-
补骨脂是豆科补骨脂属植物补骨脂Psoralea corylifolia L.的干燥成熟果实,呈扁椭圆形,主要产地包括西双版纳、四川等地,印度、缅甸也有分布。其性味苦、辛、温,归肾、脾经,具有温肾助阳,温脾止泻等功效[1],外用可消风祛斑,民间常用于治疗白癜风[2]。补骨脂还是经典方剂四神丸、二神丸等的主要组成。目前从补骨脂中分离出化合物为香豆素类、黄酮类及单萜酚类三大类[1- 2]。补骨脂二氢黄酮甲醚是二氢黄酮类化合物,具有抗肿瘤、抗病毒、抗哮喘、神经保护等药理活性[3]。近年来,中药用药的安全性越来越受到人们关注,补骨脂二氢黄酮甲醚已被证实长期使用会引起严重肝损伤。本文主要从补骨脂二氢黄酮甲醚的药理作用和肝毒性方面进行总结,以期为补骨脂二氢黄酮甲醚的进一步研究和临床合理使用提供参考。
-
补骨脂二氢黄酮甲醚通过抑制肿瘤细胞增殖、抗淋巴管生成、诱导肿瘤细胞凋亡、逆转多药耐药等多个作用环节抑制乳腺癌、肺癌、胃癌等肿瘤细胞。DNA聚合酶在有丝分裂过程中参与DNA复制、转录及重组,是癌症化疗药物的重要靶点,而补骨脂二氢黄酮甲醚对DNA聚合酶具有明显的抑制作用[4]。普遍认为,雌激素及其受体在乳腺癌的发生发展中发挥了重要作用,而芳香化酶(AR)作为一种限速酶在雄激素转化为雌激素过程中也有重要作用,它在卵巢、胎盘、乳腺组织中高水平表达,特别是在肿瘤部位和周围的区域高表达。补骨脂二氢黄酮甲醚可以抑制AR活性从而减少雌激素依赖性肿瘤生长[5]。此外,体外抗增殖实验表明,补骨脂二氢黄酮甲醚对于人肝癌细胞HepG2、Hep3B、人结肠腺癌细胞Caco-2、人结肠癌细胞HT-29均有抗增殖作用,IC50分别为11.32±0.69 μmol/L、3.02±0.53 μmol/L、55.94±4.9 μmol/L、39.7±2.3 μmol/L[6-7]。补骨脂二氢黄酮甲醚的抗肿瘤作用及机制见表1。
表 1 补骨脂二氢黄酮甲醚的抗肿瘤作用及机制
药理作用 作用机制 模型 文献 抑制肿瘤血管生成 促进缺氧诱导因子-la(HIF-1a)的降解作用,抑制肿瘤血管生成 KB癌细胞(HeLa细胞衍生物)
HOS人骨肉瘤细胞[8] 抗淋巴管生成 抑制TR-LE细胞增殖和毛细血管样管形成 TR-LE细胞 [9] 抑制肿瘤细胞增殖 通过激活ATM/ATR-CHK2/CHK1信号通路,诱导DNA损伤和细胞周期阻滞于G2/M期 SCLC细胞株(H1688) [10] 通p38-MAPK介导的p21Waf1/cip1信号通路诱导细胞周期阻滞G2/M期 NSCLS细胞系(A549、H23、HCC827) [11] 抑制IL-6和STAT3通路 Hep3B细胞 [6] 诱导肿瘤细胞凋亡 剂量相关性上调Fas、FasL、caspase-8和 caspase-3表达 SCLC细胞株(H1688) [10] 上调促凋亡基因p53、caspase-3、caspase -8和caspase -9表达 MCF-7细胞 [12] 激活PPARγ,ROS水平升高 NSCLC细胞系(A549) [13] 激活细胞凋亡相关p53、Bcl2、BAX信号通路 DMH+DSS诱导的大鼠结肠癌模型 [14] 逆转多药耐药 下调MDR1和ABCG2基因表达,减少药物外排 胃癌耐药细胞系(EPG85.257RDB)
乳腺癌耐药细胞系(MCF7/MX)[15]
[16]免疫作用 诱导γδT细胞增殖 胃癌细胞(SGCA99) [17] 注:SCLC:小细胞肺癌;NSCLC:非小细胞肺癌;DMH:二甲肼;DSS:葡聚糖硫酸钠 -
木瓜蛋白酶(PLpro)是冠状病毒成熟和复制环节不可或缺的蛋白酶。补骨脂二氢黄酮甲醚通过结合PLpro上关键氨基酸残基抑制冠状病毒的木瓜蛋白酶样蛋白酶活性,从而阻止病毒复制、逃避宿主先天免疫反应,可能成为治疗冠状病毒的候选药物[18]。Yoon等[19]发现,在vero细胞中,天然补骨脂二氢黄酮甲醚和人工合成的外消旋体均有良好的抗MERS-COV活性,IC50为6.6 μmol/L。此外,Zhao等[20]通过一种新型神经氨酸酶固定化毛细管微反应器发现补骨脂二氢黄酮甲醚具有剂量依赖性地抑制神经氨酸酶的作用。
补骨脂二氢黄酮甲醚对金黄色葡萄球菌(Staphylococcus aureus ATCC 25923)和表皮葡萄球菌(S. epidermidis ATCC 12228)具有较强的抑菌活性[21]。在浓度为10 μg/ml,补骨脂二氢黄酮甲醚对金黄色葡萄球菌有抑菌圈(8 mm),但对耐甲氧西林的金黄色葡萄球菌(MRSA)和β-内酰胺酶阳性的金黄色葡萄球菌(Beta lactamase positive S. aureus)无抑制作用[22]。Cui等[23]研究也发现,补骨脂二氢黄酮甲醚在浓度为32 μg/ml时对MRSA(OM481、OM584)仍无抑制活性,这提示补骨脂二氢黄酮甲醚可能对耐药性菌不敏感。
-
过氧化物酶体增殖物激活受体(PPARs)是核受体超家族的一种,作为配体诱导的转录因子,控制多个靶基因的表达。PPAR共有α、β/δ和γ三种亚型。PPAR γ是脂肪细胞分化的主要调节因子,在糖脂代谢中发挥重要作用。体外实验证明,补骨脂二氢黄酮甲醚通过激活PPAR γ,调节糖代谢[24]。同时补骨脂二氢黄酮甲醚作为一种天然的泛过氧化物酶体增殖物受体激活剂,通过调节PPAR等相关基因表达增强了葡萄糖的转运和利用,降低血糖水平,减轻药物肝毒性,提高胰岛素敏感性,调节脂质代谢[25]。与噻唑烷二酮类降糖药物和贝特类调血脂药物合用,可以放大胰岛素增敏作用,降低肝毒性并在不影响食物摄入量的条件下减轻药物引起的体质量增加,这种联合用药可以作为代谢综合征和2型糖尿病的辅助治疗药物提高疗效和降低毒性[26]。天然的补骨脂二氢黄酮甲醚是R/S构型的混合物,通过超临界流体色谱法分离得到R、S两种对映体,并且发现它们具有相似的PPAR γ激动剂活性[27]。Du等[28]还对补骨脂二氢黄酮甲醚的构效关系进行了研究,总结了补骨脂二氢黄酮甲醚的活性必需结构。
-
神经炎症会导致并加速成人及儿童的许多神经退行性疾病,主要是造成中枢神经系统细胞内的稳态紊乱,比如铁的积累通过增强小胶质细胞的促炎活性、改变线粒体功能和诱导活性氧的产生而促进疾病进展,这在阿尔茨海默病(AD)和帕金森病(PD)等中枢神经系统疾病中得到证实[29]。补骨脂二氢黄酮甲醚抑制BV-2小胶质细胞中脂多糖(LPS)诱导的NO、TNF-α、IL-6生成,对H2O2诱导的神经细胞(HT-22小鼠海马细胞)损伤起到保护作用,可以作为退行性神经疾病的潜在药物[30]。
