留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量

李群英 凌琳 李盛建 周瑾 李甜甜 赵亮 吕磊

潘青杰, 张文文, 王芳. 羁押人员应用抗感染药物所致的158例不良反应分析[J]. 药学实践与服务, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
引用本文: 李群英, 凌琳, 李盛建, 周瑾, 李甜甜, 赵亮, 吕磊. UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量[J]. 药学实践与服务, 2020, 38(4): 350-353, 378. doi: 10.12206/j.issn.1006-0111.202001063
PAN Qingjie, ZHANG Wenwen, WANG Fang. Analysis on 158 detainees with adverse reactions due to anti-infective drugs[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
Citation: LI Qunying, LING Lin, LI Chengjian, ZHOU Jin, LI TianTian, ZHAO Liang, LÜ Lei. Determination of propylthiouracil in human plasma by UPLC-MS/MS[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(4): 350-353, 378. doi: 10.12206/j.issn.1006-0111.202001063

UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量

doi: 10.12206/j.issn.1006-0111.202001063
详细信息
    作者简介:

    李群英,本科,主管药师,研究方向:临床药学,Email: ldyyyjk2015@sina.com

    通讯作者: 吕 磊,硕士,主管药师,研究方向:中药药效物质基础及体内代谢,Email: k_owen2002@126.com
  • 中图分类号: R917

Determination of propylthiouracil in human plasma by UPLC-MS/MS

  • 摘要:   目的  建立UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量,为临床治疗药物监测(TDM)和生物等效性试验(BE)提供方法学基础。  方法  采用Agilent SB-C18柱(4.6 mm×150 mm,5 μm),流动相为甲醇-0.1%甲酸水溶液(80∶20,V/V),等度洗脱。质谱采用AJS-ESI源,多反应监测(MRM)正离子模式,检测离子对为:丙硫氧嘧啶m/z 171.1→112.1、内标(丙硫氧嘧啶-D5)m/z 176.1→117.0。  结果  血浆中丙硫氧嘧啶在10~5 000 ng/ml范围内线性关系良好,r=0.999 3;批内和批间的精密度和准确度良好(RSD<10%,RE<±10%);不同浓度的基质效应均<110%,变异系数<5%;不同浓度的平均回收率为101.60%~113.56%,符合方法学要求。  结论  该方法快速简便、灵敏准确,适用于血浆中丙硫氧嘧啶的含量测定。
  • 超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。

    丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。

    85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。

    雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。

    依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。

    将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。

    取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):

    $$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$

    其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。

    采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:

    $$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$

    其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。

    2.5.1   载胰岛素SPH-IPN的制备

    取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。

    2.5.2   载药量的测定

    取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:

    $$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$

    其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。

    2.6.1   不同方法载药SPH-IPN的制备

    按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。

    2.6.2   糖尿病大鼠模型的建立

    给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。

    2.6.3   分组、给药及血糖测定

    取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。

    3.1.1   傅立叶变换红外光谱(FTIR)

    图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。

    图  1  SPH-IPN的傅立叶变换红外光谱
    3.1.2   核磁共振(13C-NMR)

    图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。

    图  2  SPH-IPN的核磁共振碳谱

    由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]

    综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。

    图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]

    图  3  不同温度下SPH-IPN的溶胀性

    表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。

    表  1  SPH-IPN的孔隙率测定结果
    干重M1
    (m/g)
    湿重M2
    (m/g)
    乙醇密度
    (g/cm3)
    体积
    (V/cm3)
    孔隙率
    (%)
    平均值
    (%)
    RSD
    (%)
    0.54250.63270.8160.1385.0381.633.88
    0.57510.67790.8160.1678.74
    0.56280.66210.8160.1581.13
    下载: 导出CSV 
    | 显示表格

    37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2

    表  2  SPH-IPN对胰岛素的载药量
    试验组载药量(w/w,%)平均值(w/w,%)RSD(%)
    13.133.191.88
    23.25
    33.20
    下载: 导出CSV 
    | 显示表格

