留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度

童萃 陈顺 王志鹏 高守红

童萃, 陈顺, 王志鹏, 高守红. UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度[J]. 药学实践与服务, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
引用本文: 童萃, 陈顺, 王志鹏, 高守红. UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度[J]. 药学实践与服务, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
TONG Cui, CHEN Shun, WANG Zhipeng, GAO Shouhong. UHPLC-MS/MS determination of uracil and dihydrouracil in human plasma[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
Citation: TONG Cui, CHEN Shun, WANG Zhipeng, GAO Shouhong. UHPLC-MS/MS determination of uracil and dihydrouracil in human plasma[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011

UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度

doi: 10.12206/j.issn.1006-0111.202102011
基金项目: 上海市科委医学引导项目(17411972400)
详细信息
    作者简介:

    童 萃,药师,Email:705802791@qq.com

    通讯作者: 高守红,副主任药师,研究方向:药物分析与临床药学,Email:gaoshouhong@126.com
  • 中图分类号: R917

UHPLC-MS/MS determination of uracil and dihydrouracil in human plasma

  • 摘要:   目的  建立同时测定人血浆中尿嘧啶(U)和二氢尿嘧啶(UH2)含量的超高效液相色谱串联质谱(UHPLC-MS/MS)方法。  方法  在Agilent 6460A串联质谱仪上采用正离子检测模式,以氯尿嘧啶为内标,3%牛血清蛋白为代血浆基质,样本经乙酸乙酯液液萃取后在Agilent poroshell 120 SB-Aq (2.1 mm×100 mm,2.7 μm)色谱柱上采用梯度洗脱进行色谱分离。流动相为5 mmol/L醋酸铵水溶液和乙腈溶液;流速0.3 ml/min;柱温为30 ℃;进样量为5 μl。  结果  尿嘧啶和二氢尿嘧啶的线性范围为10.0~1500.0 ng/ml,线性关系良好,其相关系数r>0.990,日内与日间精密度偏差均<15%。  结论  该方法操作简单、选择性好,可用于测定人血浆中尿嘧啶和二氢尿嘧啶的含量。
  • 图  1  尿嘧啶和二氢尿嘧啶及内标质谱多反应监测色谱图

    A.空白BSA ;B.空白BSA添加内标样本 ;C.定量下限(LLOQ)标添样本。

    图  2  实测8名健康成人内源性U和UH2浓度值

    表  1  尿嘧啶和二氢尿嘧啶的精密度 (n=5)

    分析物标示浓度 (ng/ml)日内日间
    测定浓度 (ng/ml)精密度(CV%)准确性(RE%)测定浓度 (ng/ml)精密度(CV%)准确性(RE%)
    尿嘧啶1010.2±0.383.742.5810.12±0.787.701.18
    2020.63±1.215.873.1519.97±1.356.74−0.16
    500529.73±4.640.885.95484.32±35.727.37−3.12
    10001093.33±25.102.309.331098.25±25.162.299.82
    二氢尿嘧啶1010.32±0.716.863.1810.28±0.656.372.77
    2019.98±2.1910.95−0.1219.86±1.859.31−0.72
    500517.51±10.692.073.50515.66±10.362.013.13
    10001079.83±17.911.667.981080.11±24.502.278.01
    下载: 导出CSV

    表  2  尿嘧啶和二氢尿嘧啶的基质效应和提取回收率

    分析物标识浓度(ng/ml)基质效应提取回收率
    平均基质效应CV(%)平均回收率CV(%)
    尿嘧啶1000101.006.1594.989.01
    2099.993.63100.017.64
    二氢尿嘧啶100085.722.07106.471.58
    2093.584.5399.549.77
    下载: 导出CSV

    表  3  样品的稳定性(RE%)

