-
中药丹参是唇形科鼠尾草属药用植物丹参(Salvia miltiorrhiza Bunge)的干燥根及根茎,具有活血祛瘀、通经止痛、清心除烦、凉血消痈的功效[1]。水溶性的丹酚酸类物质和脂溶性的丹参酮类物质是丹参发挥药效的重要物质基础[2-4]。丹参主要来源于人工栽培,但随着种植规模的扩大,品质退化现象严重[5]。因此,阐明丹参活性成分形成规律对保证其临床用药安全尤为重要。近年来,科研工作者从转录水平对丹参品质形成机制开展了研究,鉴定出多个参与品质调控的转录因子[6-7]。但随着研究的深入,逐渐发现酶的稳定性在药材品质形成中发挥着不可或缺的作用。
泛素-26S蛋白酶体系统通过介导蛋白泛素化降解影响靶蛋白的稳定性[8-11]。其中,F-box蛋白作为Skip-Cullin-F-box(SCF)复合物的核心组分,通过其N端的F-box基序与SKP1相互作用形成骨架,并通过C端的多种蛋白质相互作用结构域选择性识别底物蛋白,这些结构域包括WD 40重复序列、TUB 结构域、Kelch 结构域和富含亮氨酸的重复序列(LRR)等[12]。基于这些不同的结构域,F-box蛋白家族被进一步细分为多个亚家族[13-16]。近年来,F-box-LRR (FBXL)家族蛋白在植物应对生物及非生物逆境中的关键作用日益受到关注。例如,拟南芥茉莉酸受体COI1的C端为18个串联的LRRs结构域[17],能够特异性识别转录抑制子JAZ,并通过26S蛋白酶体途径降解,解除了JAZ对茉莉素途径转录激活因子MYC2的抑制作用,从而激活茉莉素信号途径下游信号防御通路[18-20]。水稻OsCOI1是拟南芥COI1的同源基因,通过与阻遏蛋白JAZ及E3泛素连接酶复合体SCF-COI1的相互作用,诱导一系列防御及生长发育相关基因的表达[21]。拟南芥中的MAX2蛋白,其C端富含LRR结构域,通过调控气孔开合,有效防御丁香假单胞菌和胡萝卜果胶菌的入侵[22]。TIR1/AFBs生长素受体蛋白具有高度保守的F-box-LRR结构域[23],外源病原菌侵染后,miR393过表达导致TIR1水平下降,特异性提高了拟南芥对丁香假单胞杆菌的抗性[24-25]。拟南芥F-box蛋白AFBA1通过脱落酸(ABA)信号途径正调控植物抗旱反应[26]。F-box-Nictaba的表达在拟南芥中受热胁迫、丁香假单胞菌和水杨酸(SA)的诱导, 并通过SA途径介导植物抗病性反应[27]。 拟南芥AT5G15710 基因编码的F-box蛋白参与了对重金属Cu2+或Cd2+的胁迫过程[28]。目前,F-box家族在植物中的功能研究主要集中在拟南芥、水稻等模式植物中,在丹参这一重要药用植物中的研究尚显不足。本研究从丹参基因组中筛选出104条FBXL 基因,并进行生物信息学和表达模式分析,旨在为SmFBXL的后续研究提供依据。
-
从CNCB网站(https://www.cncb.ac.cn/)中下载丹参基因组(GWHAOSJ00000000)数据及gff注释信息。从拟南芥信息网站(TAIR,https://www.arabidopsis.org/)中下载拟南芥FBXL 基因的氨基酸序列。使用TBtools v2.101中Blast Compare Two Seqs模块,将E值设置为10−5进行本地blast。此外,通过Pfam数据库(http://pfam.xfam.org/)查找丹参FBXL 基因家族特征结构域(PF00646、PF12937、PF13013),通过Simple HMM Search进行丹参FBXL 氨基酸序列的筛选。取两次筛选的序列ID的交集,最后使用在线生物信息学工具国家生物技术信息中心CDD搜索数据库(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)、InterPro数据库(https://www.ebi.ac.uk/interpro/)和SMART网站(https://smart.embl.de), 去除不含F-box和LRRs的序列。
使用ProtParam工具(https://web.expasy.org/protparam/)计算了预测丹参FBXL 基因蛋白的理化特征,包括氨基酸序列长度、理论等电点(pI)、分子量(Mw)、不稳定指数、脂肪族指数和总平均亲水性指数(GRAVY)等指标。使用CELLO在线网站(http://cello.life.nctu.edu.tw/)进行丹参FBXL 基因亚细胞定位预测。
-
从PudMed(https://www.ncbi.nlm.nih.gov/)网站中下载大豆FBXL基因的氨基酸序列,连同丹参和拟南芥FBXL 基因的氨基酸序列进行系统发育关系分析。使用Clustal进行多序列比对,比对完成后使用MEGA11软件Neighbor-Joining(NJ),参数Bootstrap值设为
1000 ,进行系统发育树构建。使用iTOL(https://itol.embl.de/)对进化树进行可视化及美化。 -
使用在线MEME软件(http://www.OMI csclass. com/article/67)分析丹参FBXL 家族成员的基序结构,其中基序的最大数量设置为20,基序的最小宽度设置为6,基序的最大宽度设置为50。从丹参的基因组注释文件中提取丹参FBXL 基因的结构,包括CDS和UTR。最后,使用TBtools v2.101 进行可视化分析。
-
从丹参的基因组注释文件中提取丹参FBXL 基因染色体位置信息,并使用Tbtools软件中Gene Location Visualize from GTF/GFF模块进行可视化。BLASTP程序用于鉴定丹参中的同源FBXL 基因,e值阈值设置为< e−5。使用MCScanX默认参数分析丹参FBXL 基因之间的共线性关系。使用TBtools进行可视化。为了进行共线性分析,从Phytozome v13 网站(https://phytozome-next.jgi.doe.gov/)下载拟南芥基因组序列和注释文件,从CNCB网站南丹参基因组序列和注释文件(GWHASIU00000000)。利用MCScanX程序分析了丹参与拟南芥、南丹参之间的共线性。
-
每个SmFBXL 基因起始密码子(ATG)上游的2 000 bp区域被认为是启动子序列。使用TBtools提取启动子序列并用PlantCARE(https://bioinformatics.PSB.ugent.be/web tools/plant care/html/)预测顺式调控元件。使用TBtools中HeatMap模块对与胁迫反应、植物生长和发育、植物激素响应和光响应的顺式元件进行可视化和总结。
-
丹参植株生长于海军医大学药学系温室,为唇形科植物丹参(Salvia miltiorrhiza Bunge),于丹参生长一月后取其根、叶组织,立即液氮冷冻, 于−80℃冰箱保存,进行转录组测序。使用TBtools的HeatMap模块进行热图可视化,为避免基因表达量差异过大,影响可视化,对数据取Log2(以2为底差异表达倍数的对数)进行标准化,并进行列归一化和聚类分析。
