-
酸相关性疾病(ARDs)是一类由于胃酸分泌过多,或对胃酸特别敏感而引起的一类消化道疾病的总称,包括胃食管反流病(GERD)、消化性溃疡(PU)、幽门螺杆菌(Hp)感染、功能性消化不良(FD)、卓-艾综合征(ZES)与应激性溃疡(SU)等,其中Hp感染、阿司匹林及其他非甾体抗炎药(NSAIDs)的使用是导致PU的重要病因,GERD与PU也是最常见的ARDs[1-3]。胃酸的生理功能是激活胃蛋白酶原并将其转变为胃蛋白酶,参与蛋白质的消化、减少细菌在胃和十二指肠的定植[4]。然而,胃酸是把双刃剑,其同样介导了胃黏膜损伤的病理过程并且是导致ARDs的潜在原因[5]。因此,抑制胃酸分泌是治疗ARDs的基石[6]。早在1910年,外科医生Schwarz就提出“无酸,无溃疡”的概念,奠定了胃酸在PU发病机制中的基础,使人们对溃疡的认识大幅提高,这种观点盛行了70年,直到20世纪80年代初Hp被发现,由此诞生了“无Hp,无溃疡”的第二次飞跃[7, 8]。然而,抑酸依然是治疗ARDs不可或缺的重要部分。
1915年,自Schwarz提出“无酸,无溃疡”后,美国医生Bertram Sippy开始了抗酸剂治疗PU的工作。在接下来的50年里,抗酸剂被广泛应用,并且在1952年Pickering证明中和酸性胃内容物可减缓PU患者疼痛后得到进一步普及[9]。20世纪70年代末,第一个H2受体拮抗剂(H2RA)西咪替丁的临床应用显著改善了PU的药物治疗并革新了ARDs的疾病管理,使PU择期手术几乎被废除。然而,PU的复发与GERD有限的治疗效果使H2RA依然不能满足临床需求。1988年,第一个质子泵抑制剂(PPI)奥美拉唑批准上市,PPI不仅对PU有效,而且对反流性食管炎(RE)具有显著优于H2RA的治疗效果;PPI在治疗GERD方面取得了显著进步,并将抗反流手术降级到药物治疗无法充分控制的GERD患者,因此成为治疗ARDs的一线方案[6, 10]。尽管PPI在临床中大放异彩,但随着使用数据和经验的积累,PPI的局限性逐渐显露出来:①对酸敏感,因此需制备为肠溶制剂;②本身为前药,在酸性条件下才能活化,因此活性依赖于进食,需餐前30 min服药;③起效慢,需3~5 d才能达到最大抑酸效果;④主要经CYP2C19代谢(奥美拉唑、艾司奥美拉唑、兰索拉唑、泮托拉唑与雷贝拉唑不同程度抑制其活性),药效学及药动学均受其遗传多态性影响并可能导致药物相互作用;⑤半衰期短,难以维持24 h抑酸作用;⑥难以有效改善夜间酸突破(NAB),可能与其只能抑制活化的质子泵有关[6, 10, 11]。为克服上述缺点,临床亟需可替代传统PPI、更快速有效的新型抑酸药,在此背景下诞生了钾离子竞争性酸阻滞剂(P-CAB)。本文主要就国内已上市3款P-CAB的药学特征展开综述。
-
早在20世纪80年代初期,人们就开始了P-CAB的研发,第一个P-CAB—SCH28080,即P-CAB的原型诞生于1982年,随之开发了Linaprazan(AZD0865)、Soraprazan(BY-359)、SK&F96067与CS-526等多种P-CAB,但这些早期P-CAB均因不优于传统PPI及肝毒性而停止发展[10, 12, 13]。截至2023年5月,全球共有5款P-CAB上市,我国已上市3款。瑞伐拉生(Revaprazan,YH-1885)是第一个批准上市的P-CAB(2007年韩国),用于治疗PU而未批准用于GERD,并且其并不优于奥美拉唑[14]。伏诺拉生(Vonoprazan,TAK-438)于2014年12月26日在日本上市,2019年12月18日在我国上市,是第一款真正意义上抑酸作用优于PPI并且几乎避免了NAB的P-CAB[15]。替戈拉生(Tegoprazan,CJ-12420)于2018年7月在韩国上市,2022年4月13日在中国上市,也是继伏诺拉生后研究最为广泛的P-CAB。非苏拉生(Fexuprazan,DWP14012)于2022年7月28日在韩国上市,目前在我国正进行Ⅲ期临床试验。凯普拉生(Keverprazan,KFP-H008)于2023年2月15日在中国上市,是我国首款自主研发的P-CAB[16]。这些P-CAB均为口服剂型,而注射剂也在临床试验中。
-
上述P-CAB在理化性质及作用机制等方面不同于传统PPI,表现出更优的药学参数及临床疗效。早期的P-CAB含有可引起肝毒性的咪唑并吡啶环母核(可增加药物肝脏分布),而后续日本科学家发现了具有磺酰基吡咯母核的高通量筛选命中化合物,并进一步结构优化得到伏诺拉生[6, 17]。韩国科学家设计了具有苯并咪唑母核的替戈拉生,我国自主研发的凯普拉生同样具有磺酰基吡咯母核,结构的优化使药物避免了肝毒性[16, 18]。
-
P-CAB为弱碱性药物,以伏诺拉生为例,pKa=9.3,显著高于传统PPI,更易质子化,可在酸性分泌小管中迅速聚集。在强酸性环境下,易于透膜的非质子化伏诺拉生显著减少,并且其对酸稳定,可高浓度持续存在于分泌小管中,是血浆浓度的一亿倍[19, 20],因此抑酸效果更快速持久,避免了PPI需酸激活而又对酸不稳定的困境。
P-CAB在酸性条件下迅速质子化,通过氢键和静电相互作用与H+, K+-ATP酶可逆结合,使酶停留在E2~P.H+构象,通过抑制其构象转变而无法完成H+、K+交换,使H+无法进入壁细胞的分泌小管中[21]。这种作用方式是K+竞争性的,并且对静息态与活化态的质子泵均有抑制作用[17, 22]。P-CAB的具体作用位点尚不明确,可能与H+, K+-ATP酶的K+结合位点或在该位点附近结合。而在早期针对原型P-CAB—SCH28080的研究中,位点突变分析表明,抑制剂的结合位点与K+结合位点可能并不相同,其结合位点更靠近壁细胞的腔面[23, 24]。新近P-CAB更优的药学参数得益于结构优化。以伏诺拉生为例,其与H+, K+-ATP酶具有高度亲和力(Ki=10 nmol/L,pH=7;Ki=3 nmol/L,pH=6.5)并且解离十分缓慢。分子模拟结果显示,不同于SCH28080(Ki=0.193 μmol/L,pH=6.5),伏诺拉生与酶之间具有额外的相互作用。其中最重要的是伏诺拉生N-甲氨基与酶Glu795形成氢键,其次是伏诺拉生磺酰基与酶Tyr799形成氢键,这些可能是其高亲和力、低解离率并优于先前P-CAB的原因[17, 25]。此外,后续研究表明,伏诺拉生结合在跨膜螺旋区TM4、TM5、TM6之间形成的管腔前庭区,比SCH28080更能有效填充该空间,药物的磺酰基难以通过TM1、TM2环状结构间Asp137与Asn138形成的静电屏障而离开管腔,这也部分解释了伏诺拉生为何解离缓慢且作用持久[22]。
-
虽然ARDs患者本身酸分泌水平不一定异常升高,但抑制胃酸水平对促进与维持黏膜愈合至关重要[26]。这种最适抑酸强度与黏膜愈合最佳条件的数学关系为:PU维持胃内pH>3,18~20 h/d,但对于十二指肠溃疡,进一步增加pH可能不会带来额外临床获益[26];GERD维持胃内pH>4,20~22 h/d,其愈合率与pH及每日维持时间呈正比[27]。因此对于ARDs,影响药物临床疗效的因素不仅取决于抑酸强度本身,还依赖于抑酸持续时间。
P-CAB对H+, K+-ATP酶的抑制呈剂量依赖性,不受pH影响,并且对Na+, K+-ATP酶的IC50远大于H+, K+-ATP酶。3篇独立的基础研究分别报告了相关参数。在对伏诺拉生进行的药效学实验中,pH=6.5的环境下伏诺拉生、SCH28080与兰索拉唑的IC50分别为0.019、0.14、7.6 μmol/L,pH=7.5时分别为0.028、2.5、66 μmol/L[17]。在对替戈拉生进行的药效学实验中,替戈拉生对猪、犬及人H+, K+-ATP酶的IC50分别为0.47、0.29 、0.52 μmol/L,未表现物种特异性[28];在对凯普拉生进行的药效学实验中,pH=6.5的环境下凯普拉生、伏诺拉生与兰索拉唑的IC50分别为0.029、0.02、7.51 μmol/L,pH=7.5时分别为0.061、0.029、64.95 μmol/L,同时该研究还报道凯普拉生与伏诺拉生的Ki分别为4 nmol/L与3 nmol/L[29]。上述研究中的量效关系曲线均表明这3种P-CAB具有剂量依赖性,这些研究还提示,新型P-CAB的抑酸作用不仅强大且不受环境pH的影响。此外,伏诺拉生对hERG钾离子通道的IC50为4.8 μg/ml,是H+, K+-ATP酶(8.9 ng/ml即0.019 μmol/L)的539倍;替戈拉生对hERG的IC50>16.8 μmol/L,是H+, K+-ATP酶(0.52 μmol/L)的30余倍,因此它们具有良好的心脏安全性[18]。