    分析物冻融3次室温放置6 h置自动进样器24 h
    尿嘧啶100.7198.3493.49106.60108.20107.99
    二氢尿嘧啶92.6792.6493.61107.26106.97107.15
    下载: 导出CSV
  • [1] SHARMA V, GUPTA S K, VERMA M. Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs[J]. Cancer Chemother Pharmacol,2019,84(6):1157-1166. doi:  10.1007/s00280-019-03936-w
    [2] KOBUCHI S, AKUTAGAWA M, ITO Y, et al. Association between the pharmacokinetics of capecitabine and the plasma dihydrouracil to uracil ratio in rat: a surrogate biomarker for dihydropyrimidine dehydrogenase activity[J]. Biopharm Drug Dispos,2019,40(1):44-48. doi:  10.1002/bdd.2168
    [3] AMSTUTZ U, FROEHLICH T K, LARGIADÈR C R. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity[J]. Pharmacogenomics,2011,12(9):1321-1336. doi:  10.2217/pgs.11.72
    [4] DEENEN M J, TOL J, BURYLO A M, et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer[J]. Clin Cancer Res,2011,17(10):3455-3468. doi:  10.1158/1078-0432.CCR-10-2209
    [5] SISTONEN J, BÜCHEL B, FROEHLICH T K, et al. Predicting 5-fluorouracil toxicity: DPD genotype and 5, 6-dihydrouracil: uracil ratio[J]. Pharmacogenomics,2014,15(13):1653-1666. doi:  10.2217/pgs.14.126
    [6] ROBIN T, SAINT-MARCOUX F, TOINON D, et al. Automatic quantification of uracil and dihydrouracil in plasma[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2020,1142:122038. doi:  10.1016/j.jchromb.2020.122038
    [7] ANTUNES M V, RAYMUNDO S, CEZIMBRA DA SILVA A C, et al. Determination of endogenous concentrations of uracil and dihydrouracil in dried saliva spots by LC-MS/MS: method development, validation, and clinical application[J]. Ther Drug Monit,2019,41(3):383-390. doi:  10.1097/FTD.0000000000000615
    [8] CHAVANI O, JENSEN B P, STROTHER R M, et al. Development, validation and application of a novel liquid chromatography tandem mass spectrometry assay measuring uracil, 5, 6-dihydrouracil, 5-fluorouracil, 5, 6-dihydro-5-fluorouracil, α-fluoro-β-ureidopropionic acid and α-fluoro-β-alanine in human plasma[J]. J Pharm Biomed Anal,2017,142:125-135. doi:  10.1016/j.jpba.2017.04.055
    [9] JACOBS B A, ROSING H, DE VRIES N, et al. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of uracil and dihydrouracil in human plasma[J]. J Pharm Biomed Anal,2016,126:75-82. doi:  10.1016/j.jpba.2016.04.039
    [10] ZHENG N Y, ZENG J N, JI Q C, et al. Bioanalysis of dried saliva spot (DSS) samples using detergent-assisted sample extraction with UHPLC-MS/MS detection[J]. Anal Chim Acta,2016,934:170-179. doi:  10.1016/j.aca.2016.05.057
    [11] 肖力, 任斌, 陈小陆, 等. 高效液相色谱法测定人血浆中内源性尿嘧啶和二氢尿嘧啶含量[J]. 中国医院药学杂志, 2008, 28(2):112-114. doi:  10.3321/j.issn:1001-5213.2008.02.010
    [12] CASNEUF V, BORBATH I, VAN DEN EYNDE M, et al. Joint Belgian recommendation on screening for DPD-deficiency in patients treated with 5-FU, capecitabine (and tegafur)[J]. Acta Clin Belg,2021:1-7.
    [13] DOLAT M, MACAIRE P, GOIRAND F, et al. Association of 5-FU therapeutic drug monitoring to DPD phenotype assessment may reduce 5-FU under-exposure[J]. Pharmaceuticals (Basel),2020,13(11):E416. doi:  10.3390/ph13110416
  • [1] 陈方剑, 赵娟娟, 叶侃倜, 孙煜昕, 刘继勇, 杨骏.  血通胶囊提取工艺优化及质量控制研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409003
    [2] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [3] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(12): 528-532. doi: 10.12206/j.issn.2097-2024.202305005
    [4] 舒飞, 孙蕊, 宋凯, 张元林, 闫家铭, 舒丽芯.  粉-液双室袋产品综合评估 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202312009
    [5] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [6] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202401072
    [7] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [8] 陈方剑, 骆锦前, 王志君, 胡叶帅, 孙煜昕, 宋洪杰.  HPLC-MS/MS同时测定感冒安颗粒中5种黄酮成分的含量 . 药学实践与服务, 2024, 42(9): 402-406. doi: 10.12206/j.issn.2097-2024.202403030
    [9] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [10] 李丹, 戴贤春, 王芳珍, 陈奕含, 杨萍, 刘继勇.  HPLC-MS/MS测定当归六黄汤中4种不同成分的含量 . 药学实践与服务, 2024, 42(6): 248-252, 266. doi: 10.12206/j.issn.2097-2024.202305007
    [11] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  4731
  • HTML全文浏览量:  2081
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-06-03
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-07-25

UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度

doi: 10.12206/j.issn.1006-0111.202102011
    基金项目:  上海市科委医学引导项目(17411972400)
    作者简介:

    童 萃,药师,Email:705802791@qq.com

    通讯作者: 高守红,副主任药师,研究方向:药物分析与临床药学,Email:gaoshouhong@126.com
  • 中图分类号: R917

摘要:   目的  建立同时测定人血浆中尿嘧啶(U)和二氢尿嘧啶(UH2)含量的超高效液相色谱串联质谱(UHPLC-MS/MS)方法。  方法  在Agilent 6460A串联质谱仪上采用正离子检测模式,以氯尿嘧啶为内标,3%牛血清蛋白为代血浆基质,样本经乙酸乙酯液液萃取后在Agilent poroshell 120 SB-Aq (2.1 mm×100 mm,2.7 μm)色谱柱上采用梯度洗脱进行色谱分离。流动相为5 mmol/L醋酸铵水溶液和乙腈溶液;流速0.3 ml/min;柱温为30 ℃;进样量为5 μl。  结果  尿嘧啶和二氢尿嘧啶的线性范围为10.0~1500.0 ng/ml,线性关系良好,其相关系数r>0.990,日内与日间精密度偏差均<15%。  结论  该方法操作简单、选择性好,可用于测定人血浆中尿嘧啶和二氢尿嘧啶的含量。

English Abstract

童萃, 陈顺, 王志鹏, 高守红. UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度[J]. 药学实践与服务, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
引用本文: 童萃, 陈顺, 王志鹏, 高守红. UHPLC-MS/MS测定人血浆中尿嘧啶与二氢尿嘧啶的浓度[J]. 药学实践与服务, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
TONG Cui, CHEN Shun, WANG Zhipeng, GAO Shouhong. UHPLC-MS/MS determination of uracil and dihydrouracil in human plasma[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
Citation: TONG Cui, CHEN Shun, WANG Zhipeng, GAO Shouhong. UHPLC-MS/MS determination of uracil and dihydrouracil in human plasma[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(4): 348-351, 365. doi: 10.12206/j.issn.1006-0111.202102011
  • 嘧啶类化疗药物在肿瘤治疗中的地位越来越重要,其代表药物5-氟尿嘧啶及其口服前药卡培他滨更受到了广泛关注,体内二氢尿嘧啶脱氢酶(DPD)是此类药物代谢的限速酶之一[1],前瞻性评价DPD的总体活性有利于提高药物疗效及减少患者的毒副反应,对临床具有重要意义。内源性物质尿嘧啶(U)是体内DPD的天然底物,在此酶的催化下生成二氢尿嘧啶(UH2),并最终通过尿液排出体外。测定血浆中U和UH2的含量,并通过(UH2)/(U)比值计算,可从代谢物的角度评价DPD的活性[2]。临床上常用评价DPD酶活性的方法是测定患者的基因表型,DPD的编码基因DPYD序列中包含了多达7 600个多态位点,使得DPD酶的活性在人群中是高度可变的[3]。不同的突变位点及不同位点的组合给临床检测带来了极大的困难。到目前为止,也只有DPYD*2A的多态性被用于临床实践,用来筛选出5-氟尿嘧啶代谢严重不良的患者,避免严重的毒副反应[4]。单一应用基因的多态性来评价DPD酶的活性在临床上存在一定的困难,基因的多态性并不能直接同下游的酶的活性联系起来,两者并没有完全对等的关系。基因需通过转录、翻译和蛋白的修饰之后才能发挥作用。基因多态联合下游代谢物的含量测定更能准确的评价DPD酶的活性[5]。目前常应用液相色谱-串联质谱联用法对人血浆或干燥唾液中U和UH2浓度进行检测[6-11],但所报道的方法均有一些复杂或难以重现。本研究成功的建立了一种灵敏、高效、准确、重现性好,且能同时测定人血浆中U和UH2浓度的UHPLC-MS/MS方法,为体内DPD总体活性提供更客观有效的评价途径。

    • 1290-6460A超高效液相色谱-串联质谱仪,包含G4220A二元泵、G4226A自动进样器、G1316C柱温箱、MassHunter数据处理工作站(美国Agilent);调速涡旋混合器(美国Labnet);SK7200H超声仪(上海科导超声仪器有限公司);BSA124S-CW分析天平(德国赛多利斯);5810R型低温高速离心机、移液器(德国Eppendorf公司)。