AD的发病机制尚不明确,目前认为与β-淀粉样堆积有关,称为“淀粉样蛋白联级假说”,即淀粉样前体蛋白APP经β-分泌酶等切割产生β-淀粉样蛋白(Aβ),Aβ聚集形成淀粉样斑块,同时诱发下级事件,如蛋白Tau过度磷酸化、氧化应激,进而导致细胞损伤及神经递质缺失[31]。有研究表明,膳食中添加补骨脂果实中提取的总异戊二烯基黄酮可有效预防与年龄相关的AD小鼠的认知缺陷,其中补骨脂二氢黄酮甲醚和补骨脂乙素通过抑制Aβ聚集减少神经损伤[32]。杨柳等[33]研究表明补骨脂二氢黄酮甲醚提高超氧化物歧化酶和谷胱甘肽过氧化物酶活性,降低丙二醛水平,减少由于氧化应激引起的神经元损害,降低炎症因子IL-1β、IL-6、TNF-α含量,减少白细胞聚集引起炎症反应,能有效抑制Aβ诱导的PC12细胞损伤,发挥对神经细胞的保护作用。此外,补骨脂二氢黄酮甲醚能够抑制Aβ纤维化,高浓度下使Aβ42生成大的“非途径”聚集体,显著降低Aβ42诱导的SH-SY5Y人神经母细胞瘤细胞毒性,其机制可能与药物直接结合Aβ淀粉样变区,诱导Aβ构象变化,抑制“通路”聚集有关[34]。BACE-1是导致Aβ聚集的关键酶,体外研究证明补骨脂二氢黄酮甲醚能抑制杆状病毒中BACE-1的表达,IC50为3.8±0.2 μmol/L [35]。
PD的主要病理特征为在SNpc神经元中,多巴胺水平减少、多巴胺能神经元损失和神经元胞质内包涵体“路易小体”的产生。单胺氧化酶-B(MAO-B)是调节多巴胺重要代谢酶,有临床试验证明,单胺氧化酶-B抑制剂作为早期PD的单一治疗和晚期PD左旋多巴的辅助治疗都是有效的[36]。补骨脂二氢黄酮甲醚可竞争抑制人单胺氧化酶-B,分子对接结果显示7位C上的甲氧基在特异性抑制中起到关键作用,可用于PD的治疗[37]。
-
植物雌激素的化学结构与哺乳动物雌激素类似,可以结合雌激素受体,影响特定基因表达[38]。雌激素经典的核受体分为ER-α和ER-β两类,ER-α主要促进细胞增殖而ER-β使细胞凋亡。补骨脂二氢黄酮甲醚对ER-α有微弱的抑制作用,IC50为1.11×10−4 mol/L,而对ER-β没有抑制活性[39]。绝经后骨质疏松症(PMOP)指绝经后女性雌激素水平下降、骨稳态改变的一种代谢性疾病。有研究发现植物雌激素可用于改善围绝经期的女性骨质疏松,减少PMOP患者的雌激素用量,提高生活质量[40]。这提示补骨脂二氢黄酮甲醚作为一种植物雌激素,可用于治疗ER异常表达引起的骨质疏松。
-
黄褐斑是一种色素沉着病,与黑素细胞合成过量黑素蓄积于皮肤有关,机体内雌激素参与黑素形成,可影响黑素细胞增殖、黑素合成中限速酶酪氨酸酶(TYR)活性,从而影响黑素合成,导致色素沉着。补骨脂二氢黄酮甲醚能够下调人黑素瘤细胞(A375细胞)中TYR、TRP-1、TRP-2的mRNA表达,进而抑制黑素形成[41]。与雌激素受体结合,通过第二信使激活ERK、JNK信号通路,而减少相关mRNA的表达,抑制TYR活性,减少细胞中黑素含量,用于治疗色素沉着[42]。
-
白细胞介素-6(IL-6)是一种多功能的细胞因子,通过不同的信号传导通路激活各种生化功能。IL-6的失调在慢性炎症和自身免疫发挥病理作用。STAT-3被发现是IL-6激活的急性期反应因子(APRF)复合物的组成部分,共同参与炎症反应[43]。在Hep3B细胞中,补骨脂二氢黄酮甲醚抑制IL-6诱导的STAT3依赖的启动子活性并且抑制其磷酸化,已知STAT3通过两个单体之间的SH2结构域磷酸化相互作用形成同型二聚体是功能激活的关键[6]。Matsuda等[44]发现,补骨脂二氢黄酮甲醚在26 μmol/L 浓度下能够抑制LPS诱导的小鼠巨噬细胞中NO的生成,这些发现提示补骨脂二氢黄酮甲醚可作为先导化合物用于开发治疗炎症性疾病的药物。
-
补骨脂二氢黄酮甲醚有免疫调节活性,在具有正常免疫功能的小鼠体内,可增强绵羊红细胞(SRBC)诱导的初次和二次体液免疫,轻微降低SRBC诱导的迟发型超敏反应[45]。哮喘是一种慢性气道炎症性疾病,常与气道高反应性、可变气流阻塞有关。根据世界卫生组织的数据,现有患哮喘患者的数量为3亿,预计到2025年将增加到4亿[46]。研究发现,哮喘与2型辅助T细胞(Th2)的免疫反应有关,Th2细胞产生的细胞因子包括白介素IL-4、IL-5、IL-9、IL-13和IL-33,这些细胞因子驱动嗜酸性炎症和组织损伤,导致气道高反应性和气道浸润[47]。因此,阻断Th2细胞因子已成为治疗哮喘的新策略。补骨脂二氢黄酮甲醚能显著抑制细胞因子IL-4、IL-5、IL-13的产生,阻断卵清蛋白致敏的动物哮喘模型中的炎症反应[47]。锌指转录因子GATA-3不仅是Th2细胞分化的主调控因子控制相关白介素的表达,还是过敏性炎症的关键转录因子,因此它成为一个对抗炎症的抑制靶点[48]。最近研究发现,补骨脂二氢黄酮甲醚通过降低GATA-3 mRNA的稳定性,选择性抑制GATA-3的表达[47]。然而,补骨脂二氢黄酮甲醚的水溶性极低(<30 ng/ml),限制了其临床应用。Wang等[49]制备了一种装载补骨脂二氢黄酮甲醚的纳米颗粒(PEG5000-PLGA NPs),这些纳米颗粒的生物相容性好,并对有炎症的肺组织表现出特异性的靶向能力,在小鼠过敏性哮喘模型中表现出非常好的抗哮喘治疗效果。
-
羧酸酯酶(CEs)是α/β水解酶折叠酶的一个保守的多基因家族,广泛分布于哺乳动物多种组织中。CEs负责多种内源性和外源性物质的水解,包括脂肪酸酯、环境毒素和含酯药物等,是哺乳动物重要的Ⅰ相代谢酶[50]。人体内CEs主要分为两类,人羧酸酯酶1(hCE1)和人羧酸酯酶2(hCE2)。hCE1主要在肝脏中表达,参与肝内物质代谢如药物的生物转化、调节脂质代谢、参与体内胆固醇的转运代谢等。研究表明,补骨脂二氢黄酮甲醚竞争性抑制hCE1活性[51],减少了心血管药物氯吡格雷水解,提高氯吡格雷的疗效,这提示补骨脂二氢黄酮甲醚可作为辅助药物,降低治疗药物副作用[52]。hCE2主要在胃肠道和肿瘤组织中表达,在肝脏中表达相对较低,因此对口服药物的生物利用以及酯类抗癌药物的治疗起着重要作用。Li等[53]发现,补骨脂二氢黄酮甲醚是hCE2的天然抑制剂,通过非竞争性抑制hCE2活性,IC50为4.31 μmol/L,在缓解化疗药物所致的胃肠道副作用方面具有良好的应用前景。
