留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

基于心血管芯片模型的4种深海毒素致伤评价与雷公藤甲素的保护作用研究

何晓莉 施艺玮 陈兰 刘悦 洪战英

马小雨, 罗彩萍, 刘悦. 代谢组学在乳腺癌诊疗中应用的研究进展[J]. 药学实践与服务, 2023, 41(3): 139-145. doi: 10.12206/j.issn.2097-2024.202109112
引用本文: 何晓莉, 施艺玮, 陈兰, 刘悦, 洪战英. 基于心血管芯片模型的4种深海毒素致伤评价与雷公藤甲素的保护作用研究[J]. 药学实践与服务, 2023, 41(3): 149-154, 159. doi: 10.12206/j.issn.2097-2024.202206018
MA Xiaoyu, LUO Caiping, LIU Yue. Application of metabonomics in breast cancer[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(3): 139-145. doi: 10.12206/j.issn.2097-2024.202109112
Citation: HE Xiaoli, SHI Yiwei, CHEN Lan, LIU Yue, HONG Zhanying. Evaluation of toxin-induced injury and protective effect of triptolide based on a cardiovascular chip model[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(3): 149-154, 159. doi: 10.12206/j.issn.2097-2024.202206018

基于心血管芯片模型的4种深海毒素致伤评价与雷公藤甲素的保护作用研究

doi: 10.12206/j.issn.2097-2024.202206018
基金项目: 国家自然科学基金项目(81872829、82173777);国家科技部重点研发计划(2019YFC0312600)
详细信息
    作者简介:

    何晓莉,硕士研究生,研究方向:细胞代谢组学研究,Email:919852027@qq.com,Tel:15980220432

    通讯作者: 洪战英,教授,研究方向:微流控芯片药学研究,Email:hongzhy001@163.com,Tel:81871269

Evaluation of toxin-induced injury and protective effect of triptolide based on a cardiovascular chip model

  • 摘要:   目的  构建一种心血管芯片模型,评估四种海洋毒素即大田软海绵酸(OA)、芋螺毒素(CTX)、河豚毒素(TTX)和环亚胺毒素(GYM)对血管糖萼组织的损伤,初步探索雷公藤甲素对毒素致伤的保护作用。  方法  将人脐静脉内皮细胞(HUVEC)接种于三通道结构的微流控芯片,并对所构建的心血管芯片模型进行表征。采用CCK-8法和免疫荧光染色法分析低、中、高三个浓度的海洋毒素对细胞活力和糖萼组织损伤情况,以及雷公藤甲素对毒素致伤的保护作用。  结果  所构建心血管器官芯片中的细胞生长状态良好,具有结构完整的糖萼组织,与对照组相比,OA中、高浓度以及GYM高浓度均对细胞活力具有一定抑制(P<0.05),CTX和TTX在所测浓度下对细胞没有明显活力抑制,但是四种毒素均引起细胞表面糖萼组织的严重损伤(P<0.01),且随着浓度增加,糖萼损伤率升高。经雷公藤甲素预保护后,四种毒素对HUVEC的毒性显著降低,糖萼组织损伤率下降。  结论  四种毒素对HUVEC细胞活力以及表面的糖萼组织具有损伤,且呈一定的剂量关系,而雷公藤甲素对毒素损伤后的HUVEC细胞具有保护作用。
  • 乳腺癌是多发于女性中的恶性肿瘤性疾病,威胁着广大女性的健康[1-2]。据统计,全球女性癌症中,乳腺癌发病率和致死率均高于肺癌,目前居于首位,2020年约230万人诊断出患有乳腺癌,致死病例约68.5万[3]。先天性因素、膳食、环境、工作、发育成长阶段及雌激素类药物等多种因素都能成为乳腺癌的诱发因素[4-5]。目前,乳腺癌早期诊断普遍使用的是影像学检查(临床乳腺体格检查、超声、乳腺X线摄影、磁共振成像等)[6]以及肿瘤标志物(CEA、CA153、VEGF、TSGF等)临床筛查[7],前者操作复杂且具有一定的组织伤害性[8],后者局限于需多项联合检测且特异性不高[79],均难以满足临床需求。尽管手术、化疗技术在不断提高,但是抗肿瘤药物疗效有限,乳腺癌患者预后效果不佳,尤其是晚期复发和转移普遍。因此,寻找乳腺癌细胞早期代谢生物标志物,进行安全灵敏的早期诊断,对于乳腺癌诊疗具有重要意义[10]

    作为继基因组学、转录组学、蛋白质组学的后起之秀,代谢组学以研究不同病理生理或基因突变条件下对机体内源性小分子化合物代谢变化为核心[11]。内源性小分子化合物是基因和蛋白质的下游产物,从分子生物层面实时动态地反映上游基因及外部因素对机体功能的影响[12]。代谢组学采用以高灵敏度、高通量为特征的现代仪器分析技术方法,对机体的内源性小分子化合物进行动态分析[13]。伴随乳腺癌发展,患者机体内与氨基酸、糖类、脂质等代谢有关的小分子代谢物会发生异常变化。利用代谢组学方法,将改变的内源性代谢物作为生物标志物,在此基础上寻找相关代谢途径,合理推测乳腺癌的发病机制,揭示生物标志物与乳腺癌发生发展间的关联,最终帮助乳腺癌的临床诊疗。本文主要综述代谢组学在乳腺癌早期诊断、药理研究与药效评估、疾病进程监测以及预后评估的研究进展。

    代谢组学以相对分子质量<1000的内源性代谢物为研究对象,研究样本包括血浆、尿液、唾液、脑脊液、细胞以及组织提取液等[14-16],其中,血液和尿液最为常见[17],研究思路为收集生物样品、样品分离、检测鉴定、分析数据、建立模型、获取细胞活动终产物信息,整个过程综合分析优势明显。按照研究目的分类,非靶向代谢组学和靶向代谢组学是两种常见策略[18],前者进行轮廓分析,旨在获得较多的生物体内源性代谢物[12],后者通过靶向分析,希望获得特定的内源性代谢物[19]

