能[81]。外泌体-脂质体杂合可以提高药物的递送效率,如Piffoux等[82]使用静电作用来诱导阳离子脂质体与外泌体的融合,强阳离子电荷增强了外泌体与受体细胞的结合和细胞摄取,与游离药物或载药脂质体前体相比,膜融合的杂合外泌体将化疗药物的细胞递送效率提高了3~4倍。此外,杂合体的脂质电荷还会影响靶细胞的摄取,与阳离子脂质体杂合的外泌体相比,中性或阴离子脂质体杂合的外泌体更有可能被癌细胞系摄取[64-65]

    • 金属纳米粒子、金属氧化物纳米粒子和量子点(QD)等无机纳米粒子具有优异的物理特性,如等离子体、磁性和荧光特性等,因此利用这些纳米粒与外泌体杂合,可能会产生协同治疗效果。Khongkow等[83]用机械挤压的方法制备的外泌体和金纳米粒的杂合粒子,可以改善它们穿过血脑屏障的转运能力并特异性识别和靶向神经元细胞。Wang等[84]将装载有阿霉素的外泌体与磁性纳米粒Fe3O4杂合,使得杂合粒子可以在外部磁场诱导下靶向肿瘤部位从而产生更好的治疗效果。Cheng等[85]将肿瘤细胞外囊泡与金属-有机框架材料(MOF)杂合,利用生物膜成分保护蛋白质免受蛋白酶消化和逃避免疫系统清除,并选择性地靶向同型肿瘤部位,促进肿瘤细胞摄取和内化粒子后负载药物的自主释放。

    • 外泌体是细胞释放的一类天然纳米级囊泡,可以被体内大多数细胞分泌,作为一种特殊的细胞间通讯载体,携带和传递重要的信号分子,在多种生理、病理过程中发挥着重要作用。随着以微流控芯片为代表的外泌体检测手段的不断更新,外泌体的研究为多种疾病的提前诊断和预后评估提供支持[86]。外泌体具有不均一性和异质性的特点,使不同来源的外泌体具有不同的生物学效应,不仅涉及神经系统疾病、癌症、心血管疾病、免疫反应、器官发育、组织动态平衡等,还涉及植物学和微生物学的研究内容[74]。但是外泌体的分离纯化过程依然存在一些问题,无论是离心法还是商业试剂盒都不能特异性地完全分离外泌体,从培养基中分离和纯化的外泌体仍然含有大量的非外泌体成分,如微泡和凋亡小体等功能性囊泡的存在,可能会影响外泌体医学应用的准确性和可靠性。此外,不同的细胞类型、培养条件和细胞的基因组变化也可能改变外泌体中的关键调控因子,因此需要更加准确、规范、快速、特异的分离纯化方法和液体活检技术对其质量控制标准化。作为一种内源性的纳米载体,低免疫原性和天然的靶向及归巢能力,天然的细胞间转运生物物质的机制,使外泌体作为药物传递平台具有广阔的前景。尽管多种载药方式的探索,以及工程化修饰使外泌体用于靶向药物递送被广泛研究,但如何影响外泌体的稳定性、它们的细胞进入途径和体内组织分布代谢仍有待阐明。作为高精度探针提供疾病提前诊断,具有靶向能力的药物输送体系,共同构建用于体内跟踪、预后监测和治疗的外泌体多功能平台将具有广阔的临床应用前景。

参考文献 (86)

目录

/

返回文章
返回