-
经CDD和Pfam在线分析后最终获得104个SmFBXL序列,均含有F-box和LRRs保守结构域,将所得到的SmFBXL基因序列进行编号,即 SmFBXL1~SmFBXL104。通过ProtParam工具预测理化性质,发现SmFBXL基因长度范围为645 ~ 3 012 bp,编码的蛋白氨基酸长度差异亦较大,为 214~2 362 aa,平均为 494 aa;相对分子质量为 24 333~268 357,与氨基酸长度成正比;等电点为4.41~9.36,其中43个为碱性蛋白质,61个为酸性蛋白质。亚细胞定位预测结果表明,42个 SmFBXLs蛋白定位在细胞核,表明其在细胞核发挥相关调控的功能;9个 SmFBXL蛋白定位在细胞质,表明其在细胞质发挥调控的功能;3 个 SmFBXL 蛋白定位在叶绿体,推测其可能参与叶绿体的基因表达调控;此外,还有1个成员定位于线粒体,37个定位于细胞质膜,12个定位于细胞外间质。
-
为明确 SmFBXL基因家族成员间的亲缘关系及其与生物学功能的关系,采用NJ法构建丹参、拟南芥和大豆的FBXL 基因家族成员的系统发育进化树(图1)。SmFBXL 基因家族共分为8个亚族(亚族Ⅰ~Ⅷ)。其中,亚族Ⅰ的所有成员大部分来自大豆,仅有一个AtFBXL 家族成员,其他7个亚类中均有SmFBXL家族成员分布。其中,亚族Ⅱ中SmFBXL成员分布最多,有52个SmFBXL成员,其次是亚族Ⅲ、亚族Ⅳ、亚族Ⅷ,分别有17、10、8个,亚族Ⅴ、亚族Ⅶ均有6个SmFBXL成员,亚族Ⅵ仅有5个SmFBXL成员。另外,亚族Ⅱ中仅有SmFBXL和AtFBXL 家族成员,推测SmFBXL在进化过程中可能出现了功能特异蛋白。系统进化上与拟南芥直系同源基因比较相近的FBXL 基因,在其结构与功能上可能比较相似,可以作为推测丹参中FBXL 基因功能的参考依据。
-
为了进一步分析SmFBXL基因家族成员的结构和潜在功能,利用GSDS、MEME分析SmFBXL基因的外显子与内含子的分布、保守基序。SmFBXL基因家族的蛋白序列中,基序3出现在大多数亚族中,出现频率最高,其与F-Box-LRR保守结构域相关。同一亚族中的大部分SmFBXL基序组成相似,此外,有些基序仅出现在特定亚族中,如亚族Ⅱ成员中含有独有的基序2、基序6,亚族Ⅲ特有的基序5,亚族Ⅷ特有的基序8,推测这些亚族中的FBXL基因可能具有其他重要的生物学功能(图2)。对SmFBXL基因家族成员的结构分析发现,其内含子和外显子数量存在高度的差异性,基本都含有内含子1~10个,多数SmFBXL基因含有2个内含子,同一亚族的SmFBXL转录因子的基因结构相对保守(图2)。
-
对丹参基因组中获得的SmFBXLs基因进行染色体定位分析(图3A),大部分基因分布在8条染色体的上下臂,每条染色体上的SmFBXL 基因数量为3~15个,基因在Chr01、Chr02、Chr03、Chr06、Chr07、Chr08染色体上分布的较少,集中在Chr04、Chr05染色体的较多,这可能与染色体结构和大小的差异有关。基因家族的形成与扩张很大程度上是由基因复制产生的,为了探究丹参中FBXL 家族的基因扩张情况,本研究对SmFBXL基因家族成员进行了基因复制分析。种内共线性分析(图3B)表明,丹参中FBXL 成员主要通过片段重复进行基因复制,其中涉及到片段重复的基因共有38个,占比36.5%。丹参同拟南芥、南丹参的基因组共线性分析(图3C)表明,丹参中36个FBXL 家族成员同拟南芥FBXL 具有共线性,丹参5号染色体上的基因大多对应拟南芥 3号染色体上;丹参中87个FBXL 家族成员同南丹参FBXL 具有共线性,说明丹参中FBXL 家族成员同南丹参FBXL 具有较高同源性。
-
位于基因上游的启动子区域中存在的顺式作用元件可以通过结合转录因子调控基因表达,并对不同环境条件做出反应,这可能为基因功能推测和分化研究提供重要依据。对 SmFBXL 启动子进行顺式作用元件预测,观察到大量不均匀分布在所有基因上的顺式作用元件,将其分为4类:应激响应、光响应、激素响应和生长发育(图4)。统计显示,应激响应类别占比最高,占所有元件的33.7%,包括10种类型的元件,前4个主要元件分别是MYC(低温胁迫)、STRE(渗透压胁迫)、ARE(抗氧化响应)和AS-1(砷胁迫)。第二大类别是光响应元件,占所有元件的26.9%,所有SmFBXL基因家族成员启动子区均含有光响应元件,其中,Box 4的频率最高(光响应元件的34.5%),其次是G-box元件(光响应元件的21.4%)。激素响应占所有元件的25.1%,包括脱落酸(ABA)响应(ABRE)、水杨酸(SA)响应(TCA-element)、茉莉酸甲酯(MeJA)响应(CGTCA-motif和TGACG-motif)、生长素(IAA)响应(TGA-element和AuxRR-core)、赤霉素(GA)响应(P-box和GARE-motif)以及植物雌激素响应(ERE)。ABRE(激素响应元件的26.1%)是最常见的激素响应元件。生长发育元件占比最低(占所有元件的14.3%),包括:负责分生组织表达的CAT-box、CCGTCC-box和CCGTCC motif、负责玉米谷蛋白代谢调控的O2-site、负责次生木质部发育的AAGAA-motif、负责胚乳表达的GCN4-motif、负责细胞周期调节的MSA-like以及负责生长发育的HD-Zip 1等。综上所述,SmFBXL 基因家族的启动子含有低温、渗透压、抗氧化、砷、光响应、SA、ABA、GA、IAA、MeJA和分生组织等响应元件,暗示SmFBXL可能在植物应激防御、激素响应和生长发育中发挥潜在作用。
-
通过转录组测序,分析104个 SmFBXL 基因在不同组织中的表达模式(图5)。结果表明,104个SmFBXL在丹参不同组织中的表达水平差异很大,其中SmFBXL20、SmFBXL10、SmFBXL89、SmFBXL39、SmFBXL7、SmFBXL17、SmFBXL78、SmFBXL25、SmFBXL6、SmFBXL14、SmFBXL24、SmFBXL72、SmFBXL19 这13个基因在叶和根中表达量均相对较高;SmFBXL40、SmFBXL41 2个基因仅在叶片中表达量较高;SmFBXL44、SmFBXL1、SmFBXL91 3个基因仅在根中的表达水平较高;其中44个基因的在叶和根中的表达量都很低,FPKM 值<1。以上结果表明SmFBXL在根和叶中均能发挥功能,其中有13个SmFBXL基因表达量明显高于其他家族基因,可作为后续研究SmFBXL基因家族的候选基因,其原因可能是SmFBXL 基因功能分化所导致的。
-
