-
目前全球尚无预防和治疗新冠肺炎(COVID-19)确认的特效药物。有学者试图遴选已有的抗病毒药物,以期尽快开发“老药新用”的治疗方案。国家卫生健康委员会陆续发布了7版试行《新型冠状病毒肺炎诊疗方案》,其中,广谱抗病毒药物利巴韦林被作为可试用的临床治疗药物。
利巴韦林(ribavirin)常用剂型有注射剂、片剂、口服液、气雾剂等,国外临床上多以雾化剂用于成人和儿童的呼吸道合胞病毒性肺炎的治疗[1]。体外研究表明[2],利巴韦林可增强干扰素的体外活性,在治疗SARS-CoV感染者中,诊断后立即使用利巴韦林时治疗效果较好[3]。利巴韦林对DNA和RNA病毒均具有抑制作用,通常以雾化剂用于成人和儿童的呼吸道合胞病毒性肺炎的治疗。美国食品药品管理局(FDA)于1986年首次批准利巴韦林吸入溶液气雾剂(Virazole®,USP)[4],于1992年上市,而说明书中明确规定用于严重下呼吸道感染的住院患儿,且全程气雾治疗3~7 d,可见其应用的严格限制。根据国内多家临床中心的试验数据表明,与利巴韦林颗粒剂相比,国内的利巴韦林气雾剂(信韦林)达到同等的治疗效果时,虽然用药剂量大幅下降,但不良反应率无明显差异[5-8],表明利巴韦林吸入溶液气雾剂(Virazole®,USP)和利巴韦林气雾剂(信韦林)可能存在不良反应较大的缺陷,临床应用受到一定的限制。
脂质体定量吸入粉雾剂(DPI)是肺部给药系统的研究热点之一。脂质体由于类似细胞结构而具有被动靶向性,作为药物载体常用于肺部给药,有利于抗病毒药物直接递送并作用于肺部细胞,抑制病毒的繁殖,特定粒径的脂质体粉雾剂可使药物不同程度地的分布于人体上、下呼吸道,从而发挥更好的临床治疗效果[9-10]。利巴韦林水溶性较好,亲脂性较差,如图1的结构式所示,不易被细胞渗透吸收,采用脂质体包裹,并制成粉雾剂给药至呼吸道或肺泡组织,可实现肺部沉积增强的作用效果,同时降低不良反应。本文根据临床急需及利巴韦林的药物理化性质,结合吸入制剂肺部给药方面的治疗优势,设计研制了一种利巴韦林脂质体吸入粉雾剂。以此开展设计研究,尝试开发抗病毒药物新型给药系统,以期为扩大利巴韦林临床使用范围,也为制剂学基础研究提供参考。
-
高效液相色谱仪(Agilent 1200);ME104E电子天平(METTLER TOLEDO);EYELA N-1000旋转蒸发仪(日本东京理化器械株式会社);Niro NS2006L高压匀质机(意大利GEA Niro Soavi公司);Nano NS90粒度检测仪(英国马尔文仪器有限公司);Hitachi S-3400N扫描电子显微镜(日本日立公司)。
-
利巴韦林原料药(纯度>98%,西安康诺化工有限公司);利巴韦林对照品(629-200202,中国食品药品检定研究院);大豆卵磷脂(SPC)、脱氧胆酸钠(SDC)(北京化学试剂公司);N,N-二甲基甲酰胺、无水乙醇、磷酸氢二钠、磷酸二氢钠(分析纯,北京化学试剂公司);蒸馏水。
-
参照美国药典第40版中“利巴韦林”含量测定方法[11],采用高效液相色谱法测定。色谱条件:色谱柱为Carbomix H-NP5(7.8 mm×100 mm,5 μm);流动相硫酸溶液调整pH至2.5±0.1;流速:0.6 ml/min;柱温:60 ℃;检测波长UV 207 nm;进样量10 μl,取利巴韦林对照品适量,流动相溶解稀释至浓度为0.025 mg/ml,过滤,进样检测。取利巴韦林脂质体冻干粉适量,加入无水乙醇少量破乳,呈透明溶液后流动相稀释,制成浓度0.025 mg/ml供试品溶液;同样方式处理阴性样品溶液。在该色谱条件下得到图2的色谱图,图中利巴韦林峰型较佳,出峰时间适宜,阴性对照无干扰。
-