    图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。

    图  4  载胰岛素SPH-IPN的降糖作用

    本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。

    水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。

    文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。

    笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。

    图  5  不同粒径载姜黄素SPH-IPN的释药情况

    将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。

    载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。

    文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。

    与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。

  • 图  1  血浆中丙硫氧嘧啶和内标的典型色谱图

    A. 空白血浆;B. 质控样品(QC-L);C. 给药后的血浆样品;1. 丙硫氧嘧啶;2. 丙硫氧嘧啶-D5

    表  1  丙硫氧嘧啶精密度和准确度试验结果

    浓度(ng/ml)批内(n=5)批间(n=15)
    精密度(RSD/%)准确度 (RE/%)精密度(RSD/%)准确度(RE/%)
    103.40−0.558.38−0.88
    258.35−5.599.53 1.63
    5007.61−1.006.21−3.39
    4 0002.90−2.794.71−5.95
    下载: 导出CSV

    表  2  丙硫氧嘧啶的基质效应试验结果(n=6)

    浓度(ng/ml)待测物
    基质因子(%)
    内标
    基质因子(%)
    归一化
    基质因子(%)
    变异系数(%)
    2525.9423.99108.181.78
    4 00021.9121.92100.620.66
    下载: 导出CSV

    表  3  丙硫氧嘧啶的提取回收率试验结果(n=5)

    被分析物浓度(ng/ml)回收率(%)RSD(%)
    丙硫氧嘧啶 25101.605.30
    500113.561.72
    4 000108.826.26
    下载: 导出CSV

    表  4  考察不同条件下丙硫氧嘧啶的稳定性试验结果(n=5)

    浓度(ng/ml)室温放置4h4 ℃放置24h冻融循环3次−80 ℃冻存30 d
    RE(%)RSD(%)RE(%)RSD(%)RE(%)RSD(%)RE(%)RSD(%)
    25 2.826.58 1.996.004.674.858.175.59
    4 000−4.656.24−7.704.514.823.903.731.93
    下载: 导出CSV
  • [1] 徐秀娟. 丙硫氧嘧啶治疗妊娠期甲状腺功能亢进的临床疗效观察[J]. 现代实用医学, 2017, 29(5):624-625. doi:  10.3969/j.issn.1671-0800.2017.05.034
    [2] 杨霞. 丙硫氧嘧啶片治疗老年甲亢的临床疗效[J]. 中国社区医师, 2017, 33(4):66-67. doi:  10.3969/j.issn.1007-614x.2017.4.42
    [3] GIANETTI E, RUSSO L, ORLANDI F, et al. Pregnancy outcome in women treated with methimazole or propylthiouracil during pregnancy[J]. J Endocrinol Invest,2015,38(9):977-985. doi:  10.1007/s40618-015-0281-z
    [4] 王大猷. 丙硫氧嘧啶的药学特性及安全问题[J]. 药物不良反应杂志, 2015, 17(2):84-86. doi:  10.3760/cma.j.issn.1008-5734.2015.02.003
    [5] 韩耕愚, 刘冰, 沈弢. 丙硫氧嘧啶(PTU)诱导药物性肝损伤的研究进展[J]. 肝脏, 2018, 23(9):831-833.
    [6] WU D B, CHEN E Q, BAI L, et al. Propylthiouracil-induced liver failure and artificial liver support systems: a case report and review of the literature[J]. Ther Clin Risk Manag,2017,13:65-68. doi:  10.2147/TCRM.S122611
    [7] 王俏瑾, 陈珏. 仿制药一致性评价工作的进展与展望[J]. 中国现代应用药学, 2019, 36(4):499-501.
    [8] GŁÓWKA F K, HERMANN T W, HERMANN J, et al. Bioavailability of propylthiouracil from two formulation tablets[J]. Pharmazie,2018,73(12):688-691.
    [9] 范文源, 吴正红, 平其能, 等. 丙硫氧嘧啶缓释片与普通片的犬体内药动学及生物利用度比较[J]. 中国新药与临床杂志, 2005, 24(7):515-518. doi:  10.3969/j.issn.1007-7669.2005.07.004
    [10] 潘峰云, 张亮, 王林波, 等. HPLC法测定人血浆中丙硫氧嘧啶及药代动力学研究[J]. 中国药科大学学报, 2001, 32(5):363-366. doi:  10.3321/j.issn:1000-5048.2001.05.011
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 舒飞, 孙蕊, 宋凯, 张元林, 闫家铭, 舒丽芯.  粉-液双室袋产品的综合评价 . 药学实践与服务, 2025, 43(2): 92-96. doi: 10.12206/j.issn.2097-2024.202312009
    [3] 邵尉, 袁妮, 刘叶, 于飞, 柳莹, 王峰.  丙戊酸钠与左乙拉西坦治疗儿童癫痫病的成本-效果分析 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408046
    [4] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 185-189. doi: 10.12206/j.issn.2097-2024.202401072
    [5] 吴海韵, 杨甜, 张弛, 梁文仪, 苏娟.  气相色谱-离子迁移谱技术在中药研究中的应用进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409007
    [6] 余小翠, 王习文, 张贵英, 徐君伟, 祝雨薇, 胡丹.  麝香接骨胶囊的HPLC特征图谱的研究及7种成分含量测定 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202307059
    [7] 陈方剑, 赵娟娟, 叶侃倜, 孙煜昕, 刘继勇, 杨骏.  血通胶囊提取工艺优化及质量控制研究 . 药学实践与服务, 2025, 43(2): 82-86, 91. doi: 10.12206/j.issn.2097-2024.202409003
    [8] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [9] 高锦, 胡丹, 王习文, 余小翠, 王泽欣, 刘晶, 祝雨薇, 马紫辉, 徐君伟, 高青, 洪小栩.  滴眼液中抑菌剂硫柳汞的HPLC含量测定方法研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202404059
    [10] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [11] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [12] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [13] 陈方剑, 骆锦前, 王志君, 胡叶帅, 孙煜昕, 宋洪杰.  HPLC-MS/MS同时测定感冒安颗粒中5种黄酮成分的含量 . 药学实践与服务, 2024, 42(9): 402-406. doi: 10.12206/j.issn.2097-2024.202403030
    [14] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [15] 李丹, 戴贤春, 王芳珍, 陈奕含, 杨萍, 刘继勇.  HPLC-MS/MS测定当归六黄汤中4种不同成分的含量 . 药学实践与服务, 2024, 42(6): 248-252, 266. doi: 10.12206/j.issn.2097-2024.202305007
    [16] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  6087
  • HTML全文浏览量:  1717
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-05-08
  • 网络出版日期:  2020-07-27
  • 刊出日期:  2020-07-25

UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量

doi: 10.12206/j.issn.1006-0111.202001063
    作者简介:

    李群英,本科,主管药师,研究方向:临床药学,Email: ldyyyjk2015@sina.com

    通讯作者: 吕 磊,硕士,主管药师,研究方向:中药药效物质基础及体内代谢,Email: k_owen2002@126.com
  • 中图分类号: R917

摘要:   目的  建立UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量,为临床治疗药物监测(TDM)和生物等效性试验(BE)提供方法学基础。  方法  采用Agilent SB-C18柱(4.6 mm×150 mm,5 μm),流动相为甲醇-0.1%甲酸水溶液(80∶20,V/V),等度洗脱。质谱采用AJS-ESI源,多反应监测(MRM)正离子模式,检测离子对为:丙硫氧嘧啶m/z 171.1→112.1、内标(丙硫氧嘧啶-D5)m/z 176.1→117.0。  结果  血浆中丙硫氧嘧啶在10~5 000 ng/ml范围内线性关系良好,r=0.999 3;批内和批间的精密度和准确度良好(RSD<10%,RE<±10%);不同浓度的基质效应均<110%,变异系数<5%;不同浓度的平均回收率为101.60%~113.56%,符合方法学要求。  结论  该方法快速简便、灵敏准确,适用于血浆中丙硫氧嘧啶的含量测定。