丹参酮和丹酚酸类物质是丹参中主要生物活性次生代谢产物。因此,明确丹参次生代谢产物的生物合成及其调控机制是丹参质量控制的基础。大量的研究集中在酚酸生物合成的转录调控上,但对控制酚酸生物合成的蛋白质翻译后修饰知之甚少。次生代谢物的产生受环境刺激的影响很大。当植物遭受胁迫时,相应的次生代谢物会迅速合成和积累,同时消耗大量的能量和营养[29],这种生产过剩可能会随着逆境的消除而停止。因此,开启和关闭生物合成途径在植物的生命周期中发挥着同等重要的作用。泛素-蛋白酶体系统作为蛋白质翻译后修饰方式之一,通过介导转录因子或生物合成酶等靶蛋白的降解,在关闭生物合成途径中发挥着重要作用。例如,寒冷胁迫中,花青素可有效清除活性氧造成的氧化损伤,增强耐寒性。低温时,苹果中MdMYB23可激活MdANR的转录,促进花青素的生物合成;常温下,MdBT2介导的UPS可以降解MdMYB23,抑制MdANR,从而终止花青素的生物合成[30],可以看到泛素化修饰在植物抗逆和次生代谢调控中发挥关键作用。
FBXL蛋白通过蛋白-蛋白相互作用域选择性募集靶蛋白,从而控制 SCF泛素连接酶复合物的特异性。FBXL 蛋白分布广泛,迄今为止,在拟南芥、水稻、大豆、玉米、苹果中分别鉴定出29、61、19、16、34 个FBXL 基因[31-33]。然而,关于丹参的FBXL 基因家族的研究还很少,有待进一步挖掘并进行功能鉴定。本研究在丹参基因组中鉴定了104个SmFBXL基因,比多数物种中的FBXL 基因数目多,其大小的差异可能是由于每个物种在进化和分化过程中全基因组多倍体化事件的发生。理化分析表明SmFBXL的氨基酸长度、相对分子质量和等电点差异较大,但基因结构较为保守,基本都含有内含子1~10个,多数SmFBXL基因含有2个内含子,类似的结果亦在水稻[31]、大豆[32]等植物中发现。保守基序对于蛋白质行使生物功能非常重要, 基序3在SmFBXL基因家族出现频率最高,其与F-Box结构域相关,有些基序仅出现在特定亚族中,推测这些亚族中的 FBXL 基因可能具有其他重要的生物学功能。这一现象与油菜[34]的结果相似。SmFBXL 蛋白具有较高的基序保守性,同一亚族的SmFBXL蛋白基序组成基本相似,但也有少数聚在一支的SmFBXL 蛋白基序构成并不相同,推测其可能与SmFBXL 家族成员的功能分化有关。
本研究采用NJ法构建了丹参、拟南芥和大豆的FBXL 基因家族成员的系统发育进化树,将丹参FBXL 基因家族分为了7个亚族。蛋白序列的相似性往往决定其功能的相似性,研究发现拟南芥FBXL 蛋白AT2G42620.1通过调控气孔开合,有效防御丁香假单胞菌和胡萝卜果胶菌的入侵[35],同源进化分析发现,SmFBXL36与AT2G42620.1的同源关系较近,组织表达分析发现在叶中表达量较高,启动子分析发现含有低温响应元件LTR,推测可能与其同源蛋白具有相似的生物学功能。拟南芥AT3G60350.1和AT2G44900.1编码蛋白可以促进侧根发育,与野生型幼苗相比,突变株形成的侧根较少,而高表达株产生的侧根较多[36-37]。系统进化分析发现SmFBXL86、SmFBXL79 与AT3G60350.1、AT2G44900.1同源关系较近,SmFBXL79含有分生组织表达元件CCGTCC 基序和CCGTCC-box,暗示其可能在调控丹参侧根生长中起重要作用。AT5G01720.1(又称作RAE1)与SmFBXL82同属一个分支,是 SCF 型 E3 连接酶复合物的 F-box 蛋白成分。它是明矾诱导调节环路的一部分:STOP1 会诱导 RAE1 的活性,反过来RAE1又会泛素化 STOP1,然后将其降解[38]。AT4G33210编码 SLOMO(SLOW MOTION)蛋白,可以平衡生长素和启动嫩枝分生组织,用于调节温度介导的下胚轴生长[39], SmFBXL40、SmFBXL11和AT4G33210同属一个分支,并且均含有生长素响应元件TGA-element,推测可能具有生长素调控功能。AT3G54650.1和SmFBXL15同源关系较近,可能参与细胞周期基因调控[40]。AT4G07400.1(VFB3)和SmFBXL5、SmFBXL32同源关系较近,与 VFB1、VFB2 和 VFB4 似乎存在功能冗余,当所有 4 个基因的水平都降低时,植株会表现出生长缺陷[41]。综上所述,结合启动子顺式作用元件和组织表达分析,推测SmFBXL家族在丹参逆境胁迫和生长发育中可能发挥重要作用。
基因表达是其发挥生物学功能的前提。SmFBXL基因呈现不同的组织表达特征,104个在丹参不同组织中的表达水平差异很大,部分家族基因仅在叶或根中表达,44个基因在根和叶中表达量都很低。SmFBXL20、SmFBXL10、SmFBXL89、SmFBXL39、SmFBXL7、SmFBXL17、SmFBXL78、SmFBXL25、SmFBXL6、SmFBXL14、SmFBXL24、SmFBXL72、SmFBXL19 这13个基因在叶和根中表达量均相对较高,表明这些SmFBXL可能在不同组织的转录调节中起协助作用,可能是SmFBXL基因功能分化所导致的。部分基因在丹参根中高水平表达,提示这些SmFBXL可能在丹参根发育中发挥重要作用。
当前研究关于SmFBXL基因在丹参中的作用尚待深入探索。该基因家族是否能增强丹参的抗逆性,诱导丹参酮及酚酸生物合成关键酶基因表达,以及其具体作用机制尚不明确。本研究对丹参FBXL家族进行了系统性鉴定,为中药模式植物丹参中FBXL介导的泛素化修饰的生物合成与调控机制解析提供了数据支持,有望为提升丹参的抗逆性及其品质改良提供分子育种上的新策略与参考依据。未来的研究将聚焦于这些核心问题,以期推动丹参种质资源的优化与发展。
Identification and expression pattern analysis of FBXL gene family in Salvia miltiorrhiza
-
摘要:
目的 基于基因组数据鉴定丹参F-box-LRR (FBXL )基因家族,并对其进行生物信息学与表达模式分析,为进一步深入阐明其基因功能提供依据。 方法 从丹参基因组数据库中鉴定出SmFBXL基因,运用生物信息学方法及在线工具分析其基因结构特征,启动子顺式作用元件,编码的蛋白理化性质、系统进化、组织表达等。 结果 从丹参的基因组中共鉴定出104个SmFBXL基因(SmFBXL1~SmFBXL104),不均等分布于8条染色体上,上游启动子含有与植物抗逆、生长发育和激素应答等相关的顺式作用元件。构建丹参、拟南芥和大豆的FBXL 家族成员的系统发育树,将104个SmFBXL基因分为7个亚族。通过同源进化分析,猜测SmFBXL36可能参与防御病原菌入侵,SmFBXL86、SmFBXL79可能在调控丹参侧根生长中起重要作用,SmFBXL11、SmFBXL40可能调节下胚轴生长。转录组数据显示SmFBXL基因在丹参不同组织中差异表达,其中13个SmFBXL基因在根和叶中的表达水平较高,可作为后续研究SmFBXL基因家族的候选基因。 结论 研究结果为进一步解析SmFBXL基因在丹参逆境响应及次生代谢产物生物合成中的调控机制提供了参考。 -
关键词:
- 丹参 /
- F-box-LRR基因家族 /