P-CAB抑酸迅速、强且持久。日本的一项I期两阶段交叉试验显示,连续7 d口服伏诺拉生20 mg/d、艾司奥美拉唑20 mg/d或雷贝拉唑10 mg/d,第1天受试者24 h胃内pH>4持续时间占比(HTR)分别为71.4%(伏诺拉生)vs 23.9%(艾司奥美拉唑)、84.2%(伏诺拉生)vs 26.3%(雷贝拉唑);第7天pH4 HTR分别为85.8%(伏诺拉生)vs 61.2%(艾司奥美拉唑)、93.8%(伏诺拉生)vs 65.1%(雷贝拉唑);此外,伏诺拉生组第1天与第7天的胃内pH曲线基本重叠,提示可达到首剂全效[30]。在另一项日本的I期随机双盲安慰剂对照试验中,pH4 HTR随伏诺拉生剂量的增加而增加(连续7 d口服伏诺拉生10、15、20、30、40 mg/d,第1天24 h pH4 HTR分别为38.4%、55.4%、63.3%、80.8%、85.3%,第7天24 h pH4 HTR可达63.3%、68.5%、83.4%、95.2%、100.0%),表明其抑酸作用呈剂量依赖性[31]。在韩国的一项I期试验中,50 mg替戈拉生或200 mg瑞伐拉生连续口服7 d,第1天24 h pH4 HTR分别为54.5%与25.1%;第7天pH4 HTR分别为68.2%与25.3%[32]。另一项韩国的I期三阶段交叉试验比较了单剂量口服(约晚10点)50 mg替戈拉生、20 mg伏诺拉生或40 mg艾司奥美拉唑的夜间抑酸效果,结果显示12 h pH4 HTR分别为66.0%、60.5%与36.1%,并且替戈拉生在1 h左右达到胃内pH>4,远早于另外两者(均约4 h),提示其在改善NAB中具有良好潜力[33]。还有一项韩国的I期随机单剂量交叉试验比较了替戈拉生与右兰索拉唑夜间抑酸效果,作为可能改善NAB的最强PPI,60 mg双相缓释的右兰索拉唑24 h pH4 HTR与50 mg替戈拉生相当(60.55% vs 58.55%),而替戈拉生100 mg与200 mg可达到70.07%与81.73%,并且夜间12 h pH4 HTR替戈拉生50 mg远高于右兰索拉唑(65.11% vs 37.78%);此外替戈拉生各剂量组均在2 h内达到pH>4,右兰索拉唑大约7 h,这些结果提示,替戈拉生不仅具有剂量依赖性,还可有效改善NAB[34]。目前有关凯普拉生的研究有限,根据国家药品监督管理局的数据,连续7 d口服凯普拉生20 mg/d,第7天24 h pH4 HTR为98.3%[16]。
-
P-CAB对酸稳定,不需制备成肠溶制剂,生物利用度数据暂缺,口服吸收迅速并可选择性聚集于壁细胞中,且由于pKa较大,易于保持质子化状态而难以透出细胞膜。伏诺拉生连续给药7 d达峰时间(Tmax)为1.5~2 h,半衰期(t1/2)为5.7~8.8 h,在10~40 mg剂量范围内呈线性药动学,提示不发生蓄积;此外其药动学参数在日本与英国受试者中相似[31]。体外实验显示伏诺拉生血浆蛋白结合率为85.2%~88.0%,但由于其血浆药物浓度很低,因此即使远高于治疗浓度可能也难以使血浆蛋白饱和[15]。单剂量口服替戈拉生Tmax为0.5~1.5 h,t1/2为3.7~5.4 h,在50~400 mg剂量范围内呈线性药动学[35]。一项针对我国健康受试者的研究表明,单剂量口服替戈拉生Tmax为0.5 h,t1/2为3.9~4.6 h,在50~200 mg剂量范围内呈线性药动学;100 mg连续给药10 d Tmax为1.0 h,t1/2为7.1 h,并且药物无蓄积。此外,本研究未发现基于性别的实验差异[18]。20 mg凯普拉生连续给药7 d Tmax为1.25 h,t1/2为6.2 h,血浆蛋白结合率97.7%~98.7%[16]。在食物或高脂饮食条件下,伏诺拉生药时曲线下面积(AUC)与峰浓度(Cmax)轻度增加,Tmax显著延长,但食物未显著影响药物暴露[36];替戈拉生AUC不变(或轻度减少)、Cmax显著减少,Tmax显著延长[37, 38];凯普拉生AUC与Cmax增加,Tmax无显著改变[16];三者t1/2均未显著改变。并且两项韩国的研究均表明,食物不影响替戈拉生24 h pH4 HTR[37, 38],以上研究提示,服用伏诺拉生或替戈拉生可不考虑进食的影响,而食物是否影响凯普拉生的药效学表现尚不清楚[39]。
P-CAB主要经CYP3A4代谢,其中对伏诺拉生的代谢途径研究最为明确。除CYP3A4外,伏诺拉生部分经CYP2B6、CYP2C19、CYP2D6及非微粒体酶SULT2A1代谢,生成的4种主要代谢产物M-I、M-Ⅱ、M-Ⅲ与M-Ⅳ-Sul无药理活性[40, 41]。伏诺拉生口服后67%经尿液、31%经粪便排泄,而原型药物只占尿液和粪便的8%与1%[15]。除CYP3A4外,替戈拉生部分经CYP2C19代谢,M1(去甲基替戈拉生)为其共同代谢产物,活性比替戈拉生少10倍(IC50:0.53 μmol/L vs 6.19 μmol/L),考虑只检测到约6.8%的替戈拉生转化为M1,因此M1可能无临床意义[18, 42, 43]。一篇基于生理药动学模型的研究显示,91.8%的替戈拉生经肝代谢,其中71.6%经CYP3A4,20.2%经CYP2C19,而CYP2C9、CYP2C8、CYP2E1及CYP2D6基本未参与其代谢过程[43]。口服替戈拉生只有<6%经肾排泄[35]。体外实验显示,凯普拉生主要经CYP3A4代谢,在健康受试者中有54.4%经尿液、44.5%经粪便排泄[16]。
一项日本的I期研究显示,伏诺拉生的药动学参数不受CYP2C19基因型影响[44],另一项韩国的I期研究显示,伏诺拉生与替戈拉生在CYP2C19快、中、慢代谢型受试者中的夜间抑酸效果相似,提示两者的药效学表现同样不受CYP2C19遗传多态性影响[33]。
目前尚缺乏P-CAB在孕妇、哺乳期妇女、儿童、老年人及肝肾功能不全患者中的研究,因此特殊人群需慎用。有限的数据显示,在Child-Pugh分级A、B、C的肝功能损害患者中,伏诺拉生Cmax与AUC与健康受试者相比可分别增加1.2~1.8与1.2~2.6倍;轻、中、重度肾功能损害及终末期肾病患者Cmax与AUC可分别增加1.2~2.8与1.3~2.4倍[15]。
-
研究表明,伏诺拉生剂量与时间依赖性地抑制CYP2B6、CYP2C19与CYP3A4/5活性,对P-gp也具有抑制作用[15]。我国学者的研究也在体外与动物实验中证实伏诺拉生可抑制CYP3A4、CYP2C9、CYP2D6与CYP2B6的活性,而对CYP1A2与CYP2E1无作用[45]。有限的数据显示,替戈拉生对OATP1B1具有抑制作用(伏诺拉生无);同时,替戈拉生对CYP3A4的IC50高于伏诺拉生(>30 μmol/L vs 29 μmol/L),并且对CYP1A2、CYP2C9、CYP2D6与CYP2C19无作用[46, 47]。体外实验显示,凯普拉生可抑制CYP2C9、CYP2C19与CYP3A4活性,而不抑制P-gp与BCRP,并且也不是OATP1B1、OATP1B3、OAT1、OAT3、OCT2、MATE1与MATE2-K等多种转运体的底物[16]。
虽然P-CAB血浆药物浓度远低于对CYP酶系的IC50[15, 46],但在临床试验中依然显示出与其他药物的相互作用。一项日本的I期试验比较了伏诺拉生与艾司奥美拉唑对氯吡格雷或普拉格雷抗板作用的影响,结果显示伏诺拉生对二者抗板作用的抑制程度显著高于艾司奥美拉唑,并且其源于伏诺拉生对CYP3A4及CYP2C19的抑制[48],然而体外实验显示这种相互作用可能并不由CYP酶系介导[49, 50]。一项韩国的I期随机交叉试验在CYP2C19快代谢受试者中对比了替戈拉生、伏诺拉生与艾司奥美拉唑对CYP2C19的影响,结果显示伏诺拉生与艾司奥美拉唑可显著抑制CYP2C19的底物Proguanil代谢为Cycloguanil,其中艾司奥美拉唑组程度更高,而替戈拉生并不影响这种代谢过程,提示其可与经CYP2C19代谢的药物联用[51]。