English Abstract

潘青杰, 张文文, 王芳. 羁押人员应用抗感染药物所致的158例不良反应分析[J]. 药学实践与服务, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
引用本文: 李群英, 凌琳, 李盛建, 周瑾, 李甜甜, 赵亮, 吕磊. UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量[J]. 药学实践与服务, 2020, 38(4): 350-353, 378. doi: 10.12206/j.issn.1006-0111.202001063
PAN Qingjie, ZHANG Wenwen, WANG Fang. Analysis on 158 detainees with adverse reactions due to anti-infective drugs[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
Citation: LI Qunying, LING Lin, LI Chengjian, ZHOU Jin, LI TianTian, ZHAO Liang, LÜ Lei. Determination of propylthiouracil in human plasma by UPLC-MS/MS[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(4): 350-353, 378. doi: 10.12206/j.issn.1006-0111.202001063
  • 丙硫氧嘧啶(propylthiouracil),为硫脲类化合物,它可通过抑制甲状腺内过氧化物酶系统,阻止酪氨酸的碘化及碘化酪氨酸的缩合,从而抑制甲状腺激素的合成,是临床常用的治疗甲亢的药物[1-3]。其口服吸收迅速,约1~1.5 h达血药浓度峰值;代谢快,24 h内约有35%的药物以原型和葡萄糖醛酸化物的形式从尿中排出,血浆半衰期约为1~3 h[4]。口服丙硫氧嘧啶个体差异较大,由于其血浆蛋白结合率高(约为80%),且存在肝毒性,因此对其进行血药浓度监测,能使药物应用更为安全合理[5-6]。进口丙硫氧嘧啶的价格昂贵,研发高质量、低价格的国产仿制药具有良好的经济效益和社会效益[7],开发高效稳定的丙硫氧嘧啶的血药浓度测定方法,可为仿制药一致性评价中的生物等效性试验(BE)提供依据。

    目前,丙硫氧嘧啶的体内测定方法主要为高效液相色谱法(HPLC)[8-10],早期开发的液相测定方法,分析时间长,专属性和灵敏度均无法满足临床高通量测定的需求,因此,建立简单快速、灵敏准确的丙硫氧嘧啶血药浓度质谱分析方法(MS)具有重要意义。本文建立UPLC-MS/MS法测定人血浆中丙硫氧嘧啶的含量,可为临床治疗药物监测(TDM)和生物等效性试验(BE)提供方法学基础。

    • Agilent 1290 UPLC超高效液相色谱(安捷伦科技有限公司,美国),配有在线脱气机、二元泵、低温自动进样器和柱温箱;Agilent 6470 Triple Quad三重四极杆质谱(安捷伦科技有限公司,美国),配有AJS-ESI喷射流电喷雾离子源、MassHunter分析工作站;SECURA125-1CN型十万分之一电子天平、Arium mini超纯水仪(赛多利斯,德国);Fresco 21低温离心机(赛默飞,美国)。

    • 对照品丙硫氧嘧啶(批号:100803-201503,纯度>99.4%)购自中国食品药品检定研究院,内标丙硫氧嘧啶-D5(批号:13-EQJ-150-1,纯度>98%),购自Toronto Research Chemicals;甲酸为色谱纯(ACS恩科化学,美国);甲醇和乙腈为色谱纯(霍尼韦尔,美国);水为超纯水。

    • 色谱柱为Agilent SB-C18(4.6 mm×150 mm,5 μm);流动相采用甲醇-0.1%甲酸水溶液(80∶20,V/V),等度洗脱;流速:1 ml/min,柱后分流比2∶3;柱温30 ℃;进样量5 μl,分析时间3min。

    • 采用AJS-ESI源,正离子模式,离子源参数:干燥气温度350 ℃;干燥气流速10 L/min;雾化器压力40 psi;鞘气温度350 ℃;鞘气流速11 L/min;毛细管电压4 000 V。多反应监测(MRM)的参数:丙硫氧嘧啶m/z 171.1→112.1,碎片电压110 V,碰撞能量30 eV;丙硫氧嘧啶-D5(IS)m/z 176.1→117.0,碎片电压110 V,碰撞能量30 eV。丙硫氧嘧啶和氘代内标的保留时间均为1.9 min。

    • 精密称取丙硫氧嘧啶对照品1.5mg,置于2 ml称量瓶中,用移液器(已校准)加入甲醇适量溶解,涡旋混匀,配成1.0 mg/ml的对照品储备液;取上述对照品储备液适量,用甲醇逐级稀释,配成浓度分别为200、500、1000、2 000、10 000、20 000、40 000、80 000、100 000 ng/ml的系列对照品溶液,置4 ℃冰箱保存,备用。

    • 精密称取丙硫氧嘧啶-D5对照品1.3mg,置于2 ml称量瓶中,用移液器(已校准)加入甲醇适量溶解,涡旋混匀,配成1.0 mg/ml的内标储备液;取上述储备液适量,用乙腈(含5%甲酸)稀释400倍,得2 500 ng/ml的内标溶液,置于4 ℃冰箱保存,备用。