    代谢组学目前主流的仪器分析方法为核磁共振法(NMR)和质谱(MS)联用技术,后者主要包括液相色谱-质谱联用法(LC-MS)、气相色谱-质谱联用法(GC-MS)[20],以上分析技术各有其特点。NMR可获取大量的物质结构信息,所得样品分析无偏向、无损伤但灵敏度较低[21]。MS通过有损的离子化分析,提供物质分子量及结构信息,灵敏度更高、扫描速度快[22],常与色谱在线联用以实现分离分析功能。GC-MS灵敏度高但不适用于热稳定性差的样品的分析,LC-MS则克服了GC-MS的劣势,可分析难挥发、热不稳定物质,分离选择性好、效率高,分析时间也随超高液相色谱-质谱联用法(UPLC-MS)的推广得到进一步缩短,因此LC-MS实际应用范围更广[1923]。近年来质谱成像(MSI)技术发展迅速,随之空间代谢组学作为代谢组学新的补充诞生,解决了传统代谢组学研究代谢物在组织中的空间信息缺失问题[24-26]

    代谢组学的数据分析步骤为数据预处理、数据归一化和数据统计,即通过数据的过滤、补齐、归一化等去除仪器或生物偏差后,利用统计方法处理代谢组数据,其中,统计方法是从高维复杂的数据中提取出有效信息的关键。统计方法按照变量的多少分为单变量统计方法和多变量统计方法。常用的单变量统计方法有t检验、非参数检验、方差分析,主要用于实验-对照类研究中寻找两组间的差异代谢物[27]。多变量分析方法有传统算法和机器算法两类,常用的传统算法有偏最小二乘法判别分析(PLS-DA)[28]及正交偏最小二乘法-判别分析(OPLS-DA)、主成分分析(PAC),以上又称为模式识别方法,适用于构建预测模型[29]。机器算法应用日益广泛[30],目前常用的有随机森林(RF)[31]、支持向量机(SVM)[32]、神经网络(ANNs)[33]等。经以上手段获取具有统计学意义的数据,再与多种生化及代谢的数据库对比,继而对所得物质筛选鉴定,最终寻找到潜在的代谢标志物。

    Catarina等[34]采用核磁共振氢谱(1H-NMR)分析了40位BC患者和38位对照(CTL)健康志愿者尿液代谢谱,采用K-S非参数检验和t检验及OPLS-DA等模式识别方法,发现BC患者肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、α-羟基异丁酸酯、甘露醇、谷氨酰胺等代谢物表现出高敏感性和特异性,代谢途径分析表明,差异代谢物出现可能与BC患者甘氨酸、谷氨酸、丁酸、糖酵解、TCA循环、牛磺酸和丙酮酸代谢途径遭到破坏有关。获得的差异代谢物具有作为生物标志物的潜力,可将BC患者与CTL区分,应用于早期诊断。

    约1/4乳腺癌细胞都是三阴性乳腺癌细胞(TNBC),其特点是易转移浸润且复发率高[16]。Fang等[35]基于早期发现的40种氨基酸目标化合物,使用亲水作用色谱法-串联质谱(HILIC-MS/MS),对TNBC、非TNBC及正常的乳腺上皮细胞36种细胞内和34种细胞外小分子物质进行代谢组学分析。运用Mann–Whitney U检验或Kruskal–Wallis检验及OPLS-DA模式识别方法研究,发现与正常细胞相比,两种乳腺癌细胞氨基酸代谢库均明显扩大;与非TNBC相比,TNBC细胞内谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、N-乙酰丝氨酸和N-乙酰甲硫氨酸代谢明显增加(变化倍数>2,P<0.01, VIP>1),TNBC对细胞外谷氨酰胺、丝氨酸、β-丙氨酸和赖氨酸摄取显著增加,对谷氨酸和L-半胱氨酸-谷胱甘肽排泄升高(P<0.01,VIP>1)。研究结果表明,TNBC细胞具有独特的氨基酸代谢特征,对其量化分析可为TNBC患者提供更多新的早期治疗目标靶点。

    Daniele等[36]使用液相色谱-四级杆飞行时间质谱(LC-Q-TOF/MS),对23名BC患者和35名口腔健康妇女唾液进行非靶向代谢组学分析,使用t检验、卡方检验等单因素统计方法,对比METLIN数据库,鉴定出乳腺癌组中有31种化合物上调(P<0.05),其中,患者与健康人群相比,发现7种寡肽(H-Arg-Arg-Ser-OH,H-His-Lys-(Ala-Ser)-OH or (Gly-Thr)-OH,H-Ala-Lys-Phe-Trp-OH or H-Gly-Lys-Thr-Ser-OH or H-Arg-Arg-Ser-Ser-OH,H-Phe-Ile-Gln-Arg-OH,H-Glu-Phe-Gln-Arg-OH or H-Ile-Lys-Gln-Trp-OH,H-Phe-Lys-Lys-Trp-OH or H-Phe-Gln-Arg-Tyr-OH,H-Phe-Phe-Gln-Trp-OH)和6种甘油磷脂(PG14∶2、PA32∶1、PS28∶0、PS40∶6、PI31∶1、PI38∶7)表达上调,表现出明显的代谢差异,说明唾液代谢物有望区分乳腺癌患者和健康人群,适用于早期诊断。