-
研究发现,补骨脂二氢黄酮甲醚通过抑制人单核细胞中IL-1诱导的组织因子的表达从而减缓血液凝固,减少血栓形成[54]。陈瑞战等[55]通过二苯基三硝基苯肼法发现,补骨脂二氢黄酮甲醚具有抗氧化活性,但活性较弱。补骨脂提取物(PCE)主要通过NO/cGMP通路介导的内皮依赖性发挥血管舒张作用,补骨脂二氢黄酮甲醚可能与PCE中的补骨脂酚产生协同作用,增强PCE的血管平滑肌放松作用[56]。此外,Dong等[57]报道,补骨脂二氢黄酮甲醚未来可能成为代替他汀类药物治疗非酒精性脂肪性肝病的潜在药物,通过抑制Akt/mTOR/SPEBP通路抑制FDFT1的转录及翻译,抑制胆固醇合成的关键因子角鲨烯合成酶,进而抑制胆固醇合成。
-
肝脏是机体的物质代谢中枢,不仅是糖、脂肪、蛋白质的代谢中心,还具有生物转化功能,进入体内的非营养物质比如药物经生物转化可增加水溶性,使其易于从胆汁或者尿液中排出。药物性肝损伤(DILI)是指在药物使用过程中,由于药物或其代谢产物所导致的肝细胞损害或特殊体质对药物及其代谢产物超敏感性或耐受性降低所致的疾病。现已发现补骨脂二氢黄酮甲醚具有肝细胞毒性,不利于新药的开发,因此明确其肝毒性机制非常重要。
DILI能改变肝重要细胞器——线粒体的功能和能量状态,因此线粒体被认为是介导肝细胞损伤和凋亡的中心环节,介导肝细胞死亡的多种途径[58]。补骨脂二氢黄酮甲醚作用于HepaRG细胞,Bax/Bcl2蛋白比值、caspase-3活性增强,线粒体膜通道开放孔打开,伴随线粒体膜电位、ATP水平下降、细胞色素C活性增强,诱导细胞凋亡和坏死[59]。Wang等[60]发现,补骨脂二氢黄酮甲醚通过激活p38/JNK MAPK信号通路,在不同时间段内刺激ROS生成,包括早期p38的激活刺激ROS产生以及后期JNK激活维持生成ROS,进而诱导HepaRG细胞死亡。最新研究发现,补骨脂二氢黄酮甲醚提高ROS水平,会伴随线粒体膜电位降低,推测ROS异常增加引起的线粒体损伤可以诱导肝细胞凋亡和坏死,同时通过破坏L02和HepG2细胞中脂质合成和代谢之间的平衡,造成肝细胞中脂质积累[61]。Label-free高通量蛋白质组学分析技术发现,补骨脂二氢黄酮甲醚可诱导HepaRG细胞蛋白表达差异化,表达差异的蛋白涉及30条信号通路,多数差异蛋白与氨基酸降解途径相关,推测补骨脂二氢黄酮甲醚通过影响细胞代谢通路的基因表达而诱导肝毒性[62]。
人尿苷5’-二磷酸-葡萄糖醛酸转移酶1A1(UGT1A1)负责胆红素的代谢消除,补骨脂二氢黄酮甲醚是UGT1A1的天然抑制剂(IC50为1.27 μmol/L),可能会造成胆红素升高,诱发急性肝损伤[63]。CYP1A1是一种只要分布于肝脏的细胞色素P450酶,它通过结构中血红素的铁离子传递电子,在维持雌激素的稳态中发挥重要作用,雌激素过多在肝脏内蓄积后常引起胆汁淤积[64]。研究表明,补骨脂二氢黄酮甲醚对CYP1A1表现也出较强的抑制活性,IC50为4.07±0.85 μmol/L [65]。
-
补骨脂二氢黄酮甲醚具有抗肿瘤、抗菌抗病毒、抗糖尿病及抗哮喘等药理活性。同时,补骨脂二氢黄酮甲醚因其药理活性的多样性可以多靶点、多条通路相互关联、共同发挥治疗作用。因此,需要加强对补骨脂二氢黄酮甲醚药理作用机制的探索,以便更好的服务于临床。
补骨脂及其制剂的用药安全性越来越受到关注。补骨脂作为驱白巴布期片的主要成分被报道具有潜在的肝毒性,并且已引起一例患者死亡[66]。研究发现,补骨脂中补骨脂素、异补骨脂素、补骨脂酚和补骨脂二氢黄酮甲醚均具有肝毒性。补骨脂二氢黄酮甲醚通过影响线粒体功能、脂质积累等途径造成肝损伤。建议在使用药物时注意平衡药效和不良反应,尽量在最大程度地发挥其药理作用的同时又减少不良反应的发生。
此外,目前对于补骨脂二氢黄酮甲醚的研究多是体内和体外的研究,临床试验少。因此,应该加强对补骨脂二氢黄酮甲醚临床药理学和用药安全性研究,进一步阐明其作用机制,更好地服务于临床。
Progress on pharmacological activities and hepatotoxicity of bavachinin
-
摘要: 补骨脂二氢黄酮甲醚是来源于豆科补骨脂属植物补骨脂Psoralea corylifolia L.干燥成熟果实的二氢黄酮类成分,具有抗肿瘤、抗病毒、抗糖尿病、抗炎及神经保护等药理活性,有着良好的临床应用潜力。随着临床上对补骨脂用药安全的不断关注,补骨脂二氢黄酮甲醚已被证实会造成肝细胞损伤。本文综述了近20年来关于补骨脂二氢黄酮甲醚的药理活性及肝毒性研究概况,为补骨脂二氢黄酮甲醚的后续研究和临床应用提供参考。Abstract: Bavachinin is a dihydroflavone isolated from dried ripe fruits of Psoralea corylifolia L., which has various pharmacological activities, such as anti-tumor, anti-virus, anti-diabetes, anti-inflammatory and neuroprotective, and good potential in clinical applications. With the increasing concern about the safety of P. corylifolia applications in clinical, the bavachinin has been found to be one of the main components causing liver injury. In this paper, the pharmacological activities and hepatotoxicity of bavachinin in the recent 20 years were reviewed, in order to provide reference for the further study and clinical application.