取大豆卵磷脂(5 mmol/L),脱氧胆酸钠(5 mmol/L),为制备具有高稳定性的双分子膜,在处方中加入适量维生素E置于250 ml的茄形瓶中,加入无水乙醇溶解,超声,至呈透明黄色溶液;将此溶液置旋转蒸发仪上旋转蒸发除去溶剂成膜;另取利巴韦林原料药溶解于磷酸盐缓冲液中(20 mg/ml),溶解完全后匀速加入至茄形瓶内,并于40 ℃水浴温度水化薄膜,直到完全水化呈近均一透明的乳白色溶液;高压均质机下将上述溶液均质,即得到粒径100~200 nm的利巴韦林脂质体溶液。加入冻干保护剂乳糖, 溶解摇匀后置西林瓶中,启动冷冻干燥程序,即得疏松利巴韦林脂质体冻干粉。
-
取载药脂质体经处理后于透射电镜下观察,呈类圆形球状物,直径约200 nm,见图3。
-
将粉末通过下孔径为5 mm 的玻璃漏斗,从10 cm的高度缓慢、均匀地落入平板上,形成圆锥体。测量圆锥体的高度(h)和基底的半径(r),按公式计算休止角(θ,tanθ=h/r)。粉末休止角为37~40°,流动性较好。取量筒,自由落体方式装入脂质体冻干粉,记录质量与体积,计算松密度约0.25 g/ml。
-
取利巴韦林脂质体冻干粉适量,纯化水溶解得脂质体复溶物,取复溶物适量加入无水乙醇少量破乳,呈透明溶液后用流动相稀释,制成0.025 mg/ml供试品溶液,按“2.1”项下色谱条件检测冻干粉含量。
经过前期实验对比,本研究采用Sephadex G-50柱层析法测定包封率。分别精密量取1 ml脂质体和冻干粉复溶物上柱,用纯化水洗脱,流速0.5 d/s,从洗脱液由澄清变乳白色开始收集至洗脱液再次变澄清(约15 ml),置50 ml容量瓶中,以乙醇定容至刻度,振摇破乳;10 μl进样分析,记录色谱图,计算包封药物含量(W包);另各取1 ml脂质体溶液及冻干粉复溶物置50 ml容量瓶中,乙醇稀释至刻度,振摇破乳,10μl进样分析,记录色谱图,计算总药量(W总)。以包封率=(W包/W总)×100%,计算结果见表1。
表 1 利巴韦林脂质体冻干粉含量与包封率
项目 样品 No.1 No.2 No.3 平均值 含量(mg/g) 脂质体冻干粉末 9.4 8.6 9.3 9.1 包封率 /% 冻干前脂质体溶液 64.23 63.83 66.34 64.80 脂质体冻干粉复溶液 63.43 61.65 64.10 63.06 结果表明,按照初步拟定方法制得的脂质体包封率约63%,冻干前后数据无明显差别,复溶效果较好,载药量较高,但包封率较低,处方工艺需要进一步优化。
-
取本品复溶液适量,纯化水再次稀释100倍,于马尔文粒径仪检测,如表2所示,本品冻干前后溶液粒径约160 nm,聚合物分散指数(PDI)、电位均较好,表明稳定性较好。
表 2 利巴韦林脂质体冻干复溶液粒径、PDI与电位
样品 No.1 No.2 No.3 平均值 粒径/PDI 电位 粒径/PDI 电位 粒径/PDI 电位 粒径 电位 冻干前溶液 148.3 nm/0.57 −45.4 mv 163.7 nm/0.63 −41.8 mv 172.6 nm/0.39 −40.5 mv 161.5 nm −42.6 mv 冻干复溶液 147.8 nm/0.58 −42.5 mv 161.8 nm/0.65 −38.6 mv 181.7 nm/0.41 −39.1 mv 163.8 nm −40.1 mv -
脂质体具有优良的两亲性,冻干保护剂亦有很好的亲水性。取本品冻干粉5 g置10 ml容量瓶中,加水10 ml,轻轻振摇即刻溶解完成,形成均一的乳白色胶束溶液,说明本品溶解性较好。
-
病毒通过侵入人体呼吸道黏膜上皮细胞而感染,并在细胞内进行复制与表达,再释放至细胞外感染宿主其他细胞,最终导致机体产生过度免疫反应。与一些在下呼吸道的细胞内进行复制繁殖的高致病性病毒类似,COVID-19导致下呼吸道症状较为明显。故若将抗病毒药物递送至下呼吸道,直达病灶,并进入被感染的机体上皮细胞内,可能更好地发挥抑制或清除病毒的作用。通常肺吸入给药后可直接将药物运送至肺组织,在局部起效,与全身给药治疗肺部疾病相比较,可明显减少药物用量,降低药物在其他部位分布与吸收造成的不良反应,加之粉雾剂具备给药剂量准确、无需抛射剂、方便、易用及肺部靶标部位药物沉积量高等优势,是肺部疾病治疗药物较为理想的给药途径。
