留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

核苷酸适体在靶向给药系统中的应用进展

熊叶 台宗光 李强

熊叶, 台宗光, 李强. 核苷酸适体在靶向给药系统中的应用进展[J]. 药学实践与服务, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
引用本文: 熊叶, 台宗光, 李强. 核苷酸适体在靶向给药系统中的应用进展[J]. 药学实践与服务, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
XIONG Ye, TAI ZongGuang, Li Qiang. Application progress of nucleic acid aptamers in targeted drug delivery system[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
Citation: XIONG Ye, TAI ZongGuang, Li Qiang. Application progress of nucleic acid aptamers in targeted drug delivery system[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003

核苷酸适体在靶向给药系统中的应用进展

doi: 10.3969/j.issn.1006-0111.2015.06.003
基金项目: 国家自然科学基金项目(No.81170060)

Application progress of nucleic acid aptamers in targeted drug delivery system

  • 摘要: 适体,即体外合成筛选得到的能特异性地与靶分子结合的一段寡核苷酸序列。由于其独特的性质,在靶向给药系统中有着广阔的应用前景,目前已成为靶向给药研究领域的热点。综述了适体在靶向给药系统中的优势及其应用进展,并对其应用前景和面临的问题进行分析。
  • [1] Tan W, Wang H, Chen Y, et al. Molecular aptamers for drug delivery[J]. Trends Biotechnol, 2011, 29(12): 634-640.
    [2] Ozalp VC, Eyidogan F, Oktem HA. Aptamer-gated nanoparticles for smart drug delivery[J]. Pharmaceuticals, 2011, 4(8): 1137-1157.
    [3] Taouji S, Dausse E, Evadé L, et al. Advances in binder identification and characterisation: the case of oligonucleotide aptamers[J]. N Biotechnol, 2012, 29(5): 550-554.
    [4] Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy[J]. Chem Rev, 2007, 107(9): 3715-3743.
    [5] Lupold SE, Hicke BJ, Lin Y, et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen[J]. Cancer Res, 2002, 62(14): 4029-4033.
    [6] Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells[J]. Cancer Res, 2004, 64(21): 7668-7672.
    [7] Bagalkot V, Farokhzad OC, Langer R, et al. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform[J]. Angew Chem Int Ed, 2006, 45(48): 8149-8152.
    [8] Kraus E, James W, Barclay AN. Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function[J]. J Immunol, 1998, 160(11): 5209-5212.
    [9] Guo S, Tschammer N, Mohammed S, et al. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA[J]. Hum Gene Ther, 2005, 16(9): 1097-1110.
    [10] Khaled A, Guo S, Li F, et al. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology[J]. Nano Lett, 2005, 5(9): 1797-1808.
    [11] Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands[J]. Cell Signal, 2005, 17(10): 1183-1193.
    [12] Li N, Larson T, Nguyen HH, et al. Directed evolution of gold nanoparticle delivery to cells[J]. Chem Commun, 2010, 46(3): 392-394.
    [13] Prebet T, Lhoumeau A-C, Arnoulet C, et al. The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome[J]. Blood, 2010, 116(13): 2315-2323.
    [14] Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study[J]. P Natl Acad Sci USA, 2006, 103(32): 11838-11843.
    [15] Xiao Z, Shangguan D, Cao Z, et al. Cell-specific internalization study of an aptamer from whole cell selection[J]. Chem Eur J, 2008, 14(6): 1769-1775.
    [16] Huang YF, Shangguan D, Liu H, et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells[J]. Chem Bio Chem, 2009, 10(5): 862-868.
    [17] o'donoghue MB. A liposome-based nanostructure for aptamer directed delivery[J]. Chem Commun, 2010, 46(2): 249-251.
    [18] 胡 萍. 肿瘤发生和 MUC1 及 Survivin 研究进展[J]. 中国医药指南, 2013, 11(1): 69-70.
    [19] Altschuler Y, Kinlough CL, Poland PA, et al. Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state[J]. Mol Biol Cell, 2000, 11(3): 819-831.
    [20] Gendler SJ. MUC1, the renaissance molecule[J]. J Mammary Gland Biol Neoplasia, 2001, 6(3): 339-353.
    [21] Ferreira CS, Cheung MC, Missailidis S, et al. Phototoxic aptamers selectively enter and kill epithelial cancer cells[J]. Nucleic Acids Res, 2009, 37(3): 866-876.