在评价伏诺拉生联合阿莫西林/克拉霉素或阿莫西林/甲硝唑三联方案的I期研究中,伏诺拉生AUC0-12与Cmax分别增加了0.85与0.87倍,CYP3A4强抑制剂克拉霉素AUC0-12与Cmax分别增加了0.45与0.64倍,而其代谢产物羟基克拉霉素AUC0-12与Cmax分别增加了0.86与0.98倍,提示伏诺拉生并未抑制克拉霉素的代谢过程,克拉霉素暴露的增加可能源于胃内pH的改变;该三联方案的药物相互作用可能不具有临床意义并且受试者耐受良好,此外未观察到阿莫西林或甲硝唑在两种三联方案中的相互作用52]。在替戈拉生/阿莫西林/克拉霉素三联方案中,替戈拉生AUCτ与Cmax分别增加了1.7与1.2倍,而克拉霉素无显著变化;此外,克拉霉素还可能通过抑制P-gp增加替戈拉生的生物利用度,但替戈拉生是否为P-gp的底物尚不清楚[53]。在基于凯普拉生的三联方案中,凯普拉生与克拉霉素药物暴露的增幅远低于伏诺拉生与替戈拉生[16]。一项韩国的I期研究评价了替戈拉生/甲硝唑/四环素/次枸橼酸铋四联方案的相互作用,与单药相比,联合给药后替戈拉生AUC0-12与Cmax分别降低了22%与25%,四环素AUC0-6与Cmax分别降低了38%与36%,铋剂AUC0-6与Cmax分别增加了55%与38%,甲硝唑的药动学行为未发生改变,四联方案可能使替戈拉生的吸收减少,这种原因目前尚不清楚;胃内pH的升高使铋剂的溶解性及生物利用度增加,因此这种相互作用源于替戈拉生的药效学行为;铋剂溶解性增加可能导致其与四环素形成更多的螯合物,因此使四环素的吸收减少;该四联方案中的药物相互作用可能无临床意义并且受试者耐受良好[54]。
作为最常与传统PPI同时开具的处方之一,NSAIDs与P-CAB的药物相互作用同样得到了评价。伏诺拉生与低剂量阿司匹林、洛索洛芬钠、双氯芬酸钠或美洛昔康合用后药动学未发生显著改变[15]。与此相似,替戈拉生的药动学参数未受萘普生、醋氯芬酸或塞来昔布影响,但醋氯芬酸与塞来昔布的Cmax显著增加而AUCτ未显著改变,这种相互作用可能源于替戈拉生的药理作用,胃内pH升高使这两种弱酸性药物的溶解度增加,但程度不足以使AUC增加,因此这种改变可能不具有临床意义并且受试者耐受良好[55]。另一项韩国的I期研究显示伏诺拉生可能通过抑制肠道CYP3A4显著增加阿托伐他汀的药物暴露,并且受试者高胃泌素血症发生率显著增加,而替戈拉生未引起上述情况;该研究还证实伏诺拉生与替戈拉生均不影响UGT1A1与UGT1A3的活性,并且替戈拉生在治疗剂量下对OATP1B1不具有抑制作用[46]。
-
作为新型抑酸药,P-CAB独特的结构及新颖的作用机制赋予其优于传统PPI的药学特征:活性不依赖于进食、起效快(首剂全效)、个体差异小、抑酸作用强而持久等,这些优越性使P-CAB成为ARDs药物治疗的新选择,但其长期安全性及有效性尚需更多研究证实。
Progress on pharmaceutical characteristics of potassium-competitive acid blocker
-
摘要: 钾离子竞争性酸阻滞剂(P-CAB)是一类新型抑酸药,通过与H+, K+-ATP酶的K+结合位点附近可逆结合,抑制其构象转变而无法完成H+、K+交换,以K+竞争性的方式抑制胃酸分泌。P-CAB独特的结构与新颖的作用机制赋予其优于其他质子泵抑制剂(PPI)的药学特征,使其成为了酸相关性疾病(ARDs)的新选择。就P-CAB的药学特征展开综述。
-
关键词:
- 钾离子竞争性酸阻滞剂 /
- 酸相关性疾病 /
- 研究进展
Abstract: As a new class of acid inhibitors, potassium-competitive acid blocker(P-CAB) inhibits the conformational transition of H+, K+-ATPase with subsequent suppression of H+, K+ exchanging by binding reversibly near the K+ binding site of H+, K+-ATPase, which results in the inhibition of gastric acid secretion in a K+-competitive manner. The unique structure and novel mechanism of P-CAB contribute to the pharmaceutical characteristics superior to other PPIs, making it a new alternative for acid-related diseases(ARDs). Progress on pharmaceutical characteristics of P-CAB were reviewed in this paper.-
Key words:
- potassium-competitive acid blocker /
- acid-related diseases /
- progress
-
在我国,肺炎链球菌是引起中国婴幼儿和老年人发病和死亡的重要病因,是社区获得性肺炎(community-acquired pneumonia, CAP)、菌血症、儿童化脓性脑膜炎的常见病原菌[1]。2012年亚太地区病原体耐药监测网络数据显示,肺炎链球菌(Streptococcus pneumoniae, S.p)在亚洲地区总体多重耐药比例为59.3%,而在中国的多重耐药比例高达83.3%[2],且部分地区肺炎链球菌耐药率呈逐年增长趋势[3-4]。
莫西沙星属第四代喹诺酮类抗菌药物,DNA拓扑异构酶抑制剂,抗菌谱广,对常见呼吸道病菌特别是肺炎链球菌抗菌作用强大,2016年中国成人CAP诊治指南推荐可选择莫西沙星等喹诺酮类药物作为初始经验性抗感染药物[5]。莫西沙星所有适应证口服给药的常规剂量均为400 mg/d。随着莫西沙星上市以来临床研究的深入,不良反应事件也有所增加[6]。本研究采用微透析方法获取肺炎大鼠肺组织间液中的游离药物浓度,旨在模拟莫西沙星在感染患者靶器官中的药动学变化,探究正常与感染状态下的靶器官药物分布的差异,分析链球菌感染状态下莫西沙星体内代谢动力学的变化。
1. 材料与方法
1.1 实验动物
取Wistar大鼠24只,雄性,SPF级,4~6周龄,其体质量为200~220g(上海斯莱克实验动物有限公司,合格证编号:2007000514232)。随机分为健康组及肺炎组各12只,两组大鼠体质量分别为(210.92±5.95)g和(208.58±5.33)g,无统计学差异(P>0.05)。实验前各组大鼠禁食12 h过夜,动物饲养遵从中华人民共和国实验动物使用协议。
1.2 实验设备与试剂
CMA402型微量泵、CMA820型微量收集器、血管探针、肺探针(瑞典 CMA公司);ALC-V8S小动物呼吸机(上海奥尔科特生物科技有限公司);安捷伦1100高效液相色谱仪,配有Chemstation工作站;XW-80型涡旋混合器(其林贝尔);Thermo LEGEND Micro 17高速离心机(赛默飞);METTLER AE240电子天平(梅特勒)。莫西沙星标准品(中国食品药品检定研究院,纯度>99%,批号1448606),莫西沙星片(拜耳医药保健有限公司,批号BJ13520);甲醇(HPLC级,Burdick & Jackson公司),乙腈(HPLC级,Merck公司),甲酸(Fluka公司,瑞士)。
1.3 实验菌株
肺炎链球菌由第二军医大学附属长海医院微生物实验室提供,于接种前1 d接种于血琼脂平板,置于37 ℃ CO2培养箱中培养24 h,用无菌生理盐水稀释成含细菌浓度为0.6×108 cfu/ml的混悬液,备用。质控菌株为肺炎链球菌标准株(ATCC49619 上海宝米科生物科技有限公司提供)。
1.4 实验方法
1.4.1 动物处理
造模:采用气管穿刺法注入菌液建立肺炎大鼠模型。腹腔麻醉后,切开颈部皮肤暴露气管,经气管软骨环间穿刺,注入肺炎链球菌混悬液 0.2 ml(约0.12×108cfu/只),将大鼠直立位20 s,再使大鼠保持右侧卧位10 min,促使菌液充分流入右肺。于接种后第5~7天建立大鼠右侧肺炎模型。所有大鼠实验结束后行病理解剖及肺组织匀浆培养证实建模成功。
1.4.2 探针植入
