-
脑血管疾病是仅次于心脑血管疾病和癌症的第三大病症,其中脑缺血是常见的脑血管疾病之一。脑缺血的患病率和死亡率仍处于上升趋势,严重影响人们的健康。目前,西医对于脑缺血的主要治疗方式是溶栓和取栓,但有严格的溶栓时间窗和较大的取栓风险,并且缺血后造成神经功能的损伤没有有效的药物治疗[1]。中医药在脑缺血的预防和治疗中具有潜在作用,以气虚为本、血瘀为标作为主要病因[2]。查阅近几年文献发现,益气活血化瘀方药在防治脑缺血中表现出多方面和整体调节的优势。
参麻颈复方是临床名老中医经验方,临床应用发现具有活血通络,益气养血,宁神安脑,健筋壮骨之效。该方由首乌藤、丹参、山茱萸(制)、天麻、当归、川芎等组成,临床应用广泛。首乌藤有养血安神、祛风通络之效[3],丹参有活血调经、祛瘀止痛、凉血消痈、除烦安神之效[4],当归有补血调经、活血散寒、消肿止痛生肌、润肠通便之效[5],川芎、陈皮的补气之效辅佐以上药物活血功效运行,而且川芎具有活血化瘀之效,是传统中医防治中风选择最多的配方之一[6]。本研究评估参麻颈复方对小鼠脑缺血损伤的改善作用,并进一步探讨其对骨髓来源内皮祖细胞干预发挥防治脑缺血损伤的机制,为中药方剂治疗脑缺血提供新的思路、寻找新的靶点。
Protective effect of Shenmajing formula on ischemic brain injury in mice
-
摘要:
目的 观察参麻颈复方颗粒对脑缺血损伤小鼠脑组织的保护作用,并探讨其可能机制。 方法 将SPF级C57 BL/6雄性小鼠30只随机分为模型对照组、参麻颈组、尼莫地平组,采用电凝法制备小鼠脑缺血损伤动物模型,给参麻颈组、尼莫地平组小鼠灌胃14 d,应用TTC染色法检测各组小鼠脑梗死体积,提取骨髓内皮祖细胞并测定细胞功能,用蛋白免疫印迹法(Western blot)检测内皮祖细胞中蛋白表达水平。 结果 与模型对照组比较,参麻颈组小鼠脑梗死体积明显减少,其内皮祖细胞迁移、黏附以及形成小管的能力显著改善,内皮祖细胞中BDNF蛋白表达水平明显升高。 结论 参麻颈复方颗粒对脑缺血损伤小鼠脑组织具有保护作用,可能与调节内皮祖细胞中BDNF的表达,改善骨髓来源内皮祖细胞功能密切相关。 Abstract:Objective To observe the protective effect of Shenmajing formula on brain tissue of mice with cerebral ischemic injury and explore the possible mechanism. Methods Thirty SPF-grade C57 BL/6 male mice were randomly divided into model control group, Shenmajing group and nimodipine group, and the animal models of cerebral ischemic injury in mice were prepared by electrocoagulation. The protein expression level in endothelial progenitor cells were detected by Western blot. Results Compared with the model control group, the infarct volume of mice in the Shenmajing group was significantly reduced, and the migration, adhesion and tubule formation ability of endothelial progenitor cells were significantly improved, and the expression level of BDNF protein in endothelial progenitor cells was significantly increased. Conclusion The protective effect of Shenmajing granules on brain tissue of mice with cerebral ischemic injury could be closely related to the regulation of BDNF expression in endothelial progenitor cells and improvement of endothelial progenitor cell function of bone marrow origin. -
[1] HAYASHIDA K, TAKEGAWA R, SHOAIB M, et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies[J]. J Transl Med, 2021, 19(1): 1-15. doi: 10.1186/s12967-020-02683-4 [2] REN D F, WANG T, SUN G F, et al. Effect of Yiqihuoxue Formula for the treatment of ischemic stroke: a retrospective study[J]. Medicine, 2020, 99(49): e23260. doi: 10.1097/MD.0000000000023260 [3] 陶丽宇, 高月求, 韦靖, 等. 首乌藤相关药理作用及临床运用的研究进展[J]. 时珍国医国药, 2018, 29(10): 2486-2488. [4] 侯娅慧, 俞春江, 郭士佳, 等. 丹参及其活性成分治疗急性脑梗死研究进展[J]. 心脑血管病防治, 2018, 18(4): 317-320. [5] 占心佾, 李钰婷. 香附、当归及白芍提取物方剂氧化损伤小鼠抗氧化功效研究[J]. 按摩与康复医学, 2019, 10(7): 47-49. [6] Kuang X, Wang LF, Yu L, et al. Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling[J]. Free Radic Biol Med, 2014, 71: 165-175. doi: 10.1016/j.freeradbiomed.2014.03.028 [7] Dong XH, Peng C, Zhang YY, et al. Chronic exposure to subtherapeutic antibiotics aggravates ischemic stroke outcome in mice[J]. EBioMedicine, 2017, 24: 116-126. doi: 10.1016/j.ebiom.2017.09.002 [8] DONG X H, PENG C, ZHANG Y Y, et al. Low-dose piperlongumine rescues impaired function of endothelial progenitor cells and reduces cerebral ischemic injury in high-fat diet-fed mice[J]. Front Pharmacol, 2021, 