    • 尿嘧啶、二氢尿嘧啶和氯尿嘧啶(内标)对照品(纯度>99%,大连美仑生物有限公司);乙酸铵(美国赛默飞世尔科技);甲醇、乙腈、乙酸乙酯、异丙醇(色谱纯,德国默克公司);屈臣氏蒸馏水(广州屈臣氏食品饮料有限公司);牛血清白蛋白(BSA)(上海博光生物科技有限公司);生理盐水(长征医院药学部自制)。

    • 色谱柱为Agilent poroshell 120 SB-Aq-柱(2.1 mm×100 mm,2.7 μm),流动相为5 mmol/L乙酸铵水溶液(A)和乙腈(B),流速为0.3 ml/min,梯度洗脱:0~0.3 min,100% A;0.3~1.0 min,100%~10% A;1.0~2.5 min,10% A;柱温为30 ℃,洗脱时间2.5 min,进样量5 μl。

    • 采用ESI离子源,多重反应监测(MRM)进行一/二级质谱分析,用于定量分析的检测离子为:U[M+H]+ m/z 113.0→40.1,检测模式为正离子模式;UH2[M+H]+ m/z 115.0→55.1,检测模式为正离子模式;氯尿嘧啶(IS)[M-H]- m/z 145.0→42.1,检测模式为负离子模式。雾化温度为300 ℃,雾化气压力为40 psi,干燥气流速为10 L/min,鞘气温度300 ℃,鞘气流速12 L/min,解离电压为4 000 V。

    • 选取8名血浆样品指标正常的成年人,于当日清晨8时空腹状态下静脉采血3 ml, EDTA-3K管抗凝,离心后分离上层血浆, 于−80 ℃冰箱冻存。

    • 取100 μl样本,加10 μg/ml氯尿嘧啶(IS)10 μl,加乙酸乙酯3 ml,涡旋5 min,1710×g离心10 min,取上层有机相2.7 ml,45 ℃氮气挥干仪挥干,用10%甲醇溶液100 μl复溶,涡旋1 min,取上清液进样分析。

    • 用含有3 %牛血清白蛋白作为空白基质代替血浆配置标准曲线样品。取100 μg/ml的尿嘧啶和二氢尿嘧啶各100 μl,加800 μl水,制成10 μg/ml标准混合液,置于−20 ℃备用。取10 μg/ml标准混合液适量,用3 %牛血清白蛋白稀释制成10、20、50、100、200、500、1000、1500 ng/ml系列浓度样品, 然后按照上述“1.6”项下样品的处理方法配制。

    • U和UH2的出峰时间以及峰型良好,代替血浆经过前处理后,对待测组分的测定没有干扰,内标对分析物的测定也没有干扰,且能很好分离,结果见图1

      图  1  尿嘧啶和二氢尿嘧啶及内标质谱多反应监测色谱图

    • U和UH2的线性范围是10.0~1 500.0 ng/ml,以空白BAS中U和UH2的浓度为横坐标(X),U和UH2与内标化合物氯尿嘧啶的峰面积比为纵坐标(Y),进行最小二乘法加权(权重系数为1/χ2),U和UH2的线性回归方程分别是Y=0.27X+0.0022、Y=0.58X+0.0380,r均>0.990,表明线性关系良好。

    • 取定量下限、低、中、高标准添加血浆样本按照前处理方法进行处理,每个浓度样品平行制备5份进行分析,连续3 d重复操作,根据当天的标准曲线计算当天实测样本浓度,计算样本在低、中和高浓度下的日内、日间精密度和准确度,结果显示,精密度和准确度的偏差均在15%左右。准确度相对偏差在20%范围内时,最低定量下限精密度偏差不大于20%,结果见表1

      表 1  尿嘧啶和二氢尿嘧啶的精密度 (n=5)

      分析物标示浓度 (ng/ml)日内日间
      测定浓度 (ng/ml)精密度(CV%)准确性(RE%)测定浓度 (ng/ml)精密度(CV%)准确性(RE%)
      尿嘧啶1010.2±0.383.742.5810.12±0.787.701.18
      2020.63±1.215.873.1519.97±1.356.74−0.16
      500529.73±4.640.885.95484.32±35.727.37−3.12
      10001093.33±25.102.309.331098.25±25.162.299.82
      二氢尿嘧啶1010.32±0.716.863.1810.28±0.656.372.77
      2019.98±2.1910.95−0.1219.86±1.859.31−0.72
      500517.51±10.692.073.50515.66±10.362.013.13
      10001079.83±17.911.667.981080.11±24.502.278.01
    • 取低、高2个浓度的样本进行基质效应和提取回收率考察,结果显示,U、UH2及内标氯尿嘧啶的基质效应和提取回收率良好,结果均较稳定,结果见表2