    依据不同亚型乳腺癌患者的代谢物差异性可以用于乳腺癌诊断甚至个性化治疗。Leticia等[37]采集了4种常见LA型、LB型、HER2+型和TN型乳腺癌患者和健康对照组的血浆样本,利用非靶向超高液相色谱-高分辨质谱(HPLC-HRMS)代谢组学方法进行分析,通过单变量非参数Wilcoxon秩和检验区分乳腺癌患者和健康受试者的数据差异,多变量PAC和PLS-DA评价统计模型质量,初步确定了4种乳腺癌分子亚型中变化显著的代谢物:LA,TN和HER2分子亚型患者血浆中L-色氨酸浓度显著降低,可能与L-色氨酸代谢激活芳烃受体帮助癌细胞免疫逃逸有关[38];4种亚型乳腺癌患者磷酸乙醇胺、磷脂血浆浓度降低,提示乳腺癌中脂质代谢差异具有重要意义。上述代谢组学数据表明,色氨酸和部分脂质具有作为乳腺癌诊断的生物标志物潜力,有望推动乳腺癌患者血浆诊断和个性化治疗的发展。

    基于以上研究,笔者对代谢组学在乳腺癌早期诊断中发现部分特征代谢物的应用进行归纳总结,见表1

    表  1  代谢组学在乳腺癌早期诊断中发现的特征代谢物
    作者样本来源技术方法统计学方法特征代谢物
    Catarina等尿液1H-NMRK-S非参数检验和t检验与PAC,PLS-DA和OPLS-DA肌酸、甘氨酸、丝氨酸、二甲胺、三甲胺N-氧化物、
    α-羟基异丁酸酯、甘露醇、谷氨酰胺等
    Fang等TNBC、非TNBC及正常的乳腺上皮细胞HILIC-MS/MSMann-Whitney U检验或Kruskal-Wallis检验与OPLS-DA胞内:谷氨酸、β-丙氨酸、天冬氨酸、谷胱甘肽、
    N-乙酰丝氨酸、N-乙酰甲硫氨酸
    胞外:谷氨酰胺、丝氨酸、β-丙氨酸、赖氨酸谷氨酸、
    L-半胱氨酸-谷胱甘肽
    Daniele等唾液UPLC-Q-TOF-MSt检验、卡方检验等7种寡肽和6种甘油磷脂
    Leticia等血浆HPLC-HRMS非参数Wilcoxon秩和检验、PAC、PLS-DA色氨酸、磷酸乙醇胺、磷脂
    下载: 导出CSV 
    | 显示表格

    综上所述,基于代谢组学,针对不同乳腺癌患者所能提供的研究样品,采用合适的仪器、数据分析方法获取差异显著的内源性小分子代谢物信息,有效减小检查手段对乳腺癌患者造成的机体损伤,并丰富乳腺癌早期诊断方法,使代谢组学成为乳腺癌早期诊断的有力辅助工具。

    癌细胞无限增殖需要大量的能量和物质基础。癌细胞具有特殊的代谢方式,即在有氧条件下倾向于糖酵解而不是三羧酸循环来产生能量[39],这种新陈代谢重编程称为Warburg效应[40]。一方面,糖酵解中间产物可以合成肿瘤细胞生长所需蛋白质和脂质等生物大分子[41],同时线粒体损伤可限制丙酮酸进入,使更多丙酮酸在胞质内通过无氧氧化释放能量[42]。另一方面,癌细胞可持续摄取营养物质[43]以及通过加强糖异生途径弥补Warburg效应缺陷。基于癌细胞特殊的代谢重编程,通过药物代谢组学分析,监测机体用药后内源小分子代谢物变化有利于乳腺癌药理研究和药效评估。

    Ghanem等[44]对经抗坏血酸处理的管腔和基底样乳腺癌细胞,进行了代谢组学分析,结合细胞存活率数据,发现高剂量抗坏血酸使得乳腺癌细胞糖酵解过程中磷酸丙糖途径(PPP)被严重破坏,ATP水平下降,代谢物重新定向积累为脂质小滴,以及磷酸戊糖途径中代谢物和酶活性增加;细胞死亡依赖于抗坏血酸诱导的氧化应激和ROS积累、DNA损伤以及细胞内辅助因子(包括NAD+/NADH)耗竭效应。综上表明,高剂量抗坏血酸通过诱发乳腺癌细胞“氧化还原危机和能量灾难”发挥细胞毒作用。

    Arminan等[45]通过NMR技术检测及主成分分析方法分析处理数据,以评估在N-(2-羟丙基)甲基丙烯酰胺-阿霉素共聚物(HPMA-Dox)影响下体外细胞培养模型和体内原位乳腺癌模型的精准抗癌效果,并结合蛋白质表达和流式细胞技术,研究了给药前后原位乳腺癌患者内源性小分子化合物相关生化改变,发现与游离Dox给药相比,用HPMA-Dox进行治疗后,乳腺癌细胞凋亡增加,糖酵解减弱,磷脂水平降低,且HPMA-Dox在体内模型的血液循环时间增加,同时肿瘤储积高、心脏储积低,说明HPMA-Dox药代动力学加强、组织分布得以优化。提示HPMA-Dox可作为一种更精确的抗癌药物模式用于乳腺癌临床治疗。

    Panis等[14]将120名单侧乳腺浸润性癌患者随机分为未经化疗组(CA组,n=50)、单剂量短期紫杉醇静脉滴注组(PTX组,n=30)、心脏剖面健康组(CTR组,n=40),采用LC-MS对其血浆样品进行分析后发现,与CA组乳腺癌患者相比,单剂量短期紫杉醇静脉滴注可使患者血浆高密度脂蛋白水平显著降低,过氧化氢水平升高;与CTR组相比,PTX组患者C反应蛋白和肌酸激酶分数明显升高。以上表明单剂量短期紫杉醇静脉滴注就足以引起脂质代谢显著改变,可能导致毒性累积效应,进一步增加乳腺癌患者心脏病发生风险。可见,代谢组学可参与化疗药物给药优化方案研究,提高药物抗癌效果。