取造模成功的肺炎大鼠麻醉后,固定于保温垫,在气管上段做一T型切口,插入气管导管,接小动物呼吸机辅助通气,频率75~80次/min,潮气量2.5 ml。于大鼠右侧胸壁做斜行切口,止血钳离断第5肋骨前肋,充分暴露右肺。用注射器针尖稍刺破右肺中叶脏层胸膜,将肺探针向肺门方向钝性植入肺组织,复位肺叶,固定探针并关闭胸腔。切开左侧股静脉,植入血管探针推送至下腔静脉固定。
1.5 莫西沙星药动学分析
1.5.1 给药及样本收集
取莫西沙星1片,刮去包衣后磨成细粉末状,加入0.5%羧甲基纤维素钠无菌注射用水溶解,制成混悬溶液,浓度为10 mg/ml。
两组大鼠分别通过灌胃给药的方式注入莫西沙星混悬液,给药剂量按4 ml/kg计算,5 s内注入完毕,立即开始收集血浆及肺组织透析样品。采用HPLC法分别测定前5 h的莫西沙星浓度。
1.5.2 HPLC法测定透析液中莫西沙星含量
(1)色谱条件 色谱柱:Agilent SB-C18 (250 mm×4.6 mm,5.0 µm),流动相:乙腈: 0.1%甲酸水(25:75,V/V);流速:1.0 ml/min,分析时间10 min,柱温:30 ℃,进样量:5 μl,检测波长295 nm。
(2)透析液处理 精密量取100 μl透析液样品,置1.5 ml塑料离心管中,加入200 μl甲醇,漩涡混合30 s后,12000 r/min离心10 min,取200 μl上清液于进样瓶中,进样5 μl进行HPLC分析。
(3)标准曲线与线性范围 取空白透析液100 μl,精密加入莫西沙星标准对照品溶液20 μl旋涡混匀,配成莫西沙星浓度分别为5.00、2.00、1.00、0.50、0.20、0.10及0.05 µg/ml标准含药肺透析液,除不加200μl醇外,其余按“透析液样品处理方法”项下操作,进样分析,记录色谱图,计算莫西沙星峰面积。莫西沙星以肺透析液中待测物浓度(X)为横坐标,莫西沙星峰面积(Y)为纵坐标,求得回归方程:
Y=14.273X+0.555,r=0.999
结果表明莫西沙星在0.05~5.00 µg/ml浓度范围内线性关系良好。
1.5.3 定量限与检测限
配制莫西沙星浓度为0.05 µg/ml的标准含药透析液5份,进行分析,依照当日标准曲线方程求得实测浓度为(0.051 ± 0.004)µg/ml,准确度90.8%~116.66%。结果表明莫西沙星在血浆中的定量下限为0.05 µg/ml,S/N>10,线性关系良好。经逐级稀释,按S/N>3测得莫西沙星在血浆中的检测限为0.015 µg/ml。
1.5.4 精密度试验
制备含莫西沙星的浓度分别为0.05、0.50、5.00 µg/ml的标准含药肺透析液(每个浓度做5份),按“肺透析液样品预处理方法”项下操作,进样分析,连续做3 d,计算日内和日间精密度。测得日内精密度RSD分别为6.6281%、2.6247%、2.8282%;日间精密度分别为2.3793%、1.0271%、2.4221%,均小于10%,符合精密度要求。
1.5.5 准确度试验
以相对回收率表示,按“标准曲线制备”项下制备含有莫西沙星浓度分别为0.05、0.50、5.00 µg/ml的标准含药肺透析液,按“肺透析液样品预处理方法”项下操作,进样分析,记录色谱峰面积,代入标准曲线方程,计算实测浓度与实际浓度的比值即为相对回收率。结果分别为105.21%、104.82%、106.45%,均在80%~120%范围内,且RSD<10%,符合要求。
1.5.6 稳定性试验
莫西沙星浓度分别为0.05、0.5、5.0 µg/ml的肺透析液样品各3份,分别进行室温、4 ℃及冻融稳定性考察,RSD均<10%。结果表明样品在上述条件下保持稳定。
1.6 数据分析
采用反向透析法测定探针回收率(Rdial),体内实际药物浓度(Cu)由所得透析液浓度(Cm)按公式计算,Cu=Cm/Rdial转化获得。采用Pksolver 2.0软件,以非房室模型计算以下药动学数据:曲线下面积(AUC)、平均滞留时间(MRT)、药物消除半衰期(t1/2)、药物峰浓度(Cmax)、药物在肺部的穿透率(PR=C肺/C血液)、药物的分布系数(AUC肺/AUC血液)。
采用SPSS 17.0版统计学软件分析,计量资料采用均值±标准差(
$\bar{x}\pm s$ )表示。药动学参数先经方差齐性分析,符合正态分布者,采用两样本t检验,P<0.05表示其差异有统计学意义。2. 实验结果
2.1 正常大鼠和肺炎大鼠肺组织药-时曲线
经灌胃给予莫西沙星后,正常大鼠及肺炎大鼠肺组织药物浓度迅速上升,约1 h达峰,随后两者同步下降。整个实验过程肺炎大鼠肺组织浓度均高于正常大鼠,肺炎大鼠肺组织Cmax约为正常大鼠的3.4倍。两组大鼠肺组织中莫西沙星的浓度-时间数据分布情况见图1。
2.2 正常大鼠和肺炎大鼠血浆药-时曲线
灌胃给予莫西沙星后,正常大鼠及肺炎大鼠血浆游离药物浓度明显上升,Cmax无明显差异,两组大鼠血浆中莫西沙星的血药浓度-时间数据分布情况见图2。
2.3 肺组织穿透率(PR)
计算各时间点在肺组织中的穿透率(PR值),正常大鼠和肺炎大鼠肺组织穿透率最高分别为0.27和1.87;最低分别为0.16和0.89,平均值分别为0.18±0.10和1.26±0.32(P<0.05),见图3。
2.4 主要药动学参数
大鼠灌胃莫西沙星后,正常大鼠及肺炎大鼠药动学参数采用非房室模型进行分析,结果见表1。
表 1 灌胃给予莫西沙星的正常大鼠与肺炎大鼠血浆和肺组织中的药动学参数参数 单位 血浆 肺组织 正常组 肺炎组 正常组 肺炎组 Lambda_z 1/h 0.2±0.13 0.32±0.01 0.4±0.15 0.21±0.06 t1/2 h 5.27±4.38 2.15±0.07 1.9±0.63 3.39±0.79 Tmax h 0.67±0.14 1±0 0.89±0.2 0.94±0.1 Cmax μg/ml 4.94±0.98 4.83±0.05 1.42±0.05 4.84±0.02## Tlag h 0±0 0±0 0±0 0±0 Clast_obs/Cmax 0.02±0.03 0.27±0.04## 0.18±0.09 0.33±0.01 AUC 0-t μg/ml·h 22.33±2.02 12.88±1.19# 3.06±1.07 13.16±0.53## AUC 0-inf_obs μg/ml·h 23.51±1.41 16.96±1.71 3.77±1.29 20.93±1.35 AUC0-t/0-inf_obs 0.95±0.08 0.76±0.01 0.81±0.09 0.63±0.07# AUMC 0-inf_obs μg/ml·h2 151.89±92.76 62.01±8.56 11.93±5.14 107.01±25.39# MRT 0-inf_obs h 6.41±3.77 3.65±0.14 3.17±0.77 5.07±0.92 Vz/F_obs (mg/kg)/(μg/ml) 13.51±10.9 7.76±0.97 33.98±20.28 9.74±1.72 CL/F_obs (mg/kg)/(μg/ml)·h 1.79±0.11 2.49±0.26# 12.02±3.9 2.01±0.13 #P<0.05,##P<0.01,与正常组比较 正常大鼠及肺炎大鼠肺组织Cmax分别为(1.42±0.05)μg/ml、(4.84±0.02)μg/ml(P<0.01),t1/2分别为(1.9±0.63)h、(3.39±0.79)h(P>0.05),一阶矩曲线下面积AUMC分别为(11.93±5.14)μg/ml·h2、(107.01±25.39)μg/ml·h2(P<0.05),AUC0-t分别为(3.06±1.07)μg/ml·h、(13.16±0.53)μg/ml·h(P<0.01)
2.5 血液中药动学和药效学(PK/PD)参数比较
结合相关报道的最低抑菌浓度(MIC)[7]及防耐药突变浓度(mutant prevention concentration,MPC)[8]值,将本实验结果Cmax和AUC0-∞与之相比,莫西沙星对肺炎链球菌的PK/PD参数见表2 [莫西沙星对肺炎链球菌的MIC90为0.125 mg/L;莫西沙星对肺炎链球菌的MPC90为2 mg/L]。