12: 689880. doi: 10.3389/fphar.2021.689880 [9] DIRNAGL U, IADECOLA C, MOSKOWITZ M A. Pathobiology of ischaemic stroke: an integrated view[J]. Trends Neurosci, 1999, 22(9): 391-397. doi: 10.1016/S0166-2236(99)01401-0 [10] Sato DMV, Mantovani LK, Safanelli J, et al. Ischemic stroke: process perspective, clinical and profile characteristics, and external factors[J]. J Biomed Inform, 2020, 111: 103582. doi: 10.1016/j.jbi.2020.103582 [11] SCHMIDT A, MINNERUP J. Promoting recovery from ischemic stroke[J]. Expert Rev Neurother, 2016, 16(2): 173-186. doi: 10.1586/14737175.2016.1134324 [12] LIU R Y, ZHENG Y, HAN T, et al. Angiogenic actions of paeoniflorin on endothelial progenitor cells and in ischemic stroke rat model[J]. Am J Chin Med, 2021, 49(4): 863-881. doi: 10.1142/S0192415X21500415 [13] JIANG Z Q, GAO W, HUANG L Q. Tanshinones, critical pharmacological components in Salvia miltiorrhiza[J]. Front Pharmacol, 2019, 10: 202. doi: 10.3389/fphar.2019.00202 [14] SHI J H, LI R Y, YANG S Y, et al. The protective effects and potential mechanisms of Ligusticum chuanxiong: focus on anti-inflammatory, antioxidant, and antiapoptotic activities[J]. Evid Based Complement Alternat Med, 2020, 2020: 8205983. [15] IADECOLA C, BUCKWALTER M S, ANRATHER J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential[J]. J Clin Investig, 2020, 130(6): 2777-2788. doi: 10.1172/JCI135530 [16] Fan-Yen, Lee. Direct implantations of erythropoietin and autologous EPCs in critical limb ischemia (CLI) area restored CLI area blood flow and rescued remote AMI-induced LV dysfunction[J]. Biomed Pharmacother, 2019, 118: 109296. doi: 10.1016/j.biopha.2019.109296 [17] FANG J, GUO Y, TAN S, et al. Autologous endothelial progenitor cells transplantation for acute ischemic stroke: a 4-year follow-up study[J]. Stem Cells Transl Med, 2019, 8(1): 14-21. doi: 10.1002/sctm.18-0012 [18] Hu Z, Wang H, Fan G, et al. Danhong injection mobilizes endothelial progenitor cells to repair vascular endothelium injury via upregulating the expression of Akt, eNOS and MMP-9[J]. Phytomedicine, 2019, 61: 152850. doi: 10.1016/j.phymed.2019.152850 [19] MUHEREMU A, SHU L, LIANG J, et al. Sustained delivery of neurotrophic factors to treat spinal cord injury[J]. Transl Neurosci, 2021, 12(1): 494-511. doi: 10.1515/tnsci-2020-0200 [20] HAO Y, XIONG R, GONG X. Memantine, NMDA receptor antagonist, attenuates ox-LDL-induced inflammation and oxidative stress via activation of BDNF/TrkB signaling pathway in HUVECs[J]. Inflammation, 2021, 44(2): 659-670. doi: 10.1007/s10753-020-01365-z [21] XIONG L L, CHEN J, DU R L, et al. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage[J]. Neural Regen Res, 2021, 16(8): 1453-1459. doi: 10.4103/1673-5374.303033 [22] Li Z, Wang H, Xiao G, et al . Recovery of post-stroke cognitive and motor deficiencies by Shuxuening injection via regulating hippocampal BDNF-mediated Neurotrophin/Trk Signaling[J]. Biomed Pharmacother, 2021, 141: 111828. doi: 10.1016/j.biopha.2021.111828 [23] HAN X Q, WANG B L, SUN Y N, et al. Metformin modulates high glucose-incubated human umbilical vein endothelial cells proliferation and apoptosis through AMPK/CREB/BDNF pathway[J]. Front Pharmacol, 2018, 9: 1266. doi: 10.3389/fphar.2018.01266