    左旋肉碱、酰基肉碱和相关酶是癌症代谢网络中的重要介质。以往研究中LC-MS对乳腺癌中左旋肉碱、酰基肉碱的研究都是均质组织分析,缺乏异质性癌症组织中肉碱的空间分布差异[46]。Sun等[47]利用MSI对异种移植小鼠模型和人类癌组织样本及正常组织中的17种肉碱进行成像并开发了高空间分辨率基质辅助激光解吸电离-质谱成像(MALDI-MSI)方法,发现由170个癌症样本和128个正常样本组成的肉碱谱模型能准确区分乳腺癌,L-肉碱和短链酰基肉碱在人类乳腺癌和异种移植小鼠模型中都有显著改变,乳腺癌中由肉碱系统介导的β氧化代谢途径改变,并且首次发现代谢酶CPT2和CRAT在乳腺癌组织中差异表达。证明肉碱代谢在乳腺癌的代谢物和酶水平上都被重新编程。

    心理神经病症(PN)是指许多乳腺癌患者在化疗期间及化疗之后出现疼痛、疲劳和抑郁症状。Debra等[48]使用液相色谱高分辨率质谱法对19位早期乳腺癌女性化疗前后血清样本分别进行非靶向和靶向代谢组学分析,非靶向分析发现化疗后乳腺癌患者乙酰-L-丙氨酸和硫酸吲哚酚浓度升高,5-氧代-L-脯氨酸浓度降低;色氨酸途径靶向分析表明尿氨酸水平、犬尿氨酸/色氨酸水平升高。t检验和Pearson相关系数进一步揭示上述差异代谢物与PN症状显著相关,促进了早期乳腺癌女性PN症状发展程度生物学机制研究。

    研究表明,患者他莫昔芬体内代谢物因多昔芬浓度与雌激素受体α(ERα)阳性乳腺癌复发有关[49],同时他莫昔芬本身和其他代谢物也表现出抗雌激素抗肿瘤活性[50]。Vries等[50]用细胞增殖法测定他莫昔芬、(Z)-因多昔芬、(Z)-4-羟基他莫昔芬、N-去甲基他莫昔芬抗刺激素活性,建立抗雌激素活性评分模型(AAS),采用Cox回归方法研究AAS与复发的关系,证明因多昔芬浓度可作为他莫昔芬和代谢物抗雌激素作用的代替,与乳腺癌复发显著相关。

    Kamil等[51]用LC-MS/MS对小鼠原位接种4T1转移性乳腺癌细胞进行血浆代谢组学分析和脂质组学分析,建立PLS-DA模型。结果显示,荷癌小鼠癌细胞早期转移表现为L-精氨酸代谢减弱,精氨酸酶和多胺合成增强;晚期转移表现为精氨酸代谢途径改变,不对称二甲基精氨酸血浆浓度升高,能量代谢重新编程为糖酵解,戊糖磷酸途径加速以及三羧酸循环速率降低,脂质分布模式改变,包括总磷脂酰胆碱减少,与二酯结合的磷脂分数减少以及溶血磷脂增加,以上代谢变化在一定程度上表征了癌症转移进展。

    目前,OncotypeDX 21基因表达检测技术常用来评估乳腺癌的复发以指导乳腺癌治疗,但在临床的不确定性和基因组不一致的情况下,许多早期乳腺癌的患者仍然会受到过度治疗[52-54]。McCartney等[55]利用1H-NMR分析了87例内分泌受体阳性、HER2阴性早期乳腺癌(eBC)患者血清,使用RF建立eBC患者复发风险的统计模型。最终根据代谢组学特征进一步细分复发风险,并有效区分了每个Oncotype风险分类:在7例复发中代谢组学分析准确预测了其中的6例,1例复发发生在低风险组,3例发生在中风险组,3例发生在高风险组,成功建立了一种通过血清代谢组学分析进一步完善OncotypeDX基因检测风险评分的方法。

    乳腺癌在全球发病率日益上升,长期困扰广大女性健康,成为全球医疗卫生领域研究焦点[56]。目前,乳腺癌的早期诊断、药物开发应用以及预后测评等方面还需攻克众多难关,迫切需要新的研究技术的支持。代谢组学以高通量、高灵敏度为特征的技术在乳腺癌领域应用日趋广泛,为乳腺癌潜在代谢标志物的筛选,药物靶点发现、药物潜在作用机制等提供新思路[11]。与其他研究方法相比,代谢组学具有无创取样、研究对象相对简单、检测工作量较小、可实现实时监测、全面综合分析等明显优势。同时,代谢组学作为一门新兴组学,虽然已取得部分进展,但本身发展仍处于探索阶段,应用于临床实践还有所不足:代谢组学研究具有数据维度高的特点,采集与处理过程中可能存在信息丢失、低含量差异代谢物可能被掩盖的问题;数据库不够完善,目前大量未知代谢物的结构鉴定和细胞功能研究困难,对已鉴定出产物的变化机制研究大多仍不明确难以直接指导临床;联用技术操作和数据分析处理的综合性专业人才储备不足等。在精准医疗浪潮推动下,进一步完善代谢组学研究的标准化流程后,利用代谢组学与基因组学、转录组学、蛋白组学以及微生物菌群学[57]对乳腺癌进行多学科技术互补、大数据综合分析,将有利于乳腺癌的早期诊断、发病机制研究以及疾病预后相关诊疗方案的系统优化,为乳腺癌个性化靶向治疗提供更合理的科学指导。