-
Key words:
- bavachinin /
- pharmacological activity /
- anti-tumor /
- anti-virus /
- anti-diabetes /
- neuroprotective /
- anti-inflammatory /
- liver toxicity
-
高脂血症是指血液中脂质水平异常,通常表现为总胆固醇(TC)和/或甘油三酯(TG)升高,高密度脂蛋白胆固醇(HDL-C)降低[1]。高脂血症是心脑血管疾病的重要危险因素,可诱发动脉粥样硬化,导致冠心病、脑卒中、心肌梗死,增加心脑血管疾病的发病率和病死率。因此,预防和控制高脂血症具有重要意义[2]。国内外研究和临床实践证明,血脂异常是可以预防和控制的。胆固醇水平降低可显著减少心肌梗死、缺血性卒中事件、心血管死亡,提高心血管病患者的生活质量,有效减轻疾病带来的负担[3]。据统计全球每年约有3000万人死于高脂血症等脂代谢紊乱疾病,且呈逐年增长趋势[4]。
姜黄素是从姜科植物姜黄的干燥根茎中提取的一种多酚类物质[5]。它被认为是姜黄中最重要一类活性成分,具有一系列药理活性,如抗氧化、抗癌、抗炎、细胞保护和降低血脂等[6]。有研究表明,姜黄素对氧化应激、抑制癌症和炎症的进展有显著疗效[7]。此外,姜黄素的降脂作用也被广泛研究。综上所述,姜黄素可作为一种潜在的候选药物用于控制高脂血症所诱导的疾病,如动脉粥样硬化。众所周知,他汀类药物是一种临床常用的治疗高胆固醇血症和相关动脉粥样硬化疾病的处方药,而目前姜黄素已被证明在降低血浆总胆固醇和甘油三酯方面与他汀类药物疗效相当。然而姜黄素存在溶解度低和渗透差的问题,从而导致其口服给药时药物生物利用度低,对于高脂血、动脉粥样硬化等需要达到一定血药浓度为疗效前提的病症来说,姜黄素的传统剂型与市售剂型均无法达到理想的治疗效果。
本研究前期成功构建了姜黄素纳米乳口服给药系统,改善了姜黄素水溶性差的特性。基于此,本文继续探究了姜黄素纳米乳在大鼠体内的药动学特性,观察其对高脂血症模型大鼠的治疗作用,为姜黄素的临床应用提供更多的理论依据。
1. 仪器与试药
1.1 仪器
101A-2型干燥箱(上海实验仪器总厂);AG285十万分之一电子分析天平(瑞士MettlerToledo公司);SB100D超声波清洗器(宁波新芝生物科技股份有限公司);Agilent 1100高效液相色谱仪(美国安捷伦科技有限公司);EPPENDORF5804R 高速冷冻离心机(德国Eppendorf有限公司);DF-101S 集热式恒温加热磁力搅拌器(巩义市英峪予华仪器厂);Agilent 6410 Triple Quad LC/MS(美国Agilent科技有限公司);全自动生化分析仪Chemray 240 (深圳雷杜生命科技有限公司);微型旋涡混合器(上海沪西分析仪器厂有限公司)。
1.2 药品与试剂
姜黄素原料药(批号XC20190521,西安小草植物科技有限公司);姜黄素对照品(批号1108135-201412,纯度>99.8 %,中国食品药品检定研究院);1,2-丙二醇(批号20190418,上海凌峰化学试剂有限公司);Tween-80(批号2018161,上海凌峰化学试剂有限公司);丙二醇单辛酸酯(Capryol 90,批号18139,上海嘉法狮贸易有限公司);高脂饲料(批号20036219,常州鼠一鼠二生物科技有限公司);姜黄素片(批号20190925,美国自然之宝®股份有限公司);辛伐他汀片(SV,批号J20190011,舒降之®杭州默沙东制药公司);TG试剂盒(批号2020012)、TC试剂盒(批号2020006)、HDL-c试剂盒(批号2020003)、LDL-c试剂盒(批号2020010,长春汇力生物技术有限公司);SOD试剂盒(批号20200617);MDA试剂盒(批号20200720);肝脏匀浆TG试剂盒(批号20200810);肝脏匀浆TC试剂盒(批号20200411,南京建成有限公司);乌来糖(国药集团化学试剂有限公司);甲醇、乙腈(色谱纯,美国 TEDIA 有限公司);水为重蒸水。
1.3 实验动物
雄性SD大鼠,SPF级,体重(180±20)g,海军军医大学实验动物中心提供,动物合格证号:SCXK(沪)2019-0004。温度:20~25 ℃;相对湿度:40 %~70 %;饮用水:高压灭菌,符合SPF级动物饮用水标准;光照条件:人工光线,12 h照射,12 h黑暗。
2. 方法与结果
2.1 姜黄素纳米乳的制备
姜黄素纳米乳的处方如下:油相Capryol 90在体系中占比为33.10 %,表面活性剂Tween-80为 34.16 %,助表面活性剂1,2-丙二醇为17.21 %,水相占比为15.52 %。制备方法为:精密称取处方量油相Capryol 90、表面活性剂Tween-80和助表面活性剂1,2-丙二醇,混合置于锥形瓶中,于45 ℃ 恒温搅拌至全溶,称取适量姜黄素原料药,搅拌至原料药完全溶解于上述体系中,冷却至室温后向体系中缓慢滴加蒸馏水至体系变为透明均匀的液体,即得姜黄素纳米乳,测得载药量为0.919 mg/g。对姜黄素纳米乳进行特性表征,结果表明所制备的纳米乳粒径分布范围窄且呈正态分布,平均粒径为(123.5±1.2)nm,PDI为(0.204±0.07),表明该制剂的粒径分布及均匀性均符合纳米乳制剂要求。最优处方制备的纳米乳的透射电镜如图1所示。结果表明,纳米乳呈圆整均一的球体或类球体,具明显层状结构,粒径大小约为123.5 nm。
2.2 血浆中姜黄素的LC/MS含量测定方法的建立
2.2.1 色谱质谱条件[8]
色谱条件:色谱柱:Dikma Inspire C18柱(2.1 mm×100 mm,3 μm);流动相:乙腈-0.1 %(V/V)甲酸水溶液(70∶30);流速:0.3 ml/min;进样量:5 μl;柱温:35 ℃。
质谱条件:ESI离子源,正离子化模式,扫描方式为多反应监测(MRM模式),干燥气温度:350 ℃,干燥气流速:10 L/min,雾化压力:35 psi,裂解电压145eV,碰撞能量30 eV,定量离子对为m/z=369.3→286.4和m/z=369.3→177.0。
2.2.2 方法学考察
取7份大鼠空白血浆,每份600 μl,分别加入各浓度姜黄素标准品溶液 600 μl,涡旋震荡2 min,再加入1 000 μl甲醇及2 000 μl乙腈沉淀蛋白,涡旋震荡5 min,于4 ℃ 12 000 r/min离心15 min。上清液用氮气吹干,1 000 μl甲醇复溶,过0.22 μm针式微孔滤膜,所得滤液即加药血浆样品。同法处理空白血浆。按2.2.1项下条件进样测定,记录色谱图及峰面积。方法学考察表明,血浆中姜黄素在2.00~500.00 ng/ml浓度范围内线性关系良好,回归方程为:Y = 411.32 X+2071.88(r= 0.999 9)。专属性考察结果表明,血浆内源物质对姜黄素的含量测定没有干扰,方法专属性良好(结果如图2)。低、中、高3个浓度的姜黄素-血浆溶液的日内精密度分别为0.54 %、1.21 %、0.93 %,日间精密度分别为0.91 %、0.76 %、0.42 %。3个浓度血浆中的姜黄素提取回收率分别为72.9.2%、78.3%、80.2%,表明该方法可用于血浆中姜黄素的含量测定。
2.3 姜黄素纳米乳的药动学研究
2.3.1 给药方案
18只大鼠随机分为3组(姜黄素原料药组、姜黄素片剂组、姜黄素纳米乳组),每组6只,适应性饲养3 d后,禁食不禁水12 h。3组大鼠分别给予姜黄素原料药混悬液(62.8 mg/kg,以姜黄素含量计算)、姜黄素片剂粉末混悬液(62.8 mg/kg,以姜黄素含量计算)各1 ml,姜黄素纳米乳(31.4 mg/kg,以姜黄素含量计算)2 ml。于灌胃给药后的0、1、2、4、8、12、16、24、30、36 h时眼球后静脉丛取血1 ml,置预肝素化离心管中,上下颠倒混匀后3 000 r/min离心15 min,上清液即为含药血浆样品。吸取含药血浆样品600 μl,照“2.2.2”项下方法处理,上清液照“2.2.1”项下色谱条件进样测定。
2.3.2 药动学参数计算
药动学参数计算通过软件Kinetica 5.0对数据进行分析处理得到,计算结果如图3及表1所示。结果表明,与原料药相比,片剂的相对生物利用度为112.10 %,纳米乳的相对生物利用度为313.47 %。与纳米乳组相比,原料药组的cmax为201.48 %,片剂组的cmax为193.02 %,且平均滞留时间(MRT)比原料药组及片剂组更高(为原料药组的183.52 %,是片剂组的154.21 %),表明纳米乳组具有延缓药物吸收的效果,从而在更大程度上发挥稳定血药浓度,提高药物生物利用度的作用。
表 1 各给药组姜黄素的药动学参数($\bar x $ ±s,n=6)原料药组 片剂组 纳米乳组 cmax (ng/ml) 116.18±11.33 121.27±12.12 234.08±17.55 Tmax (t/h) 2.00±0.00 2.00±0.00 4.00±0.00 AUC0→36(ng·h/ml) 1151.12±125.77 1341.34±103.59 2914.42±323.15 AUC0→∞(ng·h/ml) 1202.71±115.28 1348.77±131.39 3770.15±333.28 t1/2 (t/h) 6.66±0.33 7.52±0.51 12.17±0.35 MRT(t/h) 9.89±0.59 11.77±0.31 18.15±0.38 2.4 药效学研究
2.4.1 动物分组、造模及给药
取SD大鼠56只,进行为期一周的适应性饲养后随机分为空白对照组(n=8)和模型组(n=48),空白组饲喂正常饲料,模型组饲喂定制高脂饲料(饲料含2-硫氧嘧啶0.2 %,可可脂17.18 %,胆固醇1.25%,蔗糖12.5 %,胆盐0.22 %)。整个造模周期为16 d,造模期间每日观察各组大鼠的精神、活动、食量、排便量变化等。结束造模后,所有大鼠禁食不禁水12 h,于眼球后静脉丛取血1 ml,室温静置30 min,3 000 r/min离心20 min,取上层血清检测各项生化指标(TC、TG、HDL-c、LDL-c)[9,10]。