将利巴韦林通过脂质体包裹技术实现粉雾剂肺部细胞靶向治疗,相比普通口服与常规气雾剂可减少用药剂量和降低不良反应,理论上具有一定的可行性。因而,对轻、中度COVID-19感染患者也许是一种潜在的抗病毒药物治疗方式。
经对利巴韦林脂质体粉雾剂的初步制剂技术探究,结果证明制备的制剂满足粉雾剂的基本要求。由于粉雾剂具有无需抛射剂、药物相对稳定的优势[12],而且给药装置易于携带,操作简单、给药剂量相对准确等优点,故适合开发研制成利巴韦林脂质体吸入粉雾剂。此外,制备的利巴韦林脂质体冻干粉还可开发为溶液气雾剂,故在药剂开发方面也有较好前景。然而,本实验尚为初步研究,仍需要对制剂处方工艺进一步优化,以进一步提高包封率与改善整体粒径分布等性能。如要进入临床试用,还需对给药装置筛选、体内外药物沉积、药效学等进行深入考察,以满足临床使用的基本要求。
Preparation and preliminary evaluation of ribavirin liposome-powder inhaler
-
摘要:
目的 为解决利巴韦林存在的明显不良反应问题,研制利巴韦林脂质体吸入粉雾剂,并初步评价其质量特性。 方法 采用薄膜分散法制备利巴韦林脂质体,再冻干制备成利巴韦林脂质体粉雾剂,并考察制剂的外观形态、流动性、松密度、包封率、复溶液粒径、聚合物分散指数、电位及亲水性。 结果 利巴韦林脂质体粉雾剂形态、粒径、电位、流动性与亲水性均较好,能满足粉雾剂給药的基本要求。 结论 应用该方法制备利巴韦林脂质体粉雾剂的制剂技术是可行的,为后续体内外研究提供制剂学技术依据。 Abstract:Objective In order to solve the obvious adverse reactions of ribavirin, to develop ribavirin liposome inhalation powder and to evaluate its quality characteristics. Methods The ribavirin liposomes were prepared by the thin film dispersion method, and then lyophilized to prepare ribavirin liposome powder. The appearance, fluidity, bulk density, encapsulation efficiency, particle size of the complex solution, PDI, potential and hydrophilicity were examined. Results Ribavirin liposome powder has good morphology, particle size, potential, fluidity and hydrophilicity, which can meet the basic requirements of powder medicine for drug administration. Conclusion The technique of preparing ribavirin liposome powder aerosol preparation by this method is feasible, and it provides the basic technology for future in vivo and in vitro studies. -
Key words:
- ribavirin /
- liposomal /
- lyophilized /
- powder inhalers
-