  • 图  1  心血管芯片模拟图

    A.芯片结构设计图; B.心血管芯片结构示意图; C.通道截面图

    图  2  糖萼免疫荧光染色图

    图  3  雷公藤甲素对HUVEC细胞活力评价结果

    图  4  四种毒素对HUVEC细胞活力评价结果

    A.大田软海绵酸; B.芋螺毒素; C.河豚毒素; D.环亚胺毒素*P<0.05,**P<0.01,与对照组比较

    图  5  四种毒素在雷公藤甲素预保护后对HUVEC细胞活力评价结果

    A.大田软海绵酸; B.芋螺毒素; C.河豚毒素; D.环亚胺毒素

    图  6  毒素对心血管芯片上糖萼的损伤情况

    A.糖萼免疫荧光染色图; B~D.分别为芋螺毒素、河豚毒素、环亚胺毒素的糖萼量化分析结果,**P<0.01,与对照组比较

    图  7  雷公藤甲素预保护后毒素对心血管芯片上糖萼的损伤情况

    A.糖萼免疫荧光染色图; B~D.分别为芋螺毒素、河豚毒素、环亚胺毒素的糖萼量化分析结果,*P<0.05,与对照组比较

    表  1  心血管芯片上的糖萼损伤率

    毒素给药浓度(μmol/L)糖萼损伤率(%)
    预保护前预保护后
    CTX0.536.3014.90
    548.0413.47
    2052.2826.52
    TTX0.0429.556.52
    0.440.306.69
    441.9714.60
    GYM423.530.22
    1025.893.65
    4040.416.01
    下载: 导出CSV
  • [1] BARRECA M, SPANÒ V, MONTALBANO A, et al. Marine anticancer agents: an overview with a particular focus on their chemical classes[J]. Mar Drugs,2020,18(12):619. doi:  10.3390/md18120619
    [2] YOSHIZUMI M, ABE J I, TSUCHIYA K, et al. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases[J]. J Pharmacol Sci,2003,91(3):172-176. doi:  10.1254/jphs.91.172
    [3] 陈巧莉, 杨兵, 洪晴悦, 等. 海洋生物毒素的分类、毒害作用机制及检测技术研究进展[J]. 食品科学, 2021, 42(5):321-331. doi:  10.7506/spkx1002-6630-20200326-380
    [4] FU L L, ZHAO X Y, JI L D, et al. Okadaic acid (OA): Toxicity, detection and detoxification[J]. Toxicon,2019,160:1-7. doi:  10.1016/j.toxicon.2018.12.007
    [5] JIN A H, MUTTENTHALER M, DUTERTRE S, et al. Conotoxins: chemistry and biology[J]. Chem Rev,2019,119(21):11510-11549. doi:  10.1021/acs.chemrev.9b00207
    [6] BUCCIARELLI G M, LECHNER M, FONTES A, et al. From poison to promise: the evolution of tetrodotoxin and its potential as a therapeutic[J]. Toxins,2021,13(8):517. doi:  10.3390/toxins13080517
    [7] OTERO P, SILVA M. Emerging marine biotoxins in European waters: potential risks and analytical challenges[J]. Mar Drugs,2022,20(3):199. doi:  10.3390/md20030199
    [8] KIMURA H, SAKAI Y, FUJII T. Organ/body-on-a-chip based on microfluidic technology for drug discovery[J]. Drug Metab Pharmacokinet,2018,33(1):43-48. doi:  10.1016/j.dmpk.2017.11.003
    [9] CUCULLO L, HOSSAIN M, PUVENNA V, et al. The role of shear stress in Blood-Brain Barrier endothelial physiology[J]. BMC Neurosci,2011,12:40. doi:  10.1186/1471-2202-12-40
    [10] TARBELL J M, CANCEL L M. The glycocalyx and its significance in human medicine[J]. J Intern Med,2016,280(1):97-113. doi:  10.1111/joim.12465
    [11] 张诗雨, 张静, 高攀, 等. 雷公藤甲素对血管内皮细胞炎症反应的影响及机制研究[J]. 时珍国医国药, 2021, 32(7):1537-1541. doi:  10.3969/j.issn.1008-0805.2021.07.01
    [12] 宗佳琪, 王烁阳, 苏萍, 等. TLR4/NF-κB p65信号通路介导雷公藤甲素对内毒血症大鼠内皮保护作用[J]. 中国中药杂志, 2019, 44(22):4912-4917.
  • [1] 徐璐璐, 刘爱军.  丹参白术方“异病同治”冠心病、血管性痴呆、特发性膜性肾病的网络药理学作用机制研究 . 药学实践与服务, 2025, 43(3): 143-150. doi: 10.12206/j.issn.2097-2024.202312027
    [2] 段禹, 刘爱军.  活血化瘀法治疗血管性痴呆的研究进展 . 药学实践与服务, 2025, 43(4): 1-6. doi: 10.12206/j.issn.2097-2024.202408045
    [3] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 1-7. doi: 10.12206/j.issn.2097-2024.202406035
    [4] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [5] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [6] 游飘雪, 陈兰, 施艺玮, 王辉, 晁亮, 洪战英.  脑胶质瘤微流控芯片模型的构建及中药半枝莲药效评价应用研究 . 药学实践与服务, 2025, 43(2): 59-66. doi: 10.12206/j.issn.2097-2024.202409034
    [7] 张俊丽, 李媛媛, 尹静, 杨鸿源, 白耀武.  咪达唑仑调节PINK1/PARKIN信号通路对缺血性脑卒中大鼠神经元损伤的影响 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405024
    [8] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [9] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [10] 冯一帆, 严啸东, 张文彬, 李炳锋, 郭美丽.  菸花苷长期给药对脑缺血再灌注损伤大鼠神经功能的影响 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407038
    [11] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [12] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [13] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [14] 徐尧, 马春辉, 李志勇.  高血压对心血管纤维化及sFRP2表达的影响 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409055
    [15] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [16] 杨念, 张博乐, 张俊霞, 张振强.  一种中药组合物对ANIT诱导的小鼠胆汁淤积肝损伤的保护作用研究 . 药学实践与服务, 2024, 42(12): 508-511, 519. doi: 10.12206/j.issn.2097-2024.202305008
    [17] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3504
  • HTML全文浏览量:  1318
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-09-01
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-03-25