表 2 正常大鼠和肺炎大鼠体内莫西沙星的PK/PD参数比较PK/PD参数 血浆 肺组织 正常组 肺炎组 肺炎组/正常组 正常组 肺炎组 肺炎组/正常组 Cmax/MIC90 39.52 38.64 0.98 11.36 38.72 3.41 AUC0-∞/MIC90 188.08 135.68 0.72 30.16 167.44 5.54 Cmax/MPC90 2.47 2.42 0.98 0.71 2.42 3.41 AUC0-∞/MPC90 11.76 8.48 0.72 1.89 10.47 5.54 3. 讨论
我国的多中心研究结果显示,莫西沙星对肺炎链球菌的敏感度达99%,MIC90为0.125 mg/L[7]。莫西沙星和青霉素类、头孢菌素类、氨基糖苷类、大环内酯类、四环素类抗菌药物均无交叉耐药性,口服生物利用度总计91%,可以被快速吸收并分布到血管外隙,稳态时表观分布容积可以达到21/kg。血浆蛋白结合率为45%,其在肺、窦及炎性损伤组织的药物浓度超过血药浓度。相关研究表明,口服莫西沙星400 mg后,在人肺组织[8]、微支气管镜肺泡灌洗液[9]、痰液[10]中的药时曲线与在血浆中的趋势相似,药物在以上样本中的浓度高于血浆,显示出良好组织穿透性,本研究的前期结果也得出相似的结论[11]。
莫西沙星为浓度依赖性抗菌药,抗生素后效应(PAE)较长,喹诺酮类治疗革兰阳性菌所需的AUC0-24h/MIC靶值为30~40。当PK/PD参数Cmax/MIC≥8~10和AUC0~24h/MIC≥125时可以明显减少氟喹诺酮类药物治疗革兰阴性杆菌、包括铜绿假单胞菌耐药菌出现的危险性[12]。本研究结果表明,莫西沙星在正常及肺炎链球菌感染大鼠血浆和肺组织的Cmax/MIC均远大于8~10,在肺炎大鼠的血浆及肺组织的AUC0-24h/MIC为135.68和167.44,正常大鼠血浆为188.08,远大于125。
耐药突变选择窗(MSW)是指防耐药突变浓度(MPC)与最低抑菌浓度(MIC)之间的浓度范围;当治疗药物浓度高于MPC时,在保证疗效的同时也能防止耐药突变;药物浓度如果在突变选择窗内,即使抑制了敏感菌生长,临床治疗可能成功,但还可能导致耐药突变。近年来在优化喹诺酮类给药方案的研究中,常需评价抗菌药物在耐药突变窗中的存在时间百分比和MPC值。TMSW<20%是预测防止出现耐药的有效参数,本研究药动学参数显示,莫西沙星在正常大鼠及肺炎大鼠的血浆和肺组织中的浓度基本保持在莫西沙星耐药突变选择窗之外。
药物常规剂量是在群体药动学结果和有限临床实践上建立的,大多数患者按照常规剂量会获得较好的临床疗效和安全性,但患者个体差异,生理病理状态都会对药动学参数产生一定影响。近年来,关于抗菌药物PK/PD的研究进展迅速,研究发现重症感染患者与健康人的PK/PD数据明显不同,例如万古霉素在重症感染患者群体分布相较正常人群快,患者存在高代谢和高循环动力状态,因而需要对治疗药物监测与给药方案的调整[13]。一项大样本临床研究表明莫西沙星最常见的药物不良反应为胃肠道症状,口服剂量400 mg/d,发生恶心、腹泻和头晕不良反应事件概率分别为7.1%、5.2%和2.6%[14]。国内也有莫西沙星不良反应的文献报道[15-16],此外,莫西沙星的中枢神经系统潜在危险与其他喹诺酮类药物一致[17],因此老年人、中枢神经系统损伤的老年患者(如癫痫、明显动脉硬化)应当谨慎使用,必要时减量,但目前尚无莫西沙星剂量调整的相关依据。
机体发生感染后,病原菌释放内毒素和外毒素,诱发的全身炎症反应,大量的细胞因子炎性介质释放,引起机体内环境稳态失衡,血管内皮破坏和毛细血管通透性增加,导致体液向第三间隙渗漏迁移[18],这一过程会使组织间分布的亲水性抗生素药物稀释,血浆和组织药物浓度下降,对亲脂性药物影响不大[19]。此外药物在体内以一定比例与血浆蛋白结合, 感染状态下血管通透性增加,蛋白向血管外间隙渗漏增加,以及肝脏合成减少,血浆白蛋白减低引起药物游离比例增多,这可能会增加组织内抗生素分布而增加抗感染效果,但同时可能增加药物的毒性作用[20],莫西沙星是表观分布容积较高的脂溶性药物,在感染状态肺组织浓度较健康状态增高,可能与血管通透性增加,血浆蛋白结合率降低有关。
有研究表明喹诺酮类抗菌药物马波沙星在感染小鼠肺组织的药物浓度是血浆药物浓度的2~3倍[21],多杀性巴氏杆菌感染显著增加了马波沙星的AUC、Cmax、MRT,这与本研究结论相似。肺炎模型大鼠与正常大鼠相比,莫西沙星在血浆中的浓度没有显著差异,而在肺炎大鼠肺组织中的浓度明显高于正常大鼠,最高为正常大鼠肺组织的3.4倍,这提示在肺炎链球菌感染的病理状态下,莫西沙星的肺组织穿透率升高。
莫西沙星在正常小鼠和肺炎链球菌感染小鼠的血浆和肺组织浓度均能够达到杀灭细菌并防止产生耐药性的要求。在感染状态下机体高敏、肝肾功能减退等病理因素可能增加莫西沙星不良反应的发生概率,而在肺炎病理状态下,莫西沙星肺组织AUC0-24h/MIC达到167.44,目前实验数据表明小鼠肺炎链球菌感染时莫西沙星肺组织浓度远高于健康状态,也远大于MIC和MPC,理论上有一定剂量调整的空间,其机制和具体方案还有待进一步实验研究,为优化特殊病人给药方案,调整药物剂量,减少药物不良反应提供可参考的数据。
-
[1] SCARPIGNATO C, GATTA L, ZULLO A, et al. Effective and safe proton pump inhibitor therapy in acid-related diseases - A position paper addressing benefits and potential harms of acid suppression[J]. BMC Med, 2016, 14(1):179. doi: 10.1186/s12916-016-0718-z [2] MORI H, SUZUKI H. Role of acid suppression in acid-related diseases: proton pump inhibitor and potassium-competitive acid blocker[J]. J Neurogastroenterol Motil, 2019, 25(1):6-14. doi: 10.5056/jnm18139 [3] 中华消化杂志编辑委员会, 邹多武, 谢渭芬, 等. 消化性溃疡诊断与治疗共识意见(2022年, 上海)[J]. 中华消化杂志, 2023, 9(3):176-192. doi: 10.3760/cma.j.cn311367-20230115-00022 [4] RAMSAY P T, CARR A. Gastric acid and digestive physiology[J]. Surg Clin North Am, 2011, 91(5):977-982. doi: 10.1016/j.suc.2011.06.010 [5] AIHARA T, NAKAMURA E, AMAGASE K, et al. Pharmacological control of gastric acid secretion for the treatment of acid-related peptic disease: past, present, and future[J]. Pharmacol Ther, 2003, 98(1):109-127. doi: 10.1016/S0163-7258(03)00015-9 [6] NISHIDA H. Discovery of Vonoprazan Fumarate(TAK-438)as a Novel, Potent and Long-Lasting Potassium-Competitive Acid Blocker [M]. Successful Drug Discovery, 2016. [7] FATOVIĆ-FERENČIĆ S, BANIĆ M. No acid, no ulcer: Dragutin(Carl)Schwarz(1868-1917), the man ahead of his time[J]. Dig Dis, 2011, 29(5):507-510. doi: 10.1159/000334384 [8] MARSHALL B J, WARREN J R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration[J]. Lancet, 1984, 1(8390):1311-1315. [9] LAM S K. Antacids: the past, the present, and the future[J]. Baillieres Clin Gastroenterol, 1988, 2(3):641-654. doi: 10.1016/S0950-3528(88)80011-3 [10] SCARPIGNATO C, HONGO M, WU J C Y, et al. Pharmacologic treatment of GERD: where we are now, and where are we going?