- 生物信息学 /
- 功能分析
Abstract:Objective To identify and analyze the bioinformatics and expression patterns of the F-box-LRR(FBXL) gene family of Salvia miltiorrhiza based on genomic data, and provide a foundation for further elucidating its gene functions. Methods The SmFBXL gene was identified from the Salvia miltiorrhiza genomic database. Its gene structure features, promoter cis-acting elements, physicochemical properties of encoded proteins, evolutionary relationships, and tissue expression were analyzed by bioinformatics methods and online tools. Results A total of 104 SmFBXL genes were identified from the Salvia miltiorrhiza genome, unevenly distributed on 8 chromosomes, with upstream promoters containing cis-acting elements related to plant stress resistance, growth and development, and hormone response. A phylogenetic tree of the FBXL family members of Salvia miltiorrhiza, Arabidopsis thaliana, and Glycine max was constructed, dividing the 104 SmFBXL genes into 7 subfamilies. Through homologous evolution analysis, it was speculated that SmFBXL36 might be involved in defense against pathogen invasion, SmFBXL86 and SmFBXL79 might play important roles in regulating lateral root growth in Salvia miltiorrhiza, and SmFBXL11 and SmFBXL40 might regulate hypocotyl growth. Transcriptome data showed differential expression of SmFBXL genes in different tissues of Salvia miltiorrhiza, with 13 SmFBXL genes showing higher expression levels in roots and leaves, serving as candidate genes for further research on the SmFBXL gene family. Conclusion The research results provided a reference for further elucidating the regulatory mechanisms of SmFBXL genes in stress response and secondary metabolite biosynthesis in Salvia miltiorrhiza. -
Key words:
- Salvia miltiorrhiza /
- F-box-LRR gene family /
- Bioinformatics /
- Functional analysis
-
烟草流行是世界有史以来面临的最大公共卫生威胁之一,全球每年有800多万人由于烟草而死亡[1],吸烟不仅是各种非传染性疾病常见的主要风险因素,尤其是慢性呼吸道疾病、心血管疾病、癌症和糖尿病,同时会影响周围人的健康,而且对个人和国家的经济及社会形象产生负面影响[2]。据估计,每年全球消耗治疗烟草相关疾病的费用约1.4万亿美元[1]。
戒烟是降低非传染性疾病风险的最重要有效的干预措施之一。随着公共卫生工作的防范与发展,60%的烟草使用者希望戒烟[3],但只有约35%能够获得全面的戒烟服务,患者的戒烟意愿突显了在医疗系统内扩大戒烟可及服务及优先开展戒烟治疗的重要性[4-5]。
1. 药师参与戒烟的价值及其发展进程
1.1 药师参与戒烟的价值
由于尼古丁的成瘾性,依靠吸烟者以自我管理的方式戒烟实施困难。事实证明,医疗保健专业人员提供的戒烟干预措施比自助式戒烟更有效[6]。药师的工作职责是为公众调配处方、提供用药指导与建议、解答用药咨询等,被认为是为公众提供戒烟服务的最佳专业人员,不仅能够指导其正确使用戒烟替代药品及提供相关建议,同时也可以给予戒烟行为上的专业支持[6-7]。
药师及其药房团队提供的戒烟服务有助于帮助吸烟者戒烟 [8]。葡萄牙进行的一项研究发现,接受药师服务的患者相较于对照组会参加更多社区药房主导的用药咨询(χ2=59.994,P<0.001)、更多电话会议(χ2=17.845,P<
0.0013 ),因此戒烟成功率更高[9]。新加坡一家三级转诊皮肤病中心进行的一项单中心回顾性研究评估了由药师领导的结构化戒烟诊所的疗效,表明药师及其药房团队主导的患者咨询服务能有效为戒烟者提供行为支持[10]。1.2 药师参与戒烟政策支持的发展进程
1.2.1 世界卫生组织的号召与行动
1998年,世界卫生组织(WHO)首次认识到药师在帮助个人戒烟和防止潜在使用者方面的关键作用[11]。2003年为应对全球烟草流行,WHO成员国通过了《世界卫生组织烟草控制框架公约》(WHO FCTC)[12-13],要求缔约方采取有效措施促进戒烟。WHO FCTC是促进公众健康的一个里程碑,自2005年生效以来,WHO FCTC已有183个缔约方,涵盖90%以上的世界人口[14]。
为了扩大实施WHO FCTC中关于减少烟草需求的条款,WHO在2007年还启动了一项具有成本效益的实用行动MPOWER系列措施[15]。MPOWER措施中的策略与WHO FCTC相一致,已证明在挽救生命和降低医疗卫生费用方面卓有成效[1]。然而随着WHO FCTC的成功实施,一些中低收入国家也面临着来自烟草产业对其干扰的重大障碍[16-17]。药师可以在克服这些问题及现有制度和行业体系结构进行重大变革中发挥一定作用,为促进烟草控制和戒烟工作做出应有的贡献[18]。2019年WHO发布的全球烟草流行报告中,强调了药师为吸烟者戒烟提供帮助,并高度鼓励成员国就此采取行动[19]。
