留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

花椒生物碱富集纯化工艺优化及其成分分析

杨贺英 罗彩萍 彭婷 梁文仪 沈颂章 苏娟

张警文, 夏天爽, 蒋益萍, 辛海量. 动物药抗骨质疏松研究概况[J]. 药学实践与服务, 2023, 41(1): 8-13. doi: 10.12206/j.issn.2097-2024.202101032
引用本文: 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟. 花椒生物碱富集纯化工艺优化及其成分分析[J]. 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
ZHANG Jingwen, XIA Tianshuang, JIANG Yiping, XIN Hailiang. Research overview of anti-osteoporosis effects of traditional animal medicines[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(1): 8-13. doi: 10.12206/j.issn.2097-2024.202101032
Citation: YANG Heying, LUO Caiping, PENG Ting, LIANG Wenyi, SHEN Songzhang, SU Juan. Optimization of purification process and component analysis of alkaloids from Zanthoxylum bungeanum Maxim[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066

花椒生物碱富集纯化工艺优化及其成分分析

doi: 10.12206/j.issn.2097-2024.202404066
基金项目: 国家自然科学基金(82304813);大学生创新能力培养项目(FH2023095)
详细信息
    作者简介:

    杨贺英,硕士研究生,研究方向:中药活性成分,Email: yhy991231_zd@163.com

    通讯作者: 苏 娟,博士,副教授,硕士生导师,研究方向:中药活性成分,Email: juansu_2008@126.com

Optimization of purification process and component analysis of alkaloids from Zanthoxylum bungeanum Maxim

  • 摘要:   目的  优化大孔树脂富集纯化花椒生物碱的工艺条件,并进行成分分析。   方法  单因素实验与正交试验相结合,以羟基-α-山椒素(HAS)、羟基-β-山椒素(HBS)含量为指标,确定最佳工艺参数。利用超高效液相色谱-四级杆-飞行时间质谱(UPLC-Q-TOF-MSE)技术定性分析生物碱类化学成分。   结果  最佳条件为选用三菱HP-20型大孔树脂,上样液浓度为0.2 g生药/ml,生药量与树脂体积比为1 g∶2.5 ml,树脂柱径高比为1∶7,以每小时4倍柱体积(BV)的速率动态吸附,静置1 h;20%乙醇2 BV除杂;80%乙醇5 BV洗脱。HAS、HBS的含量分别为4.71%、1.02%,共鉴定出20种生物碱。   结论  该方法稳定可行,得到高纯度多种类的花椒生物碱,可用于花椒生物碱的富集纯化。
  • 随着进入老龄化社会,骨质疏松症(osteoporosis, OP)在老年人群中发病率逐年升高,因其发病率高、起病隐匿,严重时往往并发髋部、椎体等部位的脆性骨折,严重影响老年人生活质量和预期寿命[1]。中医药在防治骨质疏松方面有着悠久的历史,通过辨证论治达到对患者的个性化治疗,在骨质疏松症及其并发症的治疗中有着独特优势。骨质疏松症在中医上属“骨痿”范畴,动物药为“血肉有情之品”,性猛力专,且多具有补肝益肾、健脾益气、活血通络等功效,具有良好的抗骨质疏松作用[2]。现就临床常用动物药抗骨质疏松作用进行综述,供学界探讨。

    海马为海龙科线纹海马Hippocampus kelloggi Jordan et Snyder、刺海马 Hippocampus histrix Kaup、大海马 Hippocampus kuda Bleeker、三斑海马 Hippocampus trimaculatus Leach 或小海马(海蛆)Hippocampus ja ponicus Kaup 的干燥体,味甘、咸,性温。归肝、肾经。具有温肾壮阳,散结消肿的功效[3]。海马富含甾体类化合物、蛋白质、脂肪酸、氨基酸、微量元素等多种生物活性成分[4-5]。陈璐[4]通过构建海龙科动物化学成分数据库,发现海龙科动物含胆甾烯醇、麦角甾醇、雄甾酮等36种甾体激素类成分及其前体物质。甾体激素类成分普遍具有肾上腺皮质激素样作用和性激素样作用,是海马发挥温肾壮阳,散结消肿作用的主要物质基础。