[J]. Ann N Y Acad Sci, 2020, 1482(1):193-212. doi: 10.1111/nyas.14473 [11] SAVARINO E, MARTINUCCI I, FURNARI M, et al. Vonoprazan for treatment of gastroesophageal reflux: pharmacodynamic and pharmacokinetic considerations[J]. Expert Opin Drug Metab Toxicol, 2016, 12(11):1333-1341. doi: 10.1080/17425255.2016.1214714 [12] RAWLA P, SUNKARA T, OFOSU A, et al. Potassium-competi-tive acid blockers - are they the next generation of proton pump inhibitors?[J]. World J Gastrointest Pharmacol Ther, 2018, 9(7):63-68. doi: 10.4292/wjgpt.v9.i7.63 [13] PARSONS M E, KEELING D J. Novel approaches to the pharmacological blockade of gastric acid secretion[J]. Expert Opin Investig Drugs, 2005, 14(4):411-421. doi: 10.1517/13543784.14.4.411 [14] HUNT R H, SCARPIGNATO C. Potassium-competitive acid blockers(P-CABs): are they finally ready for prime time in acid-related disease?[J]. Clin Transl Gastroenterol, 2015, 6(10):e119. doi: 10.1038/ctg.2015.39 [15] ECHIZEN H. The first-in-class potassium-competitive acid blocker, vonoprazan fumarate: pharmacokinetic and pharmacodynamic considerations[J]. Clin Pharmacokinet, 2016, 55(4):409-418. doi: 10.1007/s40262-015-0326-7 [16] KANG C. Keverprazan hydrochloride: first approval[J]. Drugs, 2023, 83(7):639-643. doi: 10.1007/s40265-023-01865-w [17] HORI Y, IMANISHI A, MATSUKAWA J, et al. 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate(TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases[J]. J Pharmacol Exp Ther, 2010, 335(1):231-238. doi: 10.1124/jpet.110.170274 [18] HE J J, CAO G Y, YU J C, et al. Safety, tolerability and pharmacokinetics of single ascending and multiple oral doses of tegoprazan in healthy Chinese subjects[J]. Clin Drug Investig, 2021, 41(1):89-97. doi: 10.1007/s40261-020-00986-4 [19] OTAKE K, SAKURAI Y, NISHIDA H, et al. Characteristics of the novel potassium-competitive acid blocker vonoprazan fumarate(TAK-438)[J]. Adv Ther, 2016, 33(7):1140-1157. doi: 10.1007/s12325-016-0345-2 [20] OSHIMA T, MIWA H. Potent potassium-competitive acid blockers: a new era for the treatment of acid-related diseases[J]. J Neurogastroenterol Motil, 2018, 24(3):334-344. doi: 10.5056/jnm18029 [21] GEIBEL J P. Role of potassium in acid secretion[J]. World J Gastroenterol, 2005, 11(34):5259-5265. doi: 10.3748/wjg.v11.i34.5259 [22] SCOTT D R, MUNSON K B, MARCUS E A, et al. The binding selectivity of vonoprazan(TAK-438)to the gastric H+, K+-ATPase[J]. Aliment Pharmacol Ther, 2015, 42(11-12):1315-1326. doi: 10.1111/apt.13414 [23] LAMBRECHT N, MUNSON K, VAGIN O, et al. Comparison of covalent with reversible inhibitor binding sites of the gastric H, K-ATPase by site-directed mutagenesis[J]. J Biol Chem, 2000, 275(6):4041-4048. doi: 10.1074/jbc.275.6.4041 [24] VAGIN O, MUNSON K, DENEVICH S, et al. Inhibition kinetics of the gastric H, K-ATPase by K-competitive inhibitor SCH28080 as a tool for investigating the luminal ion pathway[J]. Ann N Y Acad Sci, 2003, 986:111-115. doi: 10.1111/j.1749-6632.2003.tb07147.x [25] SHIN J M, INATOMI N, MUNSON K, et al. Characterization of a novel potassium-competitive acid blocker of the gastric H, K-ATPase, 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438)[J]. J Pharmacol Exp Ther, 2011, 339(2):412-420. doi: 10.1124/jpet.111.185314 [26] HOWDEN C W. Appropriate acid suppression in the treatment