基于心血管芯片模型的4种深海毒素致伤评价与雷公藤甲素的保护作用研究

doi: 10.12206/j.issn.2097-2024.202206018
    基金项目:  国家自然科学基金项目(81872829、82173777);国家科技部重点研发计划(2019YFC0312600)
    作者简介:

    何晓莉,硕士研究生,研究方向:细胞代谢组学研究,Email:919852027@qq.com,Tel:15980220432

    通讯作者: 洪战英,教授,研究方向:微流控芯片药学研究,Email:hongzhy001@163.com,Tel:81871269

摘要:   目的  构建一种心血管芯片模型,评估四种海洋毒素即大田软海绵酸(OA)、芋螺毒素(CTX)、河豚毒素(TTX)和环亚胺毒素(GYM)对血管糖萼组织的损伤,初步探索雷公藤甲素对毒素致伤的保护作用。  方法  将人脐静脉内皮细胞(HUVEC)接种于三通道结构的微流控芯片,并对所构建的心血管芯片模型进行表征。采用CCK-8法和免疫荧光染色法分析低、中、高三个浓度的海洋毒素对细胞活力和糖萼组织损伤情况,以及雷公藤甲素对毒素致伤的保护作用。  结果  所构建心血管器官芯片中的细胞生长状态良好,具有结构完整的糖萼组织,与对照组相比,OA中、高浓度以及GYM高浓度均对细胞活力具有一定抑制(P<0.05),CTX和TTX在所测浓度下对细胞没有明显活力抑制,但是四种毒素均引起细胞表面糖萼组织的严重损伤(P<0.01),且随着浓度增加,糖萼损伤率升高。经雷公藤甲素预保护后,四种毒素对HUVEC的毒性显著降低,糖萼组织损伤率下降。  结论  四种毒素对HUVEC细胞活力以及表面的糖萼组织具有损伤,且呈一定的剂量关系,而雷公藤甲素对毒素损伤后的HUVEC细胞具有保护作用。

English Abstract

马小雨, 罗彩萍, 刘悦. 代谢组学在乳腺癌诊疗中应用的研究进展[J]. 药学实践与服务, 2023, 41(3): 139-145. doi: 10.12206/j.issn.2097-2024.202109112
引用本文: 何晓莉, 施艺玮, 陈兰, 刘悦, 洪战英. 基于心血管芯片模型的4种深海毒素致伤评价与雷公藤甲素的保护作用研究[J]. 药学实践与服务, 2023, 41(3): 149-154, 159. doi: 10.12206/j.issn.2097-2024.202206018
MA Xiaoyu, LUO Caiping, LIU Yue. Application of metabonomics in breast cancer[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(3): 139-145. doi: 10.12206/j.issn.2097-2024.202109112
Citation: HE Xiaoli, SHI Yiwei, CHEN Lan, LIU Yue, HONG Zhanying. Evaluation of toxin-induced injury and protective effect of triptolide based on a cardiovascular chip model[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(3): 149-154, 159. doi: 10.12206/j.issn.2097-2024.202206018
  • 海洋生物毒素是一类由海洋生物产生的天然活性物质,具有化学结构新颖,生物活性高,作用于钠、钾、钙等离子通道等特点,有望开发为先导化合物,为新型海洋药物的研发提供新策略,但其强烈毒性和高致死率也对人类健康产生巨大威胁[1]。目前,药物毒性评价多采用细胞模型和动物模型,由于细胞模型不能重现体内真实环境,动物模型存在伦理和物种差异等问题,近年来,在微流控技术基础上发展起来的器官芯片模型,可以模拟体内组织器官的结构和功能,再现体内微环境,在药物毒性评价与检测领域展现出极大潜力。本文构建了一种可模拟心血管结构与功能的心血管芯片模型,用于四种典型的深海毒素,即大田软海绵酸(OA)、芋螺毒素(CTX)、河豚毒素(TTX)和环亚胺毒素(GYM)的致伤评价,并初步探索了雷公藤甲素对毒素致伤的保护作用,旨在为深海毒素的防护提供参考。

    • SC-1B匀胶机、BP-2B型烘胶台(北京创世威纳科技有限公司);JKG-2A光刻机(上海学泽光学机械有限公司);PDC-32G-2型等离子清洗机(美国Harrick公司);CKX41型高倍显微镜(日本OLYMPUS公司);Harris Uni-Corel 15072型打孔器(美国Harris公司);超净工作台、CO2细胞培养箱、离心机、超低温冰箱(美国Thermo Fisher公司);Synergy 4多功能酶标仪(美国Bio-TEK公司);Harvard蠕动泵p-70(美国Harvard仪器公司);十万分之一电子分析天平(日本A&D公司)。

      聚二甲基硅氧烷(PDMS)预聚剂和固化剂(美国Dow Corning公司);硅单面抛光片、显影液(苏州汶颢芯片科技有限公司);SU-82 075光刻胶(美国Microchem公司)、磷酸盐缓冲盐(PBS)、96培养孔板(美国Corning公司);无菌注射器(江苏恒康公司);PE/20软管(美国Scientific Commodities公司);多聚赖氨酸溶液(北京索莱宝科技有限公司);DMEM/F-12培养基(美国Hyclone公司);胎牛血清(加拿大MULTICELL公司);青霉素-链霉素溶液、胰蛋白酶(美国Gibco公司);CCK-8检测试剂盒(大连美仑生物有限公司);山羊血清、Tween-20溶液(碧云天生物科技公司);荧光素异硫氰酸酯标记的小麦胚芽凝集素(WGA-FITC)、二甲基亚砜(DMSO)、大田软海绵酸、河豚毒素、环亚胺毒素(北京普华仕科技发展有限公司);芋螺毒素(上海楚肽生物科技有限公司);雷公藤甲素(上海陶素生物科技有限公司)。所有化学试剂除特殊说明外均为分析纯。