奥卡西平(oxcarbazepine, OXC)是第二代抗癫痫药物,可用于儿童全面强直-阵挛发作,部分伴或不伴继发性全面发作的一线治疗[1],其具有与传统的抗癫痫药物(AEDs)如苯妥英钠、卡马西平和丙戊酸钠相同的疗效,但其对肝药酶和自身的诱导作用小,药物间相互作用较少,临床上可用于替代传统的AEDs。OXC是卡马西平(carbamazepine, CBZ)的一种10-酮类衍生物,但两者之间的药动学存在差异,OXC的耐受性好且不良反应少[2]。OXC是无活性的前体药物,在体内经过肝脏内细胞溶质芳基酮还原酶的作用转化为具有药理活性的中间代谢产物单羟基卡马西平(monohydroxy carbamazepine, MHD)[3-4]。国际抗癫痫联盟推荐MHD血清浓度的参考范围为3~35 μg/ml[5],有研究表明,当血药浓度高于30 μg/ml时,容易发生药物不良反应,且在许多患者中,不良反应间歇性的发生与MHD浓度的波动有关[6]。在临床用药中也发现OXC服药后的药物浓度个体化差异大,年龄、性别、体重、肝肾功能等均会影响MHD的药动学参数[7],故需要对其血药浓度进行监测。本研究在参考既往研究的基础上[8-12],对色谱条件进行了优化,并简化了血样处理的过程,建立了HPLC法测定OXC活性代谢产物MHD血药浓度的方法,该方法快速、简单、准确、选择性好、灵敏度高,为临床监测血药浓度、调整给药剂量提供了手段。
1. 仪器与材料
1.1 仪器
Agilent 1200高效液相色谱仪(美国Agilent公司);H1850R型台式高速冷冻离心机(湖南湘仪实验室仪器开发有限公司);DHG-9145A型电热恒温鼓风干燥箱(上海恒科仪器有限公司);SHB-B95A型循环水式多用真空泵(郑州长城科工贸有限公司);Discovery DV215CD型分析天平(美国OHAUS公司);Vortex-5型涡旋混合器(江苏海门市其林贝尔仪器制造有限公司)。
1.2 材料
MHD对照品(美国CATO公司);内标:奥硝唑(中国食品药品检定研究院);甲醇、乙腈(色谱纯,上海科丰化学试剂有限公司);空白血浆(医院血库提供);超纯水(实验室自制)。
2. 实验方法
2.1 色谱条件
色谱柱:ZORBAX Eclipse XDB-C18(150 mm×4.6 mm,5 μm),预柱为Eclipse XDB-C18(4.6 mm×12.5 mm,5 μm);流动相:水-乙腈(80:20,V/V);流速:1.0 ml/min;柱温:35 ℃;进样量:10 μl;双波长检测:在192 nm处检测MHD,318 nm处检测奥硝唑。
2.2 溶液及血浆样品的配制
2.2.1 储备液的配制
精密称取MHD对照品10 mg于10 ml的量瓶中,用甲醇溶解配制成浓度为1 mg/ml的储备液,置于−20 ℃下保存。
2.2.2 内标工作液的配制
精密称取奥硝唑1.4 mg于10 ml的量瓶中,用甲醇溶解配制成浓度为140 μg/ml的内标工作液,置于−20 ℃下保存。
2.2.3 血浆标准曲线和质控样品的配制
分别精密量取适量储备液,用甲醇稀释成20、50、100、200、300、400、500 μg/ml浓度梯度的标准对照溶液。取以上6个标准对照溶液,加入适量空白血浆,得2、5、10、20、30、40、50 μg/ml系列浓度的血浆标准曲线样品。同法配制相应的低、中、高浓度的血浆质控样品(QC),使得MHD对应的浓度分别为5、15、40 μg/ml。
2.3 血浆样品的预处理
取200 μl血浆样品,加入200 μl内标工作液、400 μl甲醇,涡旋混合30 s,10 ℃条件下13 000 r/min离心10 min,取上清液直接进样。
3. 结果
3.1 专属性试验
通过考察6份不同生物来源的空白血浆样品色谱图、空白血浆样品加入MHD对照品和内标的色谱图,以及临床实际用药后的患者血浆样品色谱图,以此反映方法的专属性。由图1可见,在本实验条件下,被测物MHD与内标的色谱峰分离良好,且血浆中的内源性物质不干扰测定。MHD和内标的保留时间分别为9.5 min和6.1 min。
3.2 标准曲线与线性范围