    [22] Do Kwon Y, Finzi A, Wu X, et al. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops[J]. P Natl Acad Sci USA, 2012, 109(15): 5663-5668.
    [23] Zhou J, Li H, Li S, et al. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy[J]. Mol Ther, 2008, 16(8): 1481-1489.
    [24] Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism[J]. Cancer Res, 2010, 70(21): 8617-8629.
    [25] Cao Z, Tong R, Mishra A, et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes[J]. Angew Chem Int Ed, 2009, 48(35): 6494-6498.
    [26] 胡艳玲, 史爱欣, 傅得兴, 等. 哌加他尼钠的药理作用和临床评价[J]. 中国新药杂志, 2007, 16(7): 573-576.
    [27] Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graef Arch Clin Exp, 2010, 248(7): 915-930.
    [28] Proske D, Gilch S, Wopfner F, et al. Prion-protein-specific aptamer reduces PrPSc formation[J]. Chem Bio Chem, 2002, 3(8): 717-725.
    [29] Jeon SH, Kayhan B, Ben-Yedidia T, et al. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin[J]. J Biol Chem, 2004, 279(46): 48410-48419.
    [30] Becker RC, Chan MY. REG-1, a regimen comprising RB-006, a Factor Ⅸa antagonist, and its oligonucleotide active control agent RB-007 for the potential treatment of arterial thrombosis[J]. Curr Opin Mol Ther, 2009, 11(6): 707-715.
  • [1] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [2] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
    [3] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [4] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [5] 顾佳钰, 胡馨儿, 王晓飞, 张颖, 张海, 曹岩.  侧流免疫层析定量检测方法的研究进展 . 药学实践与服务, 2024, 42(7): 273-277, 284. doi: 10.12206/j.issn.2097-2024.202307037
    [6] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [7] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [8] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [9] 刘依秦, 王超群, 邱娇娜.  胆宁片预处理在糖尿病患者结肠镜检查前的应用效果分析 . 药学实践与服务, 2024, 42(9): 407-410. doi: 10.12206/j.issn.2097-2024.202407037
    [10] 丁千雪, 尚圣兰, 余梦辰, 余爱荣.  机器学习在肾病综合征患者他克莫司个体化用药中的应用 . 药学实践与服务, 2024, 42(6): 227-230, 243. doi: 10.12206/j.issn.2097-2024.202310007
    [11] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 457-460, 502. doi: 10.12206/j.issn.2097-2024.202405059
    [12] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [13] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [14] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [15] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [16] 王晓飞, 张颖, 顾佳钰, 胡馨儿, 张海, 曹岩.  表面等离子共振传感器的识别元件在医药领域中的研究应用进展 . 药学实践与服务, 2024, 42(): 1-9. doi: 10.12206/j.issn.2097-2024.202309014
    [17] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [18] 杨凤艳, 张月, 陈恩贤, 缪雪蓉, 魏凯.  瑞马唑仑临床应用研究进展 . 药学实践与服务, 2024, 42(9): 365-374. doi: 10.12206/j.issn.2097-2024.202405026
  • 加载中
计量
  • 文章访问数:  3466
  • HTML全文浏览量:  282
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-04
  • 修回日期:  2014-12-24

核苷酸适体在靶向给药系统中的应用进展

doi: 10.3969/j.issn.1006-0111.2015.06.003
    基金项目:  国家自然科学基金项目(No.81170060)

摘要: 适体,即体外合成筛选得到的能特异性地与靶分子结合的一段寡核苷酸序列。由于其独特的性质,在靶向给药系统中有着广阔的应用前景,目前已成为靶向给药研究领域的热点。综述了适体在靶向给药系统中的优势及其应用进展,并对其应用前景和面临的问题进行分析。

English Abstract

熊叶, 台宗光, 李强. 核苷酸适体在靶向给药系统中的应用进展[J]. 药学实践与服务, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
引用本文: 熊叶, 台宗光, 李强. 核苷酸适体在靶向给药系统中的应用进展[J]. 药学实践与服务, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
XIONG Ye, TAI ZongGuang, Li Qiang. Application progress of nucleic acid aptamers in targeted drug delivery system[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
Citation: XIONG Ye, TAI ZongGuang, Li Qiang. Application progress of nucleic acid aptamers in targeted drug delivery system[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 490-493,532. doi: 10.3969/j.issn.1006-0111.2015.06.003
参考文献 (30)

目录

    /

    返回文章
    返回