    • 精密称取OA溶解于DMSO,配置浓度为31 μmol/L的储备液;CTX溶解于超纯水中,配置浓度为200 μmol/L的储备液;TTX溶解于0.1%甲酸溶液,配置浓度为313 μmol/L的储备液;5 μmol/L的GYM标准溶液,氮气吹干后培养基复溶,于−20 ℃保存。用培养基稀释至低、中、高三个浓度的溶液:OA(10、50、100 nmol/L)、CTX(0.5、5、20 μmol/L)、TTX(0.04、0.4、4 μmol/L)、GYM(4、10、40 μmol/L)。雷公藤甲素溶解于DMSO,配置浓度为10 mmol/L的储备液,培养基稀释至实验浓度0.5、1、3、10、20、50 μmol/L。

    • 人脐静脉内皮细胞(HUVEC)购买自美国ATCC细胞库,培养于含10%胎牛血清和1%青霉素-链霉素的DMEM/F-12培养基中,置于37 ℃、5% CO2培养箱中培养,取对数生长期细胞用于后续实验。

    • 使用AutoCAD软件设计、软光刻技术制备三通道并列的微流控芯片,如图1所示。将凝血酶(4 U/ml)、PBS和纤维蛋白原(100 mg/ml)按25∶22∶3比例混匀加入芯片胶原通道;血管通道加入PBS稀释的基质胶(1∶50,V/V)后加入对数生长期的HUVEC细胞(3×106 cells/ml);在外部设备上,使用蠕动泵灌注培养基,人体血流剪切应力为5~20 dyn/cm2,参照剪切应力公式τ=6 μQ/h2w计算流体流速(其中τ为流体剪切应力,μ为流体粘滞度,Q为流体流速,h和w分别为芯片内细胞培养腔的高度和宽度),模拟细胞在体内所受的血流剪切应力,于体外重构心血管微环境[2]

      图  1  心血管芯片模拟图

    • 取对数生长期的HUVEC细胞,按5 000 cells/孔的细胞密度接种于96孔板,空白组不加细胞。24 h后吸除原培养基,空白组与正常对照组各孔中只加入细胞培养液,实验组中加入含有不同浓度的毒素试液,每孔100 μl,每组6个平行。24 h后观察细胞形态,向各组每孔中加入10%的CCK-8溶液,避光孵育1 h。酶标仪检测450 nm处各样品的吸光度值(OD)计算相对细胞活力。

      相对细胞活力(%)=[(OD药物−OD空白)/(OD对照−OD空白)]×100

    • 于心血管芯片模型血管通道加入20 μl不同浓度的毒素,24 h后用PBS缓慢润洗通道内细胞。将4%多聚甲醛缓慢注入到芯片微通道内,固定20 min,PBS润洗去除通道内残留的多聚甲醛。加入10%山羊血清的PBST(PBS+0.1% Tween-20),封闭30 min。在通道内加入适量的WGA-FITC(WGA-FITC∶PBS=1∶200,V/V),避光孵育1 h。芯片通道PBS润洗3次,每次5 min,荧光倒置显微镜下观察并采集数据。根据毒素损伤前后WGA-FITC染色荧光强度(MFI)变化情况计算糖萼损伤率。

      糖萼损伤率(%)=[1−(MFI损伤/MFI正常)]×l00

    • 考察不同浓度的雷公藤甲素对HUVEC细胞活性的影响,筛选出雷公藤甲素的最佳预保护浓度用于后续实验。取对数生长期的HUVEC细胞接种于96孔板,向实验组、对照组各孔中分别加入雷公藤甲素预保护1 h。实验组加入不同浓度的毒素溶液,CCK-8法评价雷公藤甲素对毒素损伤后HUVEC细胞的保护作用,实验步骤详见“1.5”项。

      采用上述构建的心血管芯片模型,于血管通道内加入雷公藤甲素预保护1 h后,实验组加入不同浓度的毒素,考察雷公藤甲素对毒素损伤血管糖萼组织保护作用,实验步骤详见“1.6”项。

    • 采用Image J软件计算免疫荧光强度表达,GraphPad Prism 7统计学软件进行数据分析,组间比较采用单因素方差分析,*P<0.05,**P<0.01表示差异有统计学意义。

    • 以1 μl/min的流速动态培养细胞,HUVEC细胞在所构建的心血管器官芯片模型中生长状态良好,存活率高。经WGA-FITC免疫荧光染色,可清楚观察到结构完整的血管内皮糖萼,符合体外心血管模型的要求,如图2所示。

      图  2  糖萼免疫荧光染色图

    • 采用CCK-8法考察不同浓度的雷公藤甲素对HUVEC细胞活力的影响,结果如图3所示,在测试浓度范围内,雷公藤甲素对HUVEC细胞不存在明显的活力抑制,选择浓度为1 μmol/L的雷公藤甲素进行后续实验。

      图  3  雷公藤甲素对HUVEC细胞活力评价结果

    • 采用CCK-8法测定雷公藤甲素预保护前后,低、中、高三个浓度的毒素对HUVEC细胞活力的影响。与对照组相比,OA在中、高浓度下对细胞活力具有较强的抑制作用(P<0.01),其IC50为54.12 nmol/L。GYM在高浓度对细胞活力有较大影响(P<0.05),但是在加入1 μmol/L雷公藤甲素预保护后,OA与GYM对细胞的毒性显著降低,细胞活力与对照组相比无显著性差异,说明雷公藤甲素对OA和GYM损伤HUVEC细胞具有一定的保护作用。而CTX、TTX在雷公藤甲素预保护前后,对HUVEC细胞活力均无显著抑制作用,结果如图45所示。