造模成功后将上述模型组大鼠再随机分为模型组、姜黄素片剂组、阳性药(SV)组和姜黄素纳米乳低、中、高剂量组,每组8只。空白组(A组)及模型组(B组)给予生理盐水5 ml/ (kg·d);阳性药组(C组)给与辛伐他汀20 mg/ (kg·d)(以辛伐他汀含量计);姜黄素片剂组(D组)给与姜黄素片 62.8 mg/ (kg·d)(以姜黄素的含量计);姜黄素纳米乳低(E组)、中(F组)、高(G组)3组给药剂量分别为15、30、60 mg/ (kg·d)(以姜黄素的含量计),连续21天灌胃给药。第21天给药结束后,各组大鼠禁食不禁水12 h,于第22天眼球后静脉丛取血1 ml离心取血清待测。
2.4.2 统计学处理
实验所得数据采用SPSS Statistics 22.0统计软件进行处理,方差齐性检验后,采用单因素方差分析,其中组间比较采用LSD法,两两比较采用独立样本t检验;若方差不齐,采用非参数检验。实验结果均以(
$\bar x $ ±s)表示,P<0.01表示具极显著性差异,P<0.05表示具显著性差异。采用 GraphPad Prism 6 绘制图表。2.4.3 肝脏指数
大鼠颈椎脱臼处死,称定体重后解剖取肝脏,冰PBS洗净血迹,称定肝脏湿重并记录,计算肝脏指数;肝脏指数=肝脏湿重/体重×100 %。
图4为给药前后各组大鼠的体重变化。结果表明,给药3周后,与空白组相比,各组均存在极显著性差异(P<0.001)。给药的前2周纳米乳组的体重均表现出正向增长趋势,而模型组、阳性药组以及姜黄素片剂组体重则呈现负增长情况;给药第3周时,仅姜黄素纳米乳高剂量组的体重出现正向增长,阳性药组以及姜黄素纳米乳低、中剂量组大鼠体重降低幅度略有缩小但仍呈下降趋势。
实验结束后剖取大鼠肝脏,肉眼观察到空白组大鼠的肝脏呈现出鲜红色且有光泽,边缘清晰锐利,质地软,与周围组织无明显黏连;模型组大鼠的肝脏肥大,色泽偏黄,边缘圆钝,质地稍硬,且表面的白色沉积明显,与周围组织黏连明显。各给药组大鼠的肝脏比空白组略大,颜色呈不同程度的泛黄白带红,其中以姜黄素纳米乳中剂量组肝脏的颜色与空白组最为接近。
肝脏湿重:如图5所示,除空白组外,各给药组与模型组间均无显著差异,但各给药组肝脏湿重与空白组均具极显著性差异(P<0.001);
肝脏指数:如图5所示,除姜黄素纳米乳低剂量组外,其他各给药组与模型组之间均存在显著性差异,表明肝脏指数的降低与药物剂量间存在依赖性。阳性药组和片剂组肝脏指数尚未恢复到正常水平,推测原因可能是阳性药和片剂的给药周期还不能完全抵消造模导致的肝脏增重所致。
2.4.4 HE染色、油红O染色及病理切片
取肝脏左、右外叶上端分别于多聚甲醛中固定,脱水,切片,染色后置于光镜下观察。图6为肝脏的HE染色切片。其中A组肝细胞排列整齐,呈索状,内壁边界清晰,无中性粒细胞浸润,仅有零星小泡性脂肪病变;B组视野内可见明显的弥漫性大泡性脂肪病变,肝细胞肿胀,胞浆基质疏松,淡染,存在严重的气球样病变,可见Mallory小体,肝小叶边界不清,汇管区肿大,呈现中性粒细胞浸润,存在重度的肝细胞脂变率;C组和D组以中轻度脂肪病变为主,脂肪细胞占比显著减少;E组汇管区细胞排列比C、D两组更为整齐,肝细胞整体肿胀程度减轻,大泡性脂肪病变仅存在于Ⅲ带,炎性浸润程度减轻,水样病变减轻;F组和G组以小泡性脂变为主,少见大泡性脂变。
图7为油红O染色切片。A组大鼠肝细胞结构完整,细胞核颜色明显;B组肝细胞存在大片鲜艳脂滴,细胞核萎缩、色浅,存在重度脂肪病变;C组和D组仍存在大片连续脂滴,但汇管区附近脂滴颜色明显变淡;E组Ⅲ带脂滴色浅且小;F组和G组视野内所见均为浅色小脂滴,细胞核体积趋向空白组细胞核体积。
2.4.5 血清中TC、TG、HDL-c、LDL-c的表达水平
第21天给药结束后,所有大鼠禁食不禁水12 h,于第22天眼球后静脉丛取血1ml,室温静置2 h后3 000 r/min离心15 min取血清,按试剂盒操作说明检测血清中TC、TG、HDL-c、LDL-c的表达水平。
给药3周后,大鼠血清中各生化指标变化如表2所示。与模型组相比,姜黄素纳米乳低、中、高3个剂量组对TC降低效果均有统计学意义(P<0.001),其中,以中剂量组为佳,低剂量组对LDL-c的改善效果更为明显。对于血清中TG、TC的改善情况,与阳性药组相比,纳米乳低、中、高3个剂量组之间差异无统计学意义(P<0.05);中、高剂量组TC与HDL比值的降低具有统计学意义(P<0.05),表明血脂比存在纳米乳剂量依赖性。
表 2 大鼠血清中TG、TC、HDL-c、LDL-c的表达水平及TC/HDL-C的变化趋势($\bar x $ ±s,n=8)组别 TG(mmol/L) TC(mmol/L) HDL-c(mmol/L) LDL-c(mmol/L) TC/HDL 空白组 1.34±0.09 2.90±0.44 0.31±0.10 1.88±0.17 9.35±0.41 模型组 2.88±0.51 12.45±0.13 1.84±0.10 3.56±0.66 6.77±1.14 阳性药组 1.41±0.25## 10.81±0.36## 3.03±0.53# 2.87±0.20## 3.57±0.47 姜黄素片剂组 1.79±0.22## 11.24±1.21 3.42±0.42# 4.08±0.32 3.29±0.89 姜黄素纳米乳低剂量组 1.29±0.20## 8.88±0.73## 2.39±0.62## 2.85±0.33# 3.72±0.57# 姜黄素纳米乳中剂量组 1.44±0.04## 7.68±0.34## 1.94±0.78## 2.57±0.82 3.96±0.36# 姜黄素纳米乳高剂量组 1.38±0.28## 8.89±0.64## 1.83±0.34## 2.85±0.67 4.86±0.49## *P<0.05, **P<0.001,与空白组比较;#P<0.05,##P<0.001,与模型组比较 2.4.6 肝脏中TC、TG、MDA、SOD的表达水平
将肝脏分为4份,一份置于−80 ℃冷冻保存,一份按如下步骤处理后待测:冰PBS冲洗肝组织表面血迹→研磨后制成10 %匀浆→离心→取上清液→测定各生化指标。
给药3周后大鼠肝脏匀浆中各生化指标表达水平如表3所示。结果表明,模型组肝脏匀浆中TG、TC表达水平的增幅与空白组相比具有统计学意义(P<0.001);给药3周后,阳性药组和纳米乳低、中剂量组的TG、TC表达水平与模型组相比均有统计学差异(P<0.001),姜黄素纳米乳低、中、高3个剂量对大鼠肝脏中TG、TC表达水平的降低均具有统计学意义(P<0.05),其中,低剂量组效果最佳,这也与血清中TC水平变化趋势相一致。
表 3 大鼠肝脏匀浆中TG、TC、SOD以及MDA的变化趋势($\bar x $ ±s,n=8)组别 TG(mmol/L) TC(mmol/L) SOD(U/mgprot) MDA(nmol/mgprot) 空白组 0.42±0.16 0.11±0.03 956.31±142.64 0.47±0.06 模型组 0.69±0.05** 0.09±0.02** 769.26±141.64**## 1.98±0.26** 阳性药组 0.50±0.11*## 0.7±0.01*## 988.25±168.90## 0.64±0.15*## 姜黄素片剂组 0.66±0.10**# 0.04±0.01*## 933.99±103.39# 0.79±0.11** 姜黄素纳米乳低剂量组 0.64±0.07**## 0.06±0.02*## 972.23±142.10## 0.80±0.03**# 姜黄素纳米乳中剂量组 0.58±0.05**## 0.07±0.02**## 916.55±117.32# 0.59±0.09## 姜黄素纳米乳高剂量组 0.54±0.13## 0.10±0.03** 799.81±121.85** 0.70±0.23*## *P<0.05, **P<0.001,与空白组比较;#P<0.05,##P<0.001,与模型组比较 超氧化物歧化酶(SOD)是机体内重要的抗氧化酶,能催化自由基清除反应,保护细胞免受自由基的攻击,明显改善肝肾等组织的氧化损伤,能直观的反映体内抗氧化酶的活性[11]。MDA是脂质过氧化反应的产物,反映了自由基的活跃程度,可用于评价机体内脂质过氧化的程度[12]。因此,选择SOD和MDA作为评价高脂血症大鼠肝功能损伤程度的指标。
给药3周后,与模型组相比,阳性药组及姜黄素纳米乳低剂量组均能够上调大鼠肝脏中SOD的表达水平(P<0.001),姜黄素纳米乳中剂量组对其表达水平也有正向影响(P<0.05);此外,实验中发现,与姜黄素纳米乳低、中剂量组相比,高剂量组对体内SOD的表达呈现出抑制,推测此现象与姜黄素的双向调节机制有关;对于MDA的表达水平,与模型组相比,阳性药组和姜黄素纳米乳各剂量组对其表达的抑制作用均具有统计学意义(P<0.001),但效果仍以中剂量组为佳。
3. 讨论
姜黄素是一种被广泛研究的中药多酚类物质,具有抗氧化、抗炎和降血脂的药理活性。已有报道将他汀类与姜黄素对于改善血脂的功效进行了比较。他汀类药物是治疗高胆固醇血症和高脂血症的一线药物。研究表明,姜黄素在降低甘油三酯(TG)方面最有效,而他汀类药物在降低低密度脂蛋白胆固醇(LDL-C)方面最有效。姜黄素影响血浆脂质改变的途径与他汀类药物相似[13]。几乎所有胆固醇运输的途径都会受到药物制剂的影响,包括胃肠道对膳食中胆固醇的吸收、肝细胞对血浆胆固醇的清除、胆固醇逆向运输的介质以及从外周组织中清除胆固醇。此外,姜黄素的活性氧(ROS)清除能力降低了脂质过氧化的风险,而脂质过氧化会引发炎症反应,导致心血管疾病(CVD)和动脉粥样硬化[14]。综上所述,姜黄素或可作为一种安全且耐受性良好的他汀类药物辅助药物,更有效控制高脂血症。
-
表 1 补骨脂二氢黄酮甲醚的抗肿瘤作用及机制
药理作用 作用机制 模型 文献 抑制肿瘤血管生成 促进缺氧诱导因子-la(HIF-1a)的降解作用,抑制肿瘤血管生成 KB癌细胞(HeLa细胞衍生物)