    海马抗骨质疏松的药理研究主要集中在其性激素样作用方面。研究发现[6],海马可提高去睾丸大鼠血清睾酮水平及精囊指数,改善去睾丸大鼠前列腺和精囊萎缩情况,并改善雌二醇诱导肾阳虚雄性小鼠的肾阳虚症状。老年男性因性腺功能衰退,雄激素缺乏,骨质疏松发病率明显提高,老年骨质疏松男性患者可通过雄激素补充剂的摄入来增加其骨密度。研究表明,雄烯二酮和雄甾酮可显著促进成骨细胞增殖,增加碱性磷酸酶(ALP)活性和骨钙素含量[7]。因此富含雄烯二酮、雄甾酮、雄甾醇等弱雄激素样雄激素的海马具有治疗男性老年性骨质疏松症的潜在价值。大海马乙醇提取物水部位具有促进成骨细胞增殖分化,促进成骨细胞矿化结节的形成,抑制破骨细胞抗酒石酸酸性磷酸酶(TRAP)活性的作用[8],显示出良好的抗骨质疏松作用。

    海龙为海龙科刁海龙 Solenognathus hardwickii(Gy)、拟海龙 Syngnathoides biaculeatus (Bloch) 或尖海龙Syngnathus acus Linnaeus 的干燥体。味甘、咸,性温。归肝、肾经。具有温肾壮阳,散结消肿的功效[3]。海龙主要含有甾体类化合物、核苷酸类、氨基酸等成分,具有性激素样作用、抗肿瘤、抗老年痴呆、抗氧化等药理作用。

    海龙主要通过性激素样作用防治骨质疏松。众所周知,女性骨量随着绝经后雌激素分泌的骤减显著下降。研究发现,海龙可增加子宫重量,并显著提高去卵巢(OVX)大鼠骨钙含量、骨灰重及骨断裂力,具有治疗绝经后骨质疏松症的潜在价值[9]。此外,男性骨质疏松症的发生与雄性激素也密切相关。临床研究发现,睾酮水平直接影响成年男性峰值骨量的高低,睾酮水平与男性骨质疏松性脆性骨折发病率成反比[10-11]。张朝辉等发现[12],5种海龙的乙 醇提取物均可增加环磷酰胺诱导雄性性腺功能减退小鼠的性腺及副性腺器官重量,提高小鼠精子数目及活力,显示出明显的雄激素样作用,具有治疗男性雄激素缺失相关骨质疏松症的潜在价值。

    牡蛎为牡蛎科长牡蛎Ostrea gigas Thimberg、大连湾牡蛎 Ostrea talienwhanensis Crosse 或近江牡蛎 Ostrea rivularis Gould的贝壳。味咸,性微寒;归肝、胆肾经,具有重镇安神,潜阳补阴,软坚散结的功效;煅牡蛎主收敛固涩[3]。牡蛎壳由碳酸钙、有机物及少量其他物质组成,其中碳酸钙含量大于93%[13],可有效改善膳食钙缺乏引起的骨量减少及骨质疏松。

    摄入牡蛎壳粉可补充机体所需钙质,改善骨代谢指标发挥其抗骨质疏松作用。研究发现[14],添加牡蛎碎壳的钙强化饮食可提高OVX大鼠的血清总钙、磷含量,增加胫骨重量,显示出良好的抗骨质疏松作用。经纳米化和锌活化的牡蛎壳粉,其钙、磷溶解度和生物利用度均得到极大的提高,在增强OVX大鼠骨强度和改善其骨小梁结构方面表现出更好的效果,在促进骨形成和减少骨吸收标志物方面表现出更高的效率[15]。以牡蛎壳为主要钙磷来源的龙牡壮骨颗粒作为治疗小儿因钙磷缺乏引起的佝偻病、骨软骨病的经典复方制剂有着良好的临床效果[16]。研究发现,龙牡壮骨颗粒可显著提高糖皮质激素性骨质疏松大鼠体重,调节血清骨代谢指标,并增加股骨皮质密度及松质骨密度,显示出良好的抗骨质疏松效果[17]

    此外,牡蛎肉中含有多种氨基酸、糖原、微量元素及小分子化合物[18],在抗骨质疏松领域也有着广泛的应用。研究发现,牡蛎肉提取物可通过清除活性氧(ROS)来有效抑制破骨细胞形成,同时激活Wnt/β-Catenin信号传导途径促进成骨细胞分化,减轻OVX小鼠骨丢失,具有抗骨质疏松的潜在作用[19-21]

    蛤蟆油为蛙科中国林蛙 Rana temporaria chensinensis David 雌蛙的输卵管干燥体。味甘、咸,性平;归肺、肾经,具有补肾益精,养阴润肺的功效[3]。蛤蟆油含有大量生物活性成分,包括蛋白质、氨基酸、多肽、类固醇、脂肪酸核苷和矿物质等[22]。蛤蟆油富含雌二醇、孕酮、睾酮、雄甾酮等性激素类成分,其中,雌二醇含量最高,为0.87%[23]