of acid-related conditions[J]. Pharmacol Ther, 1994, 63(1):123-134. doi: 10.1016/0163-7258(94)90056-6 [27] BELL N J, BURGET D, HOWDEN C W, et al. Appropriate acid suppression for the management of gastro-oesophageal reflux disease[J]. Digestion, 1992, 51(Suppl 1):59-67. [28] TAKAHASHI N, TAKE Y. Tegoprazan, a novel potassium-competitive acid blocker to control gastric acid secretion and motility[J]. J Pharmacol Exp Ther, 2018, 364(2):275-286. doi: 10.1124/jpet.117.244202 [29] LI C Y, SU M, YAN Y Y, et al. KFP-H008 blocks gastric acid secretion through inhibiting H+-K+-ATPase[J]. Eur J Pharmacol, 2017, 810:112-119. doi: 10.1016/j.ejphar.2017.06.020 [30] SAKURAI Y, MORI Y, OKAMOTO H, et al. Acid-inhibitory effects of vonoprazan 20 Mg compared with esomeprazole 20 Mg or rabeprazole 10 Mg in healthy adult male subjects: a randomised open-label cross-over study[J]. Aliment Pharmacol Ther, 2015, 42(6):719-730. doi: 10.1111/apt.13325 [31] JENKINS H, SAKURAI Y, NISHIMURA A, et al. Randomised clinical trial: safety, tolerability, pharmacokinetics and pharmacodynamics of repeated doses of TAK-438(vonoprazan), a novel potassium-competitive acid blocker, in healthy male subjects[J]. Aliment Pharmacol Ther, 2015, 41(7):636-648. doi: 10.1111/apt.13121 [32] SUNWOO J, JI S C, OH J, et al. Pharmacodynamics of tegoprazan and revaprazan after single and multiple oral doses in healthy subjects[J]. Aliment Pharmacol Ther, 2020, 52(11-12):1640-1647. doi: 10.1111/apt.16121 [33] YANG E, KIM S, KIM B, et al. Night-time gastric acid suppression by tegoprazan compared to vonoprazan or esomeprazole[J]. Br J Clin Pharmacol, 2022, 88(7):3288-3296. doi: 10.1111/bcp.15268 [34] HAN S, CHOI H Y, KIM Y H, et al. Comparison of pharmacodynamics between tegoprazan and dexlansoprazole regarding nocturnal acid breakthrough: a randomized crossover study[J]. Gut Liver, 2023, 17(1):92-99. doi: 10.5009/gnl220050 [35] HAN S, CHOI H Y, KIM Y H, et al. Randomised clinical trial: safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of tegoprazan(CJ-12420), a novel potassium-competitive acid blocker, in healthy male subjects[J]. Aliment Pharmacol Ther, 2019, 50(7):751-759. doi: 10.1111/apt.15438 [36] MULFORD D J, LEIFKE E, HIBBERD M, et al. The effect of food on the pharmacokinetics of the potassium-competitive acid blocker vonoprazan[J]. Clin Pharmacol Drug Dev, 2022, 11(2):278-284. doi: 10.1002/cpdd.1009 [37] HAN S, CHOI H Y, KIM Y H, et al. Effect of food on the pharmacokinetics and pharmacodynamics of a single oral dose of tegoprazan[J]. Clin Ther, 2021, 43(8):1371-1380. doi: 10.1016/j.clinthera.2021.06.007 [38] YOON D Y, SUNWOO J, SHIN N, et al. Effect of meal timing on pharmacokinetics and pharmacodynamics of tegoprazan in healthy male volunteers[J]. Clin Transl Sci, 2021, 14(3):934-941. doi: 10.1111/cts.12958 [39] ZHOU S, XIE L, ZHOU C, et al. Keverprazan, a novel potassium-competitive acid blocker: Single ascending dose safety, tolerability, pharmacokinetics, pharmacodynamics and food effect in healthy subjects[J]. Eur J Pharm Sci, 2023, 190:106578. doi: 10.1016/j.ejps.2023.106578 [40] YAMASAKI H, KAWAGUCHI N, NONAKA M, et al. In vitro metabolism of TAK-438, vonoprazan fumarate, a novel potassium-competitive acid blocker[J]. Xenobiotica, 2017, 47(12):1027-1034. doi: 10.1080/00498254.2016.1203505 [41] YONEYAMA T, TESHIMA K, JINNO F, et al. A validated simultaneous quantification method for vonoprazan (TAK-438F) and its 4 metabolites in human plasma by the liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2016, 1015-1016:42-49. doi: 