目前,151个国家至少实施了WHO FCTC及MPOWER措施中的一项,150个国家的烟草使用率正在下降。2000年,全世界大约1/3的成年人吸烟,然而,到2022年这一数字已大幅下降约1/5,这反映出各国在减少全球烟草消费方面取得了相当大的进展[20]。
1.2.2 国际药学会的响应与行动
2003年,国际药学会(FIP)发布了关于药师在促进无烟未来中的作用的政策声明。2007年出版的《遏制烟草流行病:药学的全球作用》和2015年出版的《建立无烟社区:药师实用指南》均强调了药师在戒烟服务方面的重要贡献。
2023年,FIP出版《支持戒烟和治疗烟草依赖:药师手册》强调药师在为寻求戒烟患者提供系统服务方面的关键作用,是药师支持个人戒烟过程中可参考的综合性实用资源。其涵盖了最新的循证实践、技术和策略,以帮助患者戒烟并减少复吸。该手册详细介绍了以药师为主导的支持戒烟所需的专业知识和实践技能,以及药师可干预的因素(包括非传染性疾病风险因素,如运动不足、不健康饮食习惯和过量饮酒等)及相关措施。随着近年来替代品电子烟使用的增多趋势,出于对电子烟安全性的担忧,同年FIP又发布了《关于电子烟使用对公众健康和经济的影响以及药房工作人员对消除电子烟贡献的声明》[21]。
2024年,WHO和FIP就药师在戒烟中的作用发表了一份新的联合声明,重申了药师在帮助吸烟者戒烟中发挥的关键作用。该声明中,WHO和FIP敦促各个国家烟草控制组织和国家药学协会制定并实施戒烟计划,同时在该计划和各国卫生系统服务的背景下,让药师参与到与烟草的斗争工作中[22]。
2. 药师提供戒烟服务的可行性
2.1 患者的偏好
有研究表明患者更愿意社区药师参与戒烟服务[23],同时社区药师也有能力开展戒烟服务[24]。美国一家三级护理医院进行的一项研究表明,药师无论是在患者入院还是出院时,都可以对患者开展戒烟宣教与指导,在了解患者疾病与用药史、药物核对和出院咨询工作流程中与患者讨论吸烟问题,通过患者住院期间开展戒烟治疗并不断完善方案,达到有效戒烟的目的[25]。
2.2 赋予药师戒烟药物处方权
英国在新型冠状病毒流行期间进行的一项研究表明,药师可以通过远程咨询为戒烟患者开具处方,提供有效的戒烟服务。目前,英国国家医疗服务体系(NHS)正在支持现有药师(包括社区药房药师)获得处方资格,根据患者需要开具戒烟药物从而促进戒烟服务开展。计划到2026年,在英国完成药学学位的毕业生将在监管机构注册为独立处方权药师, 进而扩大了可以提供戒烟服务药师的范围[26]。
美国药师有权根据合作处方协议或通过州范围的协议拥有自主处方权或授权开具处方。处方医生将开启、修改和停止药物治疗以及开具实验室检查的权利委托给药师。药师在完成继续教育课程后,可以根据国家法律法规授予的权限开具某些药物[27]。
2.3 开展药师戒烟服务培训
药师的戒烟培训应包括基于行为支持的社区药师培训课程,通过戒烟服务个体化随访识别障碍并提供积极的强化措施,可以有效提高患者戒烟率,进而提高其生活质量[28]。El Hajj等[29]在卡塔尔进行的一项随机对照试验评估了戒烟培训计划对药师技能和能力的影响,共有86名社区药师(干预组54名,对照组32名)完成了6个目标结构化临床检查病例。研究结果表明,强化戒烟培训显著提高了社区药师提供戒烟服务的技能和能力。
在一项评估埃塞俄比亚药师和药学学生对吸烟/戒烟的知识和态度的横断面调查中,与未接受过戒烟培训的人相比,接受过培训人员的平均知识和态度得分明显更高[30]。Greenhalgh等[31]通过定性和混合方法进行的描述性综合和真实世界调查表明,精心设计的戒烟培训课程将药师从生物医学和产品导向的角度,转变为以公共卫生和患者为中心的角度方面发挥至关重要的作用。
2.4 跨专业合作对于加强药师在戒烟中角色的影响
促进戒烟的跨专业合作可以提高患者的戒烟率。一项探索医疗卫生保健专业人员与社区药师之间跨专业合作的研究表明,将社区药师为患者提供戒烟服务纳入患者护理项目是很有价值的,社区药房开展戒烟支持服务可以填补现有医院戒烟与家庭戒烟之间的空白。跨专业合作不仅为患者和医疗保健专业人员之间的有效沟通提供了途径,同时通过医疗保健专业人员汇总的患者电子健康记录,可以提高患者用药治疗的安全性[32]。
根据Greenhalgh等[31]的说法,增加药师和其他医疗从业者之间的跨专业互动是社区药房提供有效戒烟服务的先决条件。药师专业的能力增强了临床医生对药师的信任,因此,明确且精准的转诊途径,特别是当地全科医生将戒烟患者转诊给药师,对于跨专业开展戒烟服务是必要的。
Bouchet-Benezech等[33]在法国进行的一项研究表明,与其他医疗保健专业人员的合作是发挥药师在戒烟服务中作用的关键之一。药师为戒烟者提供的尼古丁替代治疗处方没有得到社会医疗保险体系的支持,因此建议药师与具有尼古丁替代治疗处方权的其他医疗保健专业人员合作。
3. 药师开展戒烟服务的效益
3.1 健康相关的获益
吸烟是非传染性疾病的主要可变风险因素之一。药师主导的戒烟干预措施可以显著影响吸烟者的戒烟率,并在改善其健康状况方面发挥关键作用[34]。
Peletidi等[35]的调查研究表明,以社区药师主导的戒烟服务可以降低与吸烟相关慢病的发病率和病死率。Bouchet-Benezech等[33]为评估法国社区药房药师提供戒烟服务的可行性而进行的一项研究显示,在第6个月,23.3%的参与者参加了随访,其中75%的参与随访者自第一次随访以来一直保持戒烟状态,超过一半的参与者持续了90 d,从第二次随访开始,所有参与者的身心健康综合得分与基线相比都有所提高。
药师作为一线医疗保健提供者,在戒烟工作中发挥着关键作用,可以在更大范围内对个体和公共健康产生重大影响。社区药房的戒烟服务应该被纳入国家公共卫生保健政策,这对于促进社区服务的健康有积极的促进作用[36]。
3.2 经济相关的获益
Peletidi等[35]在英国进行的一项系统综述强调了将药房主导的戒烟服务与对照组进行比较的研究,提供了强有力的证据证明药房主导的服务具有很高的成本效益。药房主导的服务要求每位戒烟者在为期4周的方案中支付772英镑的补充成本,而对照组基于集体小组的服务需要1 612英镑的戒烟补充成本。同时接受药房主导的戒烟服务,每周一对一的支持结合尼古丁替代疗法的治疗,与对照组接受集体戒烟治疗药物相比具有更高的有效戒烟率。此外,药房主导的服务每生命质量调整年的增量成本为2 600英镑,而对照组为4 800英镑。