    • 取空白血浆950 μl,精密加入“2.2.1”项下制备的丙硫氧嘧啶系列标准溶液50 μl,旋涡混匀,配成浓度分别为10、25、50、100、500、1 000、2 000、4 000、5 000 ng/ml的标准含药血浆。同法制备4个浓度的质控样品(QC),分别为10、25、500、4 000 ng/ml,待用。

    • 血浆样品先置于室温下解冻,取100 μl血浆,依次加入200 μl内标溶液,200 μl乙腈(含5%甲酸),涡旋1min,于4 ℃下13000×g高速离心10 min,取100 μl上清液于进样瓶中,进行UPLC-MS/MS分析。

    • 通过比较6个不同健康志愿者的空白血浆样品、质控样品和给药后实际样品的色谱图来评估。分别取空白血浆、质控样品(QC-L)和受试者给药后的血样各100 μl,按“2.3”项下血浆样品前处理方法操作,进样,获得样品的色谱图(图1),包括空白样品色谱图、质控样品色谱图和实际样品色谱图。结果显示,空白血浆中的内源性成分不干扰待测物和内标出峰,选择性良好。

      图  1  血浆中丙硫氧嘧啶和内标的典型色谱图

    • 取“2.2.3”项下制备的标准含药血浆样品100 μl,按“2.3”项下血浆样品前处理方法操作,进样分析,记录色谱图。以待测物血浆浓度为横坐标(X),待测物与内标峰面积比为纵坐标(Y),进行回归,使用1/X 加权,求得回归方程: Y=0.000 4X−0.000 2(r=0.999 3)。结果表明,血浆中的丙硫氧嘧啶在10~5 000 ng/ml范围内线性关系良好。以S/N>10确定,定量下限(LLOQ)10 ng/ml,为标准曲线最低点。

    • 在LLQQ(10 ng/ml)、QC-L(25 ng/ml)、QC-M(500 ng/ml)、QC-H(4 000 ng/ml)4个浓度下,通过批内和批间分别考察。按“2.2.3”项下制备丙硫氧嘧啶4个浓度质控样品,每个浓度平行5份,按“2.3”项下血浆样品前处理操作,进样分析。并于每天制备4个浓度质控样本各5份,进样分析,连续3 d,计算批内、批间的精密度(RSD)及准确度(RE),批内和批间的RSD<10%, RE<±10%,结果见表1

      表 1  丙硫氧嘧啶精密度和准确度试验结果

      浓度(ng/ml)批内(n=5)批间(n=15)
      精密度(RSD/%)准确度 (RE/%)精密度(RSD/%)准确度(RE/%)
      103.40−0.558.38−0.88
      258.35−5.599.53 1.63
      5007.61−1.006.21−3.39
      4 0002.90−2.794.71−5.95
    • 取6位健康志愿者的空白血浆,在相当于QC-L(25 ng/ml)和QC-H(4000 ng/ml)的2个浓度下来考察。先按“2.3”项下血浆样品前处理方法制备空白基质上清,然后加入丙硫氧嘧啶及内标的标准溶液,以使其终浓度与处理后QC-L和QC-H一致;同时制备相同浓度不含基质的待测物和内标的乙腈溶液,进样分析。通过峰面积分别计算待测物和内标的基质因子,进一步得到经内标归一化的基质因子。不同基质下,2个浓度基质效应的变异系数均小于5%,符合方法学要求,结果见表2

      表 2  丙硫氧嘧啶的基质效应试验结果(n=6)

      浓度(ng/ml)待测物
      基质因子(%)
      内标
      基质因子(%)
      归一化
      基质因子(%)
      变异系数(%)
      2525.9423.99108.181.78
      4 00021.9121.92100.620.66
    • 取单一来源的空白血浆,在相当于QC-L(25 ng/ml)、QC-M(500 ng/ml)、QC-H(4 000 ng/ml)的3个浓度下来考察。先按“2.3”项下血浆样品前处理方法制备空白基质上清,然后加入丙硫氧嘧啶及内标的标准溶液,以使其终浓度与处理后QC-L、QC-M、QC-H一致;同时按“2.2.3”和“2.3”项下制备和处理3个浓度的QC样品,每个浓度平行操作5份,分别进样分析。通过峰面积计算待测物的提取回收率,平均回收率为101.60%~113.56%,结果见表3

      表 3  丙硫氧嘧啶的提取回收率试验结果(n=5)