10.1016/j.jchromb.2016.01.051 [42] JEONG H C, KIM M G, WEI Z D, et al. Integration of a physio-logically based pharmacokinetic and pharmacodynamic model for tegoprazan and its metabolite: application for predicting food effect and intragastric pH alterations[J]. Pharmaceutics, 2022, 14(6):1298. doi: 10.3390/pharmaceutics14061298 [43] NGO L T, LEE J, YUN H Y, et al. Development of a physiologi-cally based pharmacokinetic model for tegoprazan: application for the prediction of drug-drug interactions with CYP3A4 perpetrators[J]. Pharmaceutics, 2023, 15(1):182. doi: 10.3390/pharmaceutics15010182 [44] SAKURAI Y, NISHIMURA A, KENNEDY G, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of single rising TAK-438(vonoprazan)doses in healthy male Japanese/non-japanese subjects[J]. Clin Transl Gastroenterol, 2015, 6(6):e94. doi: 10.1038/ctg.2015.18 [45] WANG Y R, WANG C X, WANG S H, et al. Cytochrome P450-based drug-drug interactions of vonoprazan in vitro and in vivo[J]. Front Pharmacol, 2020, 11:53. doi: 10.3389/fphar.2020.00053 [46] HWANG S, KO J W, LEE H, et al. Co-administration of vonoprazan, not tegoprazan, affects the pharmacokinetics of atorvastatin in healthy male subjects[J]. Front Pharmacol, 2021, 12:754849. doi: 10.3389/fphar.2021.754849 [47] YOON D Y, LEE S, JANG I J, et al. Prediction of drug-drug interaction potential of tegoprazan using physiologically based pharmacokinetic modeling and simulation[J]. Pharmaceutics, 2021, 13(9):1489. doi: 10.3390/pharmaceutics13091489 [48] KAGAMI T, YAMADE M, SUZUKI T, et al. Comparative study of effects of vonoprazan and esomeprazole on antiplatelet function of clopidogrel or prasugrel in relation to CYP2C19 genotype[J]. Clin Pharmacol Ther, 2018, 103(5):906-913. doi: 10.1002/cpt.863 [49] NISHIHARA M, YAMASAKI H, CZERNIAK R, et al. In vitro assessment of potential for CYP-inhibition-based drug-drug interaction between vonoprazan and clopidogrel[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(2):217-227. doi: 10.1007/s13318-018-0521-7 [50] NISHIHARA M. Inhibitory effect of vonoprazan on the metabolism of[14C]prasugrel in human liver microsomes[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(5):713-717. doi: 10.1007/s13318-019-00554-y [51] YANG E, JI S C, JANG I J, et al. Evaluation of CYP2C19-mediated pharmacokinetic drug interaction of tegoprazan, compared with vonoprazan or esomeprazole[J]. Clin Pharmacokinet, 2023, 62(4):599-608. doi: 10.1007/s40262-023-01228-4 [52] SAKURAI Y, SHIINO M, OKAMOTO H, et al. Pharmacokinetics and safety of triple therapy with vonoprazan, amoxicillin, and clarithromycin or metronidazole: a phase 1, open-label, randomized, crossover study[J]. Adv Ther, 2016, 33(9):1519-1535. doi: 10.1007/s12325-016-0374-x [53] GHIM J L, CHIN M C, JUNG J, et al. Pharmacokinetics and pharmacodynamics of tegoprazan coadministered with amoxicillin and clarithromycin in healthy subjects[J]. J Clin Pharmacol, 2021, 61(7):913-922. doi: 10.1002/jcph.1805 [54] JEON J Y, KIM S Y, MOON S J, et al. Pharmacokinetic interactions between tegoprazan and metronidazole/tetracycline/bismuth and safety assessment in healthy Korean male subjects[J]. Clin Ther, 2021, 43(4):722-734. doi: 10.1016/j.clinthera.2021.01.026 [55] MOON S J, SHIN N, KANG M, et al. Pharmacokinetic interactions between tegoprazan and naproxen, aceclofenac, and celecoxib in healthy Korean male subjects[J]. Clin Ther, 2022, 44(7): 930-944. e1. 期刊类型引用(1)
1. 卢宪良. 乌帕替尼治疗风湿免疫性疾病研究进展. 临床合理用药. 2024(17): 178-181 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 10910
- HTML全文浏览量: 3670
- PDF下载量: 73
- 被引次数: 2