HOS人骨肉瘤细胞[8] 抗淋巴管生成 抑制TR-LE细胞增殖和毛细血管样管形成 TR-LE细胞 [9] 抑制肿瘤细胞增殖 通过激活ATM/ATR-CHK2/CHK1信号通路,诱导DNA损伤和细胞周期阻滞于G2/M期 SCLC细胞株(H1688) [10] 通p38-MAPK介导的p21Waf1/cip1信号通路诱导细胞周期阻滞G2/M期 NSCLS细胞系(A549、H23、HCC827) [11] 抑制IL-6和STAT3通路 Hep3B细胞 [6] 诱导肿瘤细胞凋亡 剂量相关性上调Fas、FasL、caspase-8和 caspase-3表达 SCLC细胞株(H1688) [10] 上调促凋亡基因p53、caspase-3、caspase -8和caspase -9表达 MCF-7细胞 [12] 激活PPARγ,ROS水平升高 NSCLC细胞系(A549) [13] 激活细胞凋亡相关p53、Bcl2、BAX信号通路 DMH+DSS诱导的大鼠结肠癌模型 [14] 逆转多药耐药 下调MDR1和ABCG2基因表达,减少药物外排 胃癌耐药细胞系(EPG85.257RDB)
乳腺癌耐药细胞系(MCF7/MX)[15]
[16]免疫作用 诱导γδT细胞增殖 胃癌细胞(SGCA99) [17] 注:SCLC:小细胞肺癌;NSCLC:非小细胞肺癌;DMH:二甲肼;DSS:葡聚糖硫酸钠 -
[1] 鲁亚奇, 张晓, 王金金, 等. 补骨脂化学成分及药理作用研究进展[J]. 中国实验方剂学杂志, 2019, 25(3): 180-189. doi: 10.13422/j.cnki.syfjx.20182022 [2] ALAM F, KHAN G N, BIN ASAD M H H. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: a review[J]. Phytother Res, 2018, 32(4): 597-615. doi: 10.1002/ptr.6006 [3] BHALLA V K, NAYAK U R, DEV S. Some new flavonoids from[J]. Tetrahedron Lett, 1968, 9(20): 2401-2406. doi: 10.1016/S0040-4039(00)76141-7 [4] ZAFAR S K, IQBAL S, MUMTAZ M, et al. Inhibitory mechanism exhibited by phenol-based natural products against DNA polymerase α from Psoralea corylifolia by molecular docking[J]. J Chem Soc Pak, 2018, 40(6): 1093-1102. [5] ZHAO H Y, CHEN Z L. Screening of aromatase inhibitors in traditional Chinese medicines by electrophoretically mediated microanalysis in a partially filled capillary[J]. J Sep Sci, 2013, 36(16): 2691-2697. doi: 10.1002/jssc.201300474 [6] LEE S W, YUN B R, KIM M H, et al. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation[J]. Planta Med, 2012, 78(9): 903-906. doi: 10.1055/s-0031-1298482 [7] KUNTZ S, WENZEL U, DANIEL H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines[J]. Eur J Nutr, 1999, 38(3): 133-142. doi: 10.1007/s003940050054 [8] NEPAL M, ChOI H J, ChOI B Y, et al. Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia-inducible factor-1α[J]. Eur J Pharmacol, 2012, 691(1-3): 28-37. doi: 10.1016/j.ejphar.2012.06.028 [9] JEONG D, WATARI K, SHIROUZU T, et al. Studies on lymphangiogenesis inhibitors from Korean and Japanese crude drugs[J]. Biol Pharm Bull, 2013, 36(1): 152-157. doi: 10.1248/bpb.b12-00871 [10] HUNG S Y, LIN S C, WANG S Z, et al. Bavachinin induces G2/M cell cycle arrest and apoptosis via the ATM/ATR signaling pathway in human small cell lung cancer and shows an antitumor effect in the xenograft model[J]. J Agric Food Chem, 2021, 69(22): 6260-6270. doi: 10.1021/acs.jafc.1c01657 [11] PAI J T, HSU M W, LEU Y L, et al. Induction of G2/M cell cycle arrest via p38/p21Waf1/Cip1-dependent signaling pathway activation by bavachinin in non-small-cell lung cancer cells[J]. Molecules, 2021, 26(17): 5161. doi: 10.3390/molecules26175161 [12] FARAJZADEH M, Dehkordi. Deciphering the DNA-binding affinity, cytotoxicity and apoptosis induce as the anticancer mechanism of Bavachinin: an experimental and computational investigation[J]. J Mol Liq, 2021, 341: 117373. doi: 10.1016/j.molliq.2021.117373 [13] GE L N, YAN L, LI C, et al. Bavachinin exhibits antitumor activity against non-small cell lung cancer by targeting PPARγ[J]. Mol Med Rep, 2019, 20(3): 2805-2811. [14] ZHAO C, GHOSH B, CHAKRABORTY T, et al. Bavachinin mitigates DMH induced colon cancer in rats by altering p53/Bcl2/BAX signaling associated with apoptosis[J]. Biotech Histochem, 2021, 96(3): 179-190. doi: 10.1080/10520295.2020.1778087 [15] DARZI S, MIRZAEI S A, ELAHIAN F, et al. Improvement of cytotoxicity of mitoxantrone and daunorubicin by candidone, tephrosin, and bavachinin[J]. Mol Biol Rep, 2021, 48(11): 7105-7111. doi: 10.1007/s11033-021-06700-7 [16] DARZI S, MIRZAEI S A, ELAHIAN F, et al. Enhancing the therapeutic efficacy of daunorubicin and mitoxantrone with bavachinin, candidone, and tephrosin[J]. Evid Based Complement Alternat Med, 2019, 2019: 3291737. [17] 丁钦, 吴克俭, 郑璐, 等. 补骨脂二氢黄酮甲醚调控Gamma delta T细胞消减胃癌SGC-7901研究[J]. 世界中医药, 2020, 15(20): 3040-3045. doi: 10.3969/j.issn.1673-7202.2020.20.007 [18] BILEŞIKLER K, BAKıŞ O. An overview on flavonoids as potential antiviral strategies against coronavirus infections[J]. Gazi Med J, 2020, 31(3A): 478-484. doi: 10.12996/gmj.2020.117 [19] YOON J H, LEE J, LEE J Y, et al. Study on the 2-phenylchroman-4-one derivatives and their anti-MERS-CoV activities[J]. Bull Korean Chem Soc, 2019, 40(9): 906-909. doi: 10.1002/bkcs.11832 [20] ZHAO H, CHEN Z. Screening of neuraminidase inhibitors from traditional Chinese medicines by integrating capillary electrophoresis with immobilized enzyme microreactor[J]. J Chromatogr A, 2014, 1340: 139-145. doi: 10.1016/j.chroma.2014.03.028 [21] Yin S , Fan C Q , Wang Y , et al. Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure-activity relationship study[J]. Bioorg Med Chem, 2004, 12(16): 4387-4392. doi: 10.1016/j.bmc.2004.06.014 [22] 王天晓, 尹震花, 张伟, 等. 补骨脂抗氧化、抑制α-葡萄糖苷酶和抗菌活性成分研究[J]. 中国中药杂志, 2013, 38(14): 2328-2333. [23] CUI Y M, TANIGUCHI S, KURODA T, et al. Constituents of Psoralea corylifolia fruits and their effects on methicillin-resistant Staphylococcus aureus[J]. Molecules, 2015, 20(7): 12500-12511. doi: 10.3390/molecules200712500 [24] MA S, HUANG Y, ZHAO Y, et al. Prenylflavone derivatives from the seeds of Psoralea corylifolia exhibited PPAR-γ agonist activity[J]. Phytochem Lett, 2016, 16: 213-218. doi: 10.1016/j.phytol.2016.04.016 [25] FENG L, LUO H, XU Z J, et al. Bavachinin, as a novel natural pan-PPAR agonist, exhibits unique synergistic effects with synthetic PPAR-γ and PPAR-α agonists on carbohydrate and lipid metabolism in db/db and diet-induced obese mice[J]. Diabetologia, 2016, 59(6): 1276-1286. doi: 10.1007/s00125-016-3912-9 [26] FENG L , LU S , ZHENG Z ,et al. Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects[J]. Sci Bull, 2021, 66(15): 1559-1570. doi: 10.1016/j.scib.2021.01.023 [27] DU G, FENG L, YANG Z, et al. Separation and peroxisome proliferator-activated receptor-γ agonist activity evaluation of synthetic racemic bavachinin enantiomers[J]. Bioorg Med Chem Lett, 2015, 25(12): 2579-2583. doi: 10.1016/j.bmcl.2015.04.029 [28] DU D G, ZHAO D Y, FENG D L, et al. Design synthesis and structure-activity relationships of bavachinin analogues as peroxisome proliferator-activated receptor γ agonists[J]. ChemMedChem, 2017, 12(2): 183-193. doi: 10.1002/cmdc.201600554 [29] LYMAN M, LLOYD D G, JI X M, et al. Neuroinflammation: the role and consequences[J]. Neurosci Res, 2014, 79: 1-12. doi: 10.1016/j.neures.2013.10.004 [30] KIM Y J, LIM H S, LEE J, et al. Quantitative analysis of Psoralea corylifolia linne and its neuroprotective and anti-neuroinflammatory effects in HT22 hippocampal cells and BV-2 microglia[J]. Molecules, 2016, 21(8): 1076. doi: 10.3390/molecules21081076 [31] SORIA LOPEZ J A, GONZÁLEZ H M, LÉGER G C. Alzheimer’s disease[J]. Handb Clin Neurol, 2019, 167: 231-255. [32] CHEN Z J, YANG Y F, ZHANG Y T, et al. Dietary total prenylflavonoids from the fruits of Psoralea corylifolia L. prevents age-related cognitive deficits and down-regulates alzheimer’s markers in SAMP8 mice[J]. Molecules, 2018, 23(1): 196. doi: 10.3390/molecules23010196 [33] 杨柳, 李爽, 王业秋, 等. 补骨脂二氢黄酮甲醚对Aβ诱导PC12细胞损伤的保护作用及机制研究[J]. 中药新药与临床药理, 2021, 32(1): 68-72. [34] CHEN X, YANG Y, ZHANG Y. Isobavachalcone and bavachinin from Psoraleae Fructus modulate Aβ42 aggregation process through different mechanisms in vitro[J]. FEBS Lett, 2013, 587(18): 2930-2935. doi: 10.1016/j.febslet.2013.07.037 [35] CHOI Y H, YON G H, HONG K S, et al. In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia[J]. Planta Med, 2008, 74(11): 1405-1408. doi: 10.1055/s-2008-1081301 [36] Thomas T. Monoamine oxidase-B inhibitors in the treatment of Alzheimers disease[J]. Neurobiol Aging, 2000, 21(2): 343-348. doi: 10.1016/S0197-4580(00)00100-7 [37] ZARMOUH N O, MAZZIO E A, ELSHAMI F M, et al. Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B[J]. Evid Based Complement Alternat Med, 2015, 2015: 852194. [38] SIROTKIN A V, HARRATH A H. Phytoestrogens and their effects[J]. Eur J Pharmacol, 2014, 741: 230-236. doi: 10.1016/j.ejphar.2014.07.057 [39] LIM S H, HA TY, AHN J, et al. Estrogenic activities of Psoralea corylifolia L. seed extracts and main constituents[J]. Phytomedicine, 2011, 18(5): 425-430. doi: 10.1016/j.phymed.2011.02.002 [40] 蔡心银, 张紫佳. 植物雌激素药理作用及相关中药的研究进展[J]. 现代中药研究与实践, 2020, 34(2): 75-78, 86. [41] 刘国良, 李建民, 姚远, 等. 补骨脂二氢黄酮甲醚对A375细胞黑素合成的影响[J]. 中医药学报, 2015, 43(6): 9-12. doi: 10.19664/j.cnki.1002-2392.2015.06.004 [42] 刘国良, 于英君, 姚远, 等. 补骨脂二氢黄酮甲醚对A375细胞黑素合成及ER/MAPK信号通路的影响[J]. 