      被分析物浓度(ng/ml)回收率(%)RSD(%)
      丙硫氧嘧啶 25101.605.30
      500113.561.72
      4 000108.826.26
    • 首先通过新鲜配制丙硫氧嘧啶和内标的储备液1.0 mg/ml,考察对照品储备液于4 ℃下放置30 d的稳定性,结果显示,RE<±10%,稳定性良好。然后在QC-L(25 ng/ml)、QC-H(4 000 ng/ml)2个浓度下,分别考察4种条件下丙硫氧嘧啶的稳定性:室温放置4 h、自动进样器(4 ℃)放置24 h,冻融循环3次,以及−80 ℃下冻存30 d,每个浓度平行操作5份。按“2.3”项下血浆样品前处理操作,进样分析,将丙硫氧嘧啶和内标峰面积的比值代入随行标准曲线求得实测浓度,计算RE以及RSD,结果(见表4)显示稳定性良好。

      表 4  考察不同条件下丙硫氧嘧啶的稳定性试验结果(n=5)

      浓度(ng/ml)室温放置4h4 ℃放置24h冻融循环3次−80 ℃冻存30 d
      RE(%)RSD(%)RE(%)RSD(%)RE(%)RSD(%)RE(%)RSD(%)
      25 2.826.58 1.996.004.674.858.175.59
      4 000−4.656.24−7.704.514.823.903.731.93
    • 通过在定量上限(ULOQ)5 000 ng/ml完成测定之后立即测定空白样品来评估。结果显示,分析物保留时间处峰面积小于LLOQ的20%,IS保留时间处的峰面积小于实际IS的5%。该方法几乎无残留,不影响测定。

    • 通过使用空白基质将定量上限(ULOQ)10倍(50 000 ng/ml)和50倍(250 000 ng/ml)浓度的样品稀释至定量范围(10~5 000 ng/ml)来评估,每个浓度平行操作5次。结果表明,RSD和RE均低于15%,样品稀释不影响测定的精密度和准确度。

    • 常用的样品前处理方法为蛋白沉淀和液液萃取,优先采用简单的蛋白沉淀法。沉淀剂考察了甲醇和乙腈,结果发现乙腈沉淀更完全,在同位素内标下,归一化的基质效应更低,添加5%甲酸后,待测物峰形更好,因此选择乙腈(含5%甲酸)为沉淀剂。进一步考察了血浆与沉淀剂的比例(1∶3、1∶4、1∶5,V/V),结果发现,比例为1∶4时,提取回收率最高,最终选定为前处理方法。

    • 首先考察了甲醇-水和乙腈-水体系,结果发现,虽然乙腈-水体系的洗脱能力更强,但甲醇-水体系下峰形更佳,血浆中内源性成分与主峰分离完全,基线噪音小。在水相中添加0.1%的甲酸,可以显著提高丙硫氧嘧啶的质谱响应,检测灵敏度令人满意,也可进一步改善峰拖尾。柱后采用了2∶3分流,实际进入质谱的流速约为0.4 ml/min,既保障了色谱柱的最佳流速(1 ml/min),又保证了ESI源的离子化效率,结果稳定可靠。

    • 丙硫氧嘧啶在正离子模式下的响应明显优于负离子模式,因此确定采用正离子模式检测。采用Optimizer质谱参数优化程序依次对雾化室参数(鞘气温度、鞘气流速、干燥气温度、干燥气流速、雾化器压力、毛细管电压)以及MRM参数(母离子、子离子、碎片电压、碰撞能)进行调节优化,最终依据丙硫氧嘧啶和内标的检测灵敏度,确定了“2.2.2”项下最佳的质谱参数。得益于采用的同位素内标,丙硫氧嘧啶和氘代内标出峰稳定,虽保留时间同为1.9 min,但并没有离子串扰影响,而且归一化的基质效应结果满意。

      综上,本文建立了快速简便、灵敏准确的测定人血浆中丙硫氧嘧啶含量的UPLC-MS/MS方法。样品采用简单蛋白沉淀法处理,LLOQ为10 ng/ml,基质效应低,回收率高,每个样本的分析时间3 min,每天可分析超过400样本,满足高通量测定需要。本研究为丙硫氧嘧啶的治疗药物监测(TDM)和生物等效性试验(BE)提供了方法学基础。

参考文献 (10)

目录

/

返回文章
返回