      表 2  尿嘧啶和二氢尿嘧啶的基质效应和提取回收率

      分析物标识浓度(ng/ml)基质效应提取回收率
      平均基质效应CV(%)平均回收率CV(%)
      尿嘧啶1000101.006.1594.989.01
      2099.993.63100.017.64
      二氢尿嘧啶100085.722.07106.471.58
      2093.584.5399.549.77
    • 考察低、高2个浓度的血浆样品经历3次冷冻与解冻循环的稳定性、血浆样品在室温(25 ºC)放置6 h后经样品处理后稳定性和血浆样品经样品处理后室温放置24 h的稳定性,结果显示,3次冻融、6 h室温(25 ºC)条件下和24 h放置自动进样器中的稳定性均符合要求,结果见表3

      表 3  样品的稳定性(RE%)

      分析物冻融3次室温放置6 h置自动进样器24 h
      尿嘧啶100.7198.3493.49106.60108.20107.99
      二氢尿嘧啶92.6792.6493.61107.26106.97107.15
    • 应用本研究所建立的方法,对8名健康成人的血浆样本测定分析,在样本实测过程中, 同时插入已知浓度的随行质控样本(QC样本), 随时监控样本测定的准确度。U和 UH2 浓度测定结果见图2

      图  2  实测8名健康成人内源性U和UH2浓度值

    • U和UH2是人体内常见的两种物质,且同核酸的代谢密切相关,由于U和UH2均为人体内源性物质,故不能采用人源的基质进行方法学的开发及验证,通过查阅资料,选择了不含U和UH2的3%牛血清蛋白作为基质进行方法学的开发[12]。也有文献报道采用去除U和UH2的人源血浆基质进行方法学实验[9],但基质的来源较珍贵,不适合方法的普及,所以选用3%牛血清蛋白作为替代基质。

    • U因其特殊的化学性质,在大部分的色谱柱上均没有保留。U和UH2的LogP值分别为−0.707和−0.840,有较强的亲水性,决定了其不保留的性质。在定量方法的开发过程中,先后采用了Agilent Zorbax SB-C18色谱柱,Agilent Zorbax Eclipse-C18色谱柱,Waters Atlantis T3色谱柱,Waters Xselect色谱柱,Waters Xbridge等色谱柱来进行条件摸索,但上述色谱柱对U和UH2均没有保留。最后,采用Agilent Zorbax SB-Aq对U和UH2进行定量分析,该色谱柱对强极性的化合物有较好的保留效果,同时,兼容100%的起始流动相也对保留产生了良好的结果。

    • 本研究还分别考察了几种常见的处理方法,包括甲醇和乙腈的蛋白沉淀、Waters Oasis HLB萃取板的固相萃取以及乙酸乙酯,甲基叔丁基醚,二氯甲烷/三氯甲烷,环己烷进行的液液萃取,结果发现乙酸乙酯对U和UH2的萃取效果较好,同时,还分别考察了5%、10%、20%、30%、40%、50%的异丙醇、乙酸乙酯溶液对U和UH2的萃取效果,结果发现,单纯的乙酸乙酯对待测化合物具有较好的提取效率。提取回收率均高于90%,且RSD<10%。另外对3%牛血清蛋白的基质效应进行了考察,结果发现平均基质效应在85%~101%之间,RSD<7%,说明该前处理方法对于基质的清除较为彻底,测定结果稳定,没有明显的基质干扰。

      本研究虽重在方法开发,收集的样本数量较少,但从测定的U和UH2浓度分布来看DPD对内源性U的代谢存在个体差异,建议临床应用5-氟尿嘧啶及其卡培他滨筛查DPD总体活性[12-13],后续可进一步扩大样本数量进行深入研究。

    • 本实验建立了一种快速,稳定,高灵敏度的UHPLC-MS/MS方法,可用于测定人体内源性物质U和UH2的含量,从代谢物的角度评价DPD酶的活性,从而协助临床医生制定化疗药物5-氟尿嘧啶及其口服前药卡培他滨合理的用量,以较低的毒副反应获得最大的临床疗效。

参考文献 (13)

目录

    /

    返回文章
    返回