中国医药导报, 2015, 12(36): 4-8, 20. [43] HILLMER E J, ZHANG H Y, LI H S, et al. STAT3 signaling in immunity[J]. Cytokine Growth Factor Rev, 2016, 31: 1-15. doi: 10.1016/j.cytogfr.2016.05.001 [44] MATSUDA H, KIYOHARA S, SUGIMOTO S, et al. Bioactive constituents from Chinese natural medicines XXXIII Inhibitors from the seeds of Psoralea corylifolia on production of nitric oxide in lipopolysaccharide-activated macrophages[J]. Biol Pharm Bull, 2009, 32(1): 147-149. doi: 10.1248/bpb.32.147 [45] SHARMA M L, SINGH B, CHANDAN B K, et al. Actions of some flavonoids on specific and non-specific immune mechanisms[J]. Phytomedicine, 1996, 3(2): 191-195. doi: 10.1016/S0944-7113(96)80035-3 [46] PAWANKAR R, CANONICA G W, HOLGATE S T, et al. Allergic diseases and asthma: a major global health concern[J]. Curr Opin Allergy Clin Immunol, 2012, 12(1): 39-41. doi: 10.1097/ACI.0b013e32834ec13b [47] CHEN X, WEN T, WEI J, et al. Treatment of allergic inflammation and hyperresponsiveness by a simple compound, Bavachinin, isolated from Chinese herbs[J]. Cell Mol Immunol, 2013, 10(6): 497-505. doi: 10.1038/cmi.2013.27 [48] TINDEMANS I, SERAFINI N, DI SANTO J P, et al. GATA-3 function in innate and adaptive immunity[J]. Immunity, 2014, 41(2): 191-206. doi: 10.1016/j.immuni.2014.06.006 [49] WANG K, FENG Y P, LI S, et al. Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model[J]. J Biomed Nanotechnol, 2018, 14(10): 1806-1815. doi: 10.1166/jbn.2018.2618 [50] SATOH T, HOSOKAWA M. Structure function and regulation of carboxylesterases[J]. Chem Biol Interact, 2006, 162(3): 195-211. doi: 10.1016/j.cbi.2006.07.001 [51] SUN D X, GE G B, DONG P P, et al. Inhibition behavior of fructus psoraleae’s ingredients towards human carboxylesterase 1 (hCES1)[J]. Xenobiotica, 2016, 46(6): 503-510. doi: 10.3109/00498254.2015.1091521 [52] ZHU X H. Species difference for herb-drug interaction between Fructus psoralea and cardiovascular drug clopidogrel[J]. Lat Am J Pharm, 2016, 35(6): 1473-1475. [53] LI Y G, HOU J, LI S Y, et al. Fructus Psoraleae contains natural compounds with potent inhibitory effects towards human carboxylesterase 2[J]. Fitoterapia, 2015, 101: 99-106. doi: 10.1016/j.fitote.2015.01.004 [54] LALE A, HERBERT J M, AUGEREAU J M, et al. Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes[J]. J Nat Prod, 1996, 59(3): 273-276. doi: 10.1021/np960057s [55] 陈瑞战, 杨思敏, 刘志强, 等. HPLC-ESI-MS快速筛选并鉴定补骨脂甲醇提取物中的抗氧化活性成分[J]. 分子科学学报, 2014, 30(2): 142-146. [56] KASSAHUN GEBREMESKEL A, DARSHANA WIJERATHNE T, KIM J H, et al. Psoralea corylifolia extract induces vasodilation in rat arteries through both endothelium-dependent and-independent mechanisms involving inhibition of TRPC3 channel activity and elaboration of prostaglandin[J]. Pharm Biol, 2017, 55(1): 2136-2144. doi: 10.1080/13880209.2017.1383484 [57] DONG X, ZHU Y, WANG S, et al. Bavachinin inhibits cholesterol synthesis enzyme FDFT1 expression via AKT/mTOR/SREBP-2 pathway[J]. Int Immunopharmacol, 2020, 88: 106865. doi: 10.1016/j.intimp.2020.106865 [58] DRAGOVIC S, VERMEULEN N P E, GERETS H H, et al. Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man[J]. Arch Toxicol, 2016, 90(12): 2979-3003. doi: 10.1007/s00204-016-1845-1 [59] 季宇彬, 王敏, 王姗, 等. 补骨脂二氢黄酮甲醚诱导HepaRG细胞损伤机制探讨[J]. 中国药理学通报, 2018, 34(4): 544-550. doi: 10.3969/j.issn.1001-1978.2018.04.021 [60] WANG S, WANG M, WANG M, et al. Bavachinin induces oxidative damage in HepaRG cells through p38/JNK MAPK pathways[J]. Toxins, 2018, 10(4): 154. doi: 10.3390/toxins10040154 [61] GUO Z J, LI P, WANG C G, et al. Five constituents contributed to the Psoraleae Fructus-induced hepatotoxicity via mitochondrial dysfunction and apoptosis[J]. Front Pharmacol, 2021, 12: 682823. doi: 10.3389/fphar.2021.682823 [62] 朱月, 王姗, 徐丽娇, 等. 基于Label-free技术分析补骨脂二氢黄酮甲醚的肝毒性作用机制[J]. 大理大学学报, 2020, 5(4): 1-6. doi: 10.3969/j.issn.2096-2266.2020.04.001 [63] WANG X X, LV X, LI S Y, et al. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-Zhi)[J]. Toxicol Appl Pharmacol, 2015, 289(1): 70-78. doi: 10.1016/j.taap.2015.09.003 [64] ZECCA E, DE LUCA D, BARONI S, et al. Bile acid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study[J]. Pediatrics, 2008, 121(1): e146-e149. doi: 10.1542/peds.2007-1220 [65] 秦子飞, 王培乐, 邢晗, 等. 补骨脂富含的异戊烯基成分对CYP1A1活性的影响及分子对接验证[J]. 南京中医药大学学报, 2021, 37(5): 750-759. doi: 10.14148/j.issn.1672-0482.2021.0750 [66] LI A, GAO M H, ZHAO N, et al. Acute liver failure associated with Fructus Psoraleae: a case report and literature review[J]. BMC Complement Altern Med, 2019, 19(1): 84. doi: 10.1186/s12906-019-2493-9 -