取上述浓度为2、5、10、20、30、40、50 μg/ml的血浆标准曲线样品按“2.3”项下方法处理。经HPLC法分析,以测得OXC的峰面积与内标峰面积之比(Y)作为纵坐标,以血浆MHD浓度(X)为横坐标,得到回归方程为:Y=0.047 1X+0.022 2(r=0.998 6)。线性范围:根据标准曲线,MHD血药浓度在2~50 μg/ml范围内线性关系良好,其定量下限浓度为2 μg/ml。
3.3 日内、日间精密度和准确度
配制定量下限、低、中、高(2、5、15、40 μg/ml)4种浓度的QC样品各6个,按“2.3”项下方法处理后测定,连续测定3 d,以当天的标准曲线计算QC样品的测定浓度,计算日内、日间精密度以及准确度。经测定,MHD的日内、日间精密度RSD均小于15%,准确度在95.57%~100.59%之间,均符合生物样品的测定要求,结果见表1。
表 1 单羟基卡马西平日内、日间精密度和准确度(n=6)理论浓度
(μg/ml)实测浓度
(μg/ml)RSD(%) RE(%) 日内精密度 日间精密度 2 1.85±0.16 8.64 12.21 −3.63 5 4.93±0.24 4.86 7.68 −4.43 15 14.32±0.37 6.86 6.16 −3.11 40 41.80±1.26 3.03 5.33 0.59 3.4 提取回收率
配制低、中、高(5、15、40 μg/ml)3种浓度的QC样品各6个,按“2.3”项下方法处理。同时另取18份空白血浆,除了不加系列对照品溶液和内标外,按“2.3”项下方法处理,在获得的上清液中加入MHD和内标溶液至相应浓度。进样分析,以每一浓度中2种不同处理方法的峰面积比值计算提取回收率。经测定,本法中MHD的平均提取回收率在89.62%~95.32%之间;内标的平均提取回收率为98.76%,符合生物学样品的分析要求,结果见表2。
表 2 单羟基卡马西平、MHD和内标提取回收率试验结果(n=6)化合物 浓度(μg/ml) 提取回收率(%) MHD 5 89.62±4.82 15 94.67±6.76 40 95.32±4.90 内标 140 98.76±5.92 3.5 稳定性试验
3.5.1 室温稳定性试验
取低、中、高(5、15、40 μg/ml)3种浓度的QC样品各5份,测定即时血药浓度,并在室温条件下放置4 h和10 h后测定样品血药浓度,求得RSD和RE值。经测定MHD血浆样品在室温下放置10 h后仍稳定,RSD均小于4.47%,RE值在1.50%~2.98%之间,结果见表3。
表 3 奥卡西平代谢产物单羟基卡马西平稳定性试验结果 (n=5)储存条件 理论浓度(μg/ml) 实测浓度(μg/ml) RSD(%) RE(%) 室温10 h 5 5.15±0.19 3.60 2.98 15 15.39±0.69 4.47 2.62 40 40.60±0.40 0.98 1.50 冻融3次 5 5.47±0.15 2.83 9.41 15 15.79±0.32 2.06 5.24 40 40.75±1.10 2.71 1.86 处理后36 h 5 5.39±0.27 5.09 7.74 15 15.66±0.58 3.70 4.39 40 39.46±1.80 4.57 −1.34 −20 ℃,30 d 5 5.16±0.23 4.39 3.19 15 14.62±0.39 2.64 −2.53 40 40.37±0.58 1.44 0.93 3.5.2 冻融稳定性试验
取低、中、高(5、15、40 μg/ml)3种浓度的QC样品各5份,测定即时血药浓度,并于−20 ℃冰箱中冷冻保存24 h后室温下解冻1 h后测定,反复冻融3次,求得RSD和RE值。经测定MHD血浆样品反复冻融3次后仍能保持稳定,RSD均小于2.83%,RE值在1.86%~9.41%之间,结果见表3。
3.5.3 处理后的血浆样品在自动进样器中储存的稳定性试验