社区药师是提供戒烟服务的一种可获得的、未充分利用的但具有成本效益的资源[24,28,35]。一项随机试验旨在比较两个药师主导的戒烟计划(强化版与简化版)之间的戒烟率以及这些计划与基于文献的对照组之间的成本效益,揭示了强化版药师主导的戒烟计划是3种策略中最具成本效益的干预措施。强化版比简化版多花费了14 000美元(每100名参与者),但14人戒烟成功,取得10.8个生命年的获益额;强化版比对照组多花费35 300美元(每100名参与者),但29名戒烟者取得22.4个生命年的获益,每增加一名戒烟者多花费1 217美元,戒烟的增量成本效果比为1 576美元 [32]。
2000年,一项在英格兰进行的研究从提供者和NHS的角度比较了普通牙科诊所、普通医疗诊所(GMP)、社会药房和NHS戒烟服务(NHS SSS)中戒烟服务的成本效益,研究结果表明“成本效益高”的服务是在社区药房开展戒烟服务[37]。
由此可见,药师主导的戒烟服务不仅有效且极具成本效益,医疗卫生管理者及政策制定者可以基于此就最佳资源分配做出合理决策[24]。
4. 药师在提供戒烟服务方面发挥作用的障碍
然而,有证据表明,药师在承担戒烟服务提供者这一角色存在障碍,这影响了将全面戒烟服务纳入实践的可行性。障碍包括缺乏充分的培训、缺乏适当的转诊结构、社区药房环境中的时间限制、公众对药剂师提供戒烟服务缺乏认识、药房缺乏私人咨询区以及缺乏提供服务的报销[33]。
4.1 缺乏专业临床戒烟知识与技能
在许多国家,药师缺乏戒烟知识和技能以及缺乏培训被认为是药师在提供戒烟服务方面发挥作用的常见障碍[6,30,32,35,38-39]。Erku等[30]在埃塞俄比亚进行的一项由410名参与者(213名药学学生和197名药师)的横断面调查,提出药师在戒烟服务方面存在临床知识不足和实践技能差距。澳大利亚进行的另一项研究分析了250名大四药学专业学生、51名药师和20名戒烟教育工作者在当前基于证据的药房戒烟干预实践中的表现,得出了药学学生及药师与戒烟教育工作者之间存在较大的临床或药物治疗服务方面的差距[34]。药师由于缺乏戒烟相关教育与培训导致在戒烟服务中缺乏自信,从而阻碍了与患者的有效沟通,降低了提供的戒烟服务的质量[35,39]。在约旦,大多数药师认为,由于培训不到位导致对戒烟治疗的了解不足,致使药师无法提供足够的戒烟干预措施[40]。
4.2 缺乏劳务报酬与戒烟药物处方权
缺乏戒烟计划或劳务报酬也是许多有意愿药师提供戒烟服务的一个障碍[31-33,39-40]。美国的一篇研究论文探讨了药师在护理过渡期间(住院到出院回家期间)如何衔接戒烟服务,得出支付报酬对维持任何医疗服务(包括药师提供的戒烟服务)至关重要。由于药师不被视为戒烟服务的提供者,因此美国大多数州的药师没有资格通过医疗补助获得提供戒烟服务的劳务报酬,通过商业保险获得报销的也很少见。缺乏鼓励药师向烟草使用者提供戒烟干预措施的计划和政策,药师没有戒烟药物处方权也大大阻碍了戒烟服务的开展[35]。研究表明,授予药师戒烟服务提供者身份或药师拥有戒烟药物处方权,并在医保政策中明确劳务报酬的支付标准,可能是解决该问题的最佳方式[40]。
4.3 缺乏戒烟环境及服务时间上的保障
社会药店缺乏相对私人空间为患者进行戒烟咨询服务也是障碍之一[6,33]。药店是否设有专门的可以为患者提供面对面戒烟服务咨询的区域,为患者咨询营造一个轻松舒适的环境,对于提高患者戒烟依从性是非常重要的影响因素[33]。药师实施戒烟服务与履行其他职责在时间上的矛盾也是限制戒烟服务工作开展的障碍之一[34-35]。根据Peletidi等[35]的系统调查结果显示,缺乏时间是所有参与戒烟服务者,包括患者在内的共性问题。日本对11家社区药房进行的一项随机研究显示,由于时间和精力有限,许多药房没有将戒烟服务纳入其日常运营范围[32]。
4.4 缺乏戒烟需求与服务
在法国、约旦和尼日利亚等一些国家,对戒烟服务的需求不足被视为药师开展戒烟服务的障碍[9,33,40]。由于缺乏戒烟服务,泰国的戒烟率很低,因此需要在药店开展戒烟服务,为药师提供机会[36]。为了解决这一问题,Bouchet等[33]评估了法国社区药房实施药师提供的戒烟方案的可行性,并建议向社区药房顾客有效推广戒烟服务,以解决需求不足的问题。
4.5 社区药房开展戒烟服务的问题
社会药房在烟草控制政策中的参与度较低[9],原因是医疗机构与社会药房缺乏统一的转诊系统来保障提供安全、有效的戒烟服务[23,28]。社会药房药师在无法全面、详细获得患者医疗护理、处方记录的前提下,也就意味着无法了解到患者准确的疾病史与用药史,提供戒烟药物及相关指导可能会增加用药错误的可能性[26]。其他阻碍戒烟服务工作开展的因素还包括性别、年龄、民族、文化等不同所带来的戒烟者个性化差异及沟通交流障碍[23]。
5. 展望
全面了解药师主导的戒烟服务及其在不同地区和医疗保健环境中的影响,对于世界各国药师参与戒烟服务至关重要。基于药师缺乏戒烟知识、技能和培训有关的问题,政策制定者和教育工作者需要做更多的工作,以确保戒烟服务对患者的最大益处。有必要针对不同地区和国家的具体需求采取全面的能力建设措施,包括制定标准化的培训计划,采用线下结合远程学习方式助力药师实践技能发展,促进全球药师专业的持续深入发展。
医药卫生政策制定应适时考虑将药师主导的戒烟服务纳入国家和地区医疗卫生服务指南,并开展宣传工作,提高人们对药师在戒烟方面发挥作用的认识。立法明确和药师薪酬补偿将有利于公众获得经许可的戒烟服务的机会,扩大药师在提供戒烟服务中的作用也有利于增强公众戒烟信心,同时在不同的医疗保健环境中实施和扩大这些服务争取足够的资源与支持。未来应促进药师、医师、护师、公共卫生专业人员及其他参与烟草控制工作的利益相关者之间更紧密的合作,激发出药师主导戒烟干预措施的全部潜力,提高戒烟的有效性和可持续性。
随着医药卫生体制的改革及药师进一步以患者为中心的角色转变,药师的可及性被视为开展戒烟服务的最重要驱动因素之一。药师和社会药房团队能够通过结合药理学和行为学方法持续提供成本效益高的个体化戒烟服务,提高戒烟率,最终达到减轻烟草和尼古丁依赖以及烟草相关疾病的负担,促进医疗卫生系统的发展、改善全球卫生状况。
-
-
[1] 马晓晶, 杨健, 马桂荣, 等. 中药丹参的现代化研究进展[J]. 中国中药杂志, 2022, 47(19):5131-5139. [2] 陈雨萌, 李倩, 刘维海, 等. 丹参活性成分治疗心血管疾病的药理作用、临床应用及不良反应研究进展[J]. 药学研究, 2023, 42(12):1028-1034. [3] 焦育强, 刘文斌, 袁夏, 等. 丹参素及其衍生物心血管作用机制的研究进展[J]. 药学实践杂志, 2015, 33(5):389-391,405. [4] 温萍, 张俊平. 隐丹参酮及其衍生物抗肿瘤活性研究进展[J]. 药学实践与服务, 2023, 41(4):207-211. [5] 杨彬, 赵文博, 张海燕, 等. 丹参资源的遗传多样性及其保护利用[J]. 寒旱农业科学, 2023, 2(11):1002-1008. doi: 10.3969/j.issn.2097-2172.2023.11.004 [6] YANG N, ZHOU W, SU J, et al. Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza[J]. Front Plant Sci, 2017, 8:1804. doi: 10.3389/fpls.2017.01804 [7] DENG C, HAO X, SHI M, et al. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots[J]. Plant Sci, 2019, 284:1-8. doi: 10.1016/j.plantsci.2019.03.007 [8] SADANANDOM A, BAILEY M, EWAN R, et al. The ubiquitin-proteasome system: central modifier of plant signalling[J]. New Phytol, 2012, 196(1):13-28. doi: 10.1111/j.1469-8137.2012.04266.x [9] BUCKLEY D L, CREWS C M. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system[J]. Angew Chem Int Ed Engl, 2014, 53(9):2312-2330. doi: 10.1002/anie.201307761 [10] SANG Y, YAN F, REN X. The role and mechanism of CRL4 E3 ubiquitin ligase in cancer and its potential therapy implications[J]. Oncotarget, 2015, 6(40):42590-42602. doi: 10.18632/oncotarget.6052 [11] XU G, MA H, NEI M, et al. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification[J]. Proc Natl Acad Sci U S A, 2009, 106(3):835-840. doi: 10.1073/pnas.0812043106 [12] LECHNER E, ACHARD P, VANSIRI A, et al. F-box proteins everywhere[J]. Curr Opin Plant Biol, 2006, 9(6):631-638. doi: 10.1016/j.pbi.2006.09.003 [13] CUI H R, ZHANG Z R, LV W, et al. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome[J]. Mol Genet Genomics, 2015, 290(4):1435-1446. doi: 10.1007/s00438-015-1004-z [14] JIA F, WU B, LI H, et al. Genome-wide identification and characterisation of F-box family in maize[J]. Mol Genet Genomics, 2013, 288(11):559-577. doi: 10.1007/s00438-013-0769-1 [15] GUPTA S, GARG V, KANT C, et al. Genome-wide survey and expression analysis of F-box genes in chickpea[J]. BMC Genomics, 2015, 16(1):67. doi: 10.1186/s12864-015-1293-y [16] WANG G M, YIN H, QIAO X, et al. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear(Pyrus bretschneideri)[J]. Plant Sci, 2016, 253:164-175. doi: 10.1016/j.plantsci.2016.09.009 [17] YAN J, ZHANG C, GU M, et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J]. Plant Cell, 2009, 21(8):2220-2236. doi: 10.1105/tpc.109.065730 [18] SHEARD L B, TAN X, MAO H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322):400-405. doi: 10.1038/nature09430 [19] CHINI A, BOTER M, SOLANO R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module[J]. FEBS J, 2009, 276(17):4682-4692. doi: 10.1111/j.1742-4658.2009.07194.x [20] ZHANG C, LEI Y, LU C, et al. MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism[J]. J Integr Plant Biol, 2020, 62(8):1159-1175. doi: 10.1111/jipb.12902 [21] LEE S H, SAKURABA Y, LEE T, et al. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b(OsCOI1b)delays leaf senescence[J]. J Integr Plant Biol, 2015, 57(6):562-576. doi: 10.1111/jipb.12276 [22] PIISILA M, KECELI M A, BRADER G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biol, 2015, 15:53. doi: 10.1186/s12870-015-0434-4 [23] PARRY G, CALDERON-VILLALOBOS L I, PRIGGE M, et al. Complex regulation of the TIR1/AFB family of auxin receptors[J]. Proc Natl Acad Sci U S A, 2009, 106(52):22540-22545. doi: 10.1073/pnas.0911967106 [24] NAVARRO L, DUNOYER P, JAY F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439. doi: 10.1126/science.1126088 [25] SI-AMMOUR A, WINDELS D, ARN-BOULDOIRES E, et al. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves[J]. Plant Physiol, 2011, 157(2):683-691. doi: 10.1104/pp.111.180083 [26] KIM Y Y, CUI M H, NOH M S, et al. The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis[J]. Plant Cell Physiol, 2017, 58(3):574-586. doi: 10.1093/pcp/pcx003 [27] STEFANOWICZ K, LANNOO N, ZHAO Y, et al. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection[J]. BMC Plant Biol, 2016, 16(1):213. doi: 10.1186/s12870-016-0905-2 [28] REMANS T, SMEETS K, OPDENAKKER K, et al. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations[J]. Planta, 2008, 227(6):1343-1349. doi: 10.1007/s00425-008-0706-4 [29] WATERMAN P G. Roles for secondary metabolites in plants[J]. Ciba Found Symp, 1992, 171:255-269. [30] AN J P, LI R, QU F J, et al. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J]. Plant J, 2018, 96(3):562-577. doi: 10.1111/tpj.14050 [31] JAIN M, NIJHAWAN A, ARORA R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiol, 2007, 143(4):1467-1483. doi: 10.1104/pp.106.091900 [32] JIA Q, XIAO Z X, WONG F L, et al. Genome-wide analyses of the soybean f-box gene family in response to salt stress[J]. Int J Mol Sci, 2017, 18(4):818. [33] KURODA H, TAKAHASHI N, SHIMADA H, et al. Classification and expression analysis of Arabidopsis F-box-containing protein genes[J]. Plant Cell Physiol, 2002, 43(10):1073-1085. doi: 10.1093/pcp/pcf151 [34] 左蓉, 吴姗, 刘杰, 等. 油菜F-box-LRR基因全基因组鉴定与核盘菌诱导应答分析[J]. 中国油料作物学报, 2022, 44(3):503-514. [35] CHANG W, QIAO Q, LI Q, et al. Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis[J]. Mol Plant, 2024, 17(7):1054-1072. doi: 10.1016/j.molp.2024.05.007 [36] NIBAU C, GIBBS D J, BUNTING K A, et al. ARABIDILLO proteins have a novel and conserved domain structure important for the regulation of their stability[J]. Plant Mol Biol, 2011, 75(1-2):77-92. doi: 10.1007/s11103-010-9709-1 [37] GIBBS D J, VOSS U, HARDING S A, et al. AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis[J]. New Phytol, 2014, 203(4):1194-1207. doi: 10.1111/nph.12879 [38] DING Z J, XU C, YAN J Y, et al. The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor[J]. Cell Res, 2024, 34(4):281-294. doi: 10.1038/s41422-023-00915-y [39] ZHU S, PAN L, VU L D, et al. Phosphoproteome analyses pinpoint the F-box protein SLOW MOTION as a regulator of warm temperature-mediated hypocotyl growth in Arabidopsis[J]. New Phytol, 2024, 241(2):687-702. doi: 10.1111/nph.19383 [40] PAN T, GAO S, CUI X, et al. APC/CCDC20 targets SCFFBL17 to activate replication stress responses in Arabidopsis[J]. Plant Cell, 2023, 35(2):910-923. doi: 10.1093/plcell/koac360 [41] van den BURG H A, TSITSIGIANNIS D I, ROWLAND O, et al. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato[J]. Plant Cell, 2008, 20(3):697-719. doi: 10.1105/tpc.107.056978 -