      图  4  四种毒素对HUVEC细胞活力评价结果

      图  5  四种毒素在雷公藤甲素预保护后对HUVEC细胞活力评价结果

    • 在所建立的心血管芯片平台上研究雷公藤甲素对四种毒素产生细胞内皮糖萼损伤的保护作用,免疫荧光染色结果如图6图7所示。OA作用后,HUVEC细胞出现皱缩、变圆、体积变小等形态变化,且随着实验浓度的增大,所呈现的上述细胞形态变化加剧,培养液中可见大量细胞碎片和悬浮的死细胞,说明OA对HUVEC细胞毒性较强,不仅对细胞糖萼有较严重的损伤,还影响了细胞与芯片PDMS基底的贴附水平,心血管芯片结构和功能受损。CTX、TTX和GYM作用后,HUVEC细胞受到不同程度的损伤,内皮细胞糖萼的WGA-FITC染色荧光强度信号与对照组相比均明显降低,具有统计学意义(P<0.01)。经雷公藤甲素预保护后,低浓度OA所产生的细胞损伤得以减轻,糖萼损伤率为28.20%,但是中浓度和高浓度作用下的细胞依旧损伤严重。除OA外,其余三种毒素作用后的糖萼WGA-FITC染色荧光强度均有明显升高,糖萼损伤率见表1

      图  6  毒素对心血管芯片上糖萼的损伤情况

      图  7  雷公藤甲素预保护后毒素对心血管芯片上糖萼的损伤情况

      表 1  心血管芯片上的糖萼损伤率

      毒素给药浓度(μmol/L)糖萼损伤率(%)
      预保护前预保护后
      CTX0.536.3014.90
      548.0413.47
      2052.2826.52
      TTX0.0429.556.52
      0.440.306.69
      441.9714.60
      GYM423.530.22
      1025.893.65
      4040.416.01
    • 海洋生物中的活性物质有很多,对海洋生物毒素研究却是冰山一角。海洋生物毒素根据化学结构的不同常分为三类:聚醚类、多肽类和生物碱类毒素[3]。OA是一种聚醚类化合物,是近年来研究最突出的一种海洋生物毒素,研究发现暴露于OA会导致细胞凋亡以及促进肿瘤和癌症的发生,对人体造成很大危害[4]。多肽类毒素以CTX最具代表性,CTX能特异性地作用于神经递质受体以及多种离子通道,不仅可直接作为药物,还可作为分子工具发展新药先导化合物,对神经生物学的研究具有重要意义[5]。TTX是一种生物碱类毒素,可选择性地与钠离子通道受体结合,研究发现,TTX的麻醉效果强,持续时间长,在镇痛、镇静方面应用前景广泛[6]。随着对海洋生物研究的深入,一些新的毒素也陆续被发现。GYM是一种具有环亚胺结构的毒素,相对于其他三种毒素发现较晚、毒性较弱,但其降解速度缓慢,存在长期毒性效应,在生态系统中的潜在风险不容忽视[7]。尽管海洋生物毒素的研究越来越受到人们的重视,但是现有的评价模型限制了毒素研究工作的进一步开展。

      微流控器官芯片模型利用微流控技术对流体进行精确调控,模拟生物体内环境,在体外进行器官生理及病理状态的复制,到目前为止,已经实现肝、肾、肠道等多种器官芯片的构建,在药物筛选、药效和毒性评价方面显示出良好的应用前景[8]。大量研究表明,血液循环流动产生的剪切应力对内皮细胞分化、生长状态和功能表达有着重要作用[9]。本研究基于微流控技术构建心血管芯片模型,将HUVEC细胞接种于三通道的微流控芯片中,通过蠕动泵控制培养基流动速度为1 μl/min,有利于营养物质的输送和废物排出,与静态培养相比,细胞所处的动态环境更接近体内生理条件,心血管芯片模型中的细胞生长状态良好,形态呈铺路石样。

      糖萼是存在于内皮细胞表面的多糖-蛋白复合物,参与调节炎症反应、血管通透性、凝血平衡在内的多种生理过程,是血管内皮细胞发挥生物功能的重要结构[10]。本研究采用免疫荧光染色法,通过FITC-WGA与HUVEC细胞中糖萼的葡萄糖胺基团选择性结合,测量其荧光强度以反映细胞糖萼损伤情况。结果显示,在实验浓度范围内,OA对细胞具有较大毒性,对糖萼组织损害严重;40 μmol/L的GYM对细胞活力有较强的抑制作用,糖萼损伤率高达40.41%;而TTX和CTX两种毒素对HUVEC细胞无明显活力抑制,但是其糖萼组织受损严重,可见这两种毒素虽然本身对细胞不存在明显的毒性作用,但是通过其他途径与细胞上的结构组织相互作用,从而影响细胞的功能表达。

      雷公藤甲素是卫矛科植物雷公藤的主要活性成分,具有抗炎、抗菌、抗肿瘤等药理作用,但是对心血管的作用尚未完全明确。张诗雨等[11]发现雷公藤甲素可作用于血管内皮细胞核转录因子NF-κB,改善脂多糖(LPS)刺激HUVEC细胞所产生的炎症反应。宗佳琪等[12]在LPS诱导的内毒血症大鼠的心血管功能损伤研究中,同样也发现雷公藤甲素对血管内皮相似的保护作用。本研究初步探索了雷公藤甲素对毒素致伤的保护作用,结果显示,经1 μmol/L雷公藤甲素预保护后,四种毒素作用下的细胞活力与对照组相当,对实验浓度范围内CTX、TTX、GYM以及低浓度OA所产生的糖萼损伤具有一定保护作用。

      综上,本文构建了一种心血管芯片模拟心血管结构与功能,包括血管表面的糖萼组织。应用该芯片考察了OA、TTX、CTX和GYM四种深海毒素的毒性效应,发现四种毒素对HUVEC细胞活力以及表面的糖萼组织具有损伤,且呈一定的剂量关系,而雷公藤甲素对上述毒素致伤具有保护作用。

参考文献 (12)

目录

/

返回文章
返回