取低、中、高3个浓度水平的血浆QC样品(5、15、40 μg/ml)各5份,测定即时血药浓度,然后放置在自动进样器内12 h、36 h后再次测定,求得RSD和RE值。经测定处理后的MHD血浆样品在进样器内放置36 h仍能保持稳定,RSD均小于5.09%,RE值在−1.34%~7.74%之间,结果见表3。
3.5.4 长期稳定性试验
取低、中、高3个浓度水平的血浆质控样品(5、15、40 μg/ml)各5份,测定即时血药浓度,并置于−20 ℃冰箱中冻存30 d后取出解冻后测定,求得RSD和RE值。经测定MHD血浆样品在−20 ℃冰箱中冻存30 d后仍能保持稳定,RSD均小于4.39%,RE值在−2.53%~3.19%之间,结果见表3。
4. 讨论
目前,有关MHD的检测方法的文献很多,其中,高效液相色谱法和高效液相色谱-质谱联用法都有报道,后者虽有灵敏度高、专属性强的特点,但其仪器昂贵,且需专业人员进行操作,很难在大部分的医疗机构普及[13-15]。另外,国内外文献报道中多使用固液萃取法或液液萃取法进行血样的前处理,但这种处理过程相对复杂、耗时,且经济成本较高[11, 16]。本方法采用甲醇沉淀蛋白进行血样的前处理,建立了HPLC法测定人血浆中MHD血药浓度的方法,整个过程操作简单、快速,样品分析时间较短,适用于临床大量样品的连续检测。
文献报道的流动相有乙腈-10 mmol/L磷酸二氢钾溶液(33∶67,V/V)[12]、水-乙腈(65∶35,V/V)[17]、水-甲醇-乙腈(64∶30∶6,V/V/V)[18]等。本方法采用了水-乙腈,按不同的配比进行试验,发现当水-乙腈的比例为80∶20时,色谱峰的峰形、出峰时间及分离度最佳。文献采用卡马西平[17]、苯巴比妥[19]和奥硝唑[20]等作为内标,本研究通过筛选发现奥硝唑的保留时间为6.1 min,不仅与MHD的保留时间相近,又能与其有很好的分离,且其性质稳定,满足内标的要求。
本实验建立的测定人血浆中OXC活性代谢产物MHD的HPLC法,MHD线性回归方程中的r=0.998 6,说明血药浓度在2~50 μg/ml范围内具有良好的线性关系,日内、日间精密度RSD均小于15%,准确度在95.57%~100.59%之间,MHD及内标的平均提取回收率在89.62%~98.76%之间。血浆样品的稳定性试验证明,在室温放置10 h、反复冻融、处理后放置进样器36 h以及低温保存30 d的情况下,样品未见明显降解,仍能保持稳定。本研究建立的HPLC法操作快速简单,精密度、回收率高,稳定性好,专属性强,不受血浆中内源性物质的干扰,结果准确可靠,且灵敏度高,适用于奥卡西平临床血药浓度的监测。
目前癫痫治疗主要以药物治疗为主,奥卡西平是第二代抗癫痫药物,我国诸多癫痫病专家也建议将其作为癫痫部分性发作和全面强直阵挛发作的首选药物[21]。但奥卡西平使用过程中可能出现瘙痒、荨麻疹、血管性水肿等超敏反应,包括Stevens Johnson综合征中毒性表皮坏死松解症[22]等,还可引起低钠血症、头晕、胃肠道不适等不良反应,有文献报道,其疗效及不良反应可能与血药浓度密切相关[23],因此开展奥卡西平血药浓度的测定,能提高药物治疗的疗效,同时可以有效避免或减少可能产生的药物不良反应,提高癫痫患者服药的依从性。本研究建立了测定人血浆中MHD血药浓度的方法,应用于临床,为临床个体化给药提供依据,值得临床推广使用。
-
表 1 利巴韦林脂质体冻干粉含量与包封率
项目 样品 No.1 No.2 No.3 平均值 含量(mg/g) 脂质体冻干粉末 9.4 8.6 9.3 9.1 包封率 /% 冻干前脂质体溶液 64.23 63.83 66.34 64.80 脂质体冻干粉复溶液 63.43 61.65 64.10 63.06 表 2 利巴韦林脂质体冻干复溶液粒径、PDI与电位
样品 No.1 No.2 No.3 平均值 粒径/PDI 电位 粒径/PDI 电位 粒径/PDI 电位 粒径 电位 冻干前溶液 148.3 nm/0.57 −45.4 mv 163.7 nm/0.63 −41.8 mv 172.6 nm/0.39 −40.5 mv 161.5 nm −42.6 mv 冻干复溶液 147.8 nm/0.58 −42.5 mv 161.8 nm/0.65 −38.6 mv 181.7 nm/0.41 −39.1 mv 163.8 nm −40.1 mv -
[1] KNOWLES S R, PHILLIPS E J, DRESSER L, et al. Common adverse events associated with the use of ribavirin for severe acute respiratory syndrome in Canada[J]. Clin Infect Dis,2003,37(8):1139-1142. doi: 10.1086/378304 [2] OMRANI A S, SAAD M M, BAIG K, et al. Ribavirin and interferon Alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study[J]. Lancet Infect Dis,2014,14(11):1090-1095. doi: 10.1016/S1473-3099(14)70920-X [3] CHENG V C, LAU S K, WOO P C, et al. Severe acute respira- tory syndrome coronavirus as an agent of emerging and reemerging infection[J]. Clin Microbiol Rev,2007,20(4):660-694. doi: 10.1128/CMR.00023-07 [4] DAILYMED. Formula, VIRAZOLE® (Ribavirin for Inhalation Solution, USP) PRESCRIBING INFORMATION [EB/OL]. (2019-5-1). https://dailymed.nlm.nih.gov. [5] 郦建娣. 利巴韦林气雾剂治疗76例小儿病毒性上呼吸道感染的临床研究[J]. 中国初级卫生保健, 2010, 24(5):81-82. doi: 10.3969/j.issn.1001-568X.2010.05.048 [6] 杜巧玲, 王安水. 利巴韦林气雾剂治疗小儿上呼吸道病毒感染60例观察[J]. 临床误诊误治, 2007, 20(4):25-26. doi: 10.3969/j.issn.1002-3429.2007.04.012 [7] 蔡清. 利巴韦林气雾剂治疗小儿上呼吸道病毒感染的多中心临床观察[J]. 上海医药, 2007, 28(9):413-415. doi: 10.3969/j.issn.1006-1533.2007.09.012 [8] 曹兰芳, 陈培丽, 王立波, 等. 利巴韦林气雾剂治疗小儿呼吸道病毒性感染的多中心临床观察[J]. 临床儿科杂志, 2006, 24(6):525-528. doi: 10.3969/j.issn.1000-3606.2006.06.036 [9] 屈哲, 李珊珊, 吕建军, 等. 脂质体药物作用于机体的病理表现和机制[C] 中国药物毒理学年会. 2012: 52. [10] 梁锦湄, 朱曼, 任浩洋. 多柔比星脂质体制剂与非脂质体制剂的不良反应/事件评价[J]. 中国新药杂志, 2013, 22(9):1100-1104. [11] THE UNITED STATES PHARMACOPEIAL CONVENTION. USP 40, USA: United Stated Pharmacopeial Convention[M], 2017: 5995-5996. [12] 高蕾, 马玉楠, 王亚敏, 等. 吸入粉雾剂给药装置浅析及其综合评价[J]. 中国新药杂志, 2019, 28(3):335-337. -