    蛤蟆油主要通过发挥雌激素样作用及抗氧化作用防治骨质疏松[22]。研究表明,以蛤蟆油为主要成分的益妇宁软胶囊可提高OVX大鼠血清雌激素水平和雌激素受体的表达,增加性器官重量和骨钙、镁等矿物质含量及骨密度[24-25],具有良好的抗绝经后骨质疏松症作用。研究发现,蛤蟆油对D-半乳糖诱导的小鼠氧化损伤表现出良好的抗氧化应激损伤作用,同时对过氧化氢损伤成骨细胞也具有保护作用[26-27],在氧化损伤所致的老年性骨质疏松症中有进一步的研究价值。

    紫河车为健康产妇的胎盘Placenta Hominis的干燥体。味甘、咸,性温;归心、肺、肾经,具有温肾补精,益气养血的功效[3]。猪、羊、鹿、牛等其他哺乳动物的胎盘亦可用作药用,作为紫河车的替代品使用,功效与紫河车相似。紫河车富含激素、免疫球蛋白、氨基酸、细胞因子、多肽、胶原蛋白、酶、微量元素与维生素等多种生物活性成分[28],具有调节内分泌激素分泌、延缓机体衰老等作用。

    紫河车抗骨质疏松作用主要表现在调节内分泌激素分泌、性激素样作用以及抗氧化等方面。日本学者发现[29],人胎盘素可降低OVX大鼠的甲状腺素(T4)水平,调节骨代谢紊乱,从而增加去卵巢大鼠骨小梁数目和厚度,改善OVX大鼠骨丢失。猪胎盘提取物及其主要氨基酸成分精氨酸对OVX小鼠可改善小鼠阴道萎缩,提高血清17β-雌二醇水平和ALP活性,改善骨小梁参数,促进细胞增殖以及雌激素受体β mRNA的表达,表现出明显的雌激素样作用[30]。研究者还对猪胎盘水解产物抗氧化机制进行了相关研究[31-32],发现猪胎盘水解产物可以通过调控细胞内钙离子浓度来发挥其抗氧化和对抗内质网应激作用,以促进成骨细胞的分化。

    鹿茸为鹿科动物梅花鹿Cervus Nippon Temminck或马鹿Cervus elaphus Linnaeus的雄鹿未骨化密生茸毛的幼角。味甘、咸,性温;归肾、肝经。具有壮肾阳,益精血,强筋骨,调冲任,托疮毒的功效[3],在骨质疏松症的治疗中有着悠久的应用历史。鹿茸富含氨基酸、蛋白质、多肽、核苷酸、甾体类化合物、多糖、脂类等多种生物活性成分[33],具有调节机体免疫功能、抗氧化、性激素样作用、抗疲劳等多种药理作用。

    鹿茸主要通过其性激素样作用与抗氧化应激损伤发挥其抗骨质疏松作用。鹿茸多肽能够明显改善去卵巢大鼠因雌激素缺乏所致的骨密度下降,同时改善血清骨代谢指标,增加其子宫重量和血清雌二醇水平,显示出明显的雌激素样作用。研究发现[34],鹿茸多肽可通过抑制肿瘤坏死因子-α(TNF-α)介导的核转录因子-κB(NF-κB)信号活性及其亚基P65的表达,保护成骨细胞免受炎症与氧化应激损伤,促进成骨细胞分化并抑制破骨细胞形成,兼具抗骨吸收和促进骨形成作用,有望成为类风湿性关节炎和骨质疏松症等溶骨性疾病治疗的替代药物。鹿茸多肽还可以通过促进胰岛素受体及其下游底物IRS-1、Akt和ERK的磷酸化来激活胰岛素信号通路,从而促进成骨细胞的体外增殖、分化和矿化[35],是治疗胰岛素信号传导障碍导致糖尿病相关骨质疏松症的潜在药物。

    龟甲为龟科动物乌龟Chinemys reevesii 的背甲及腹甲。味咸、甘,性微寒,归肝、肾、心经。具有滋阴潜阳,益肾强骨,养血补心的功效[3]。龟甲成分复杂,主要含有氨基酸、蛋白质和多种微量元素,具有抗氧化、抑制细胞凋亡、提高免疫力等作用。

    龟甲主要通过抑制炎症微环境和促进成骨相关基因表达发挥抗骨质疏松作用。研究表明,龟甲水提液可通过调节NF-κB通路,降低NF-κB p105和白介素-6(IL-6)mRNA的表达,抑制炎症微环境,从而促进成骨细胞的增殖分化。龟甲胶可通过激活Akt和ERK信号通路,显著增加成骨相关基因RUNX-2、骨钙素和骨桥蛋白的表达,促进成骨细胞的增殖和矿化、增强ALP活性,可促进斑马鱼脊椎骨发育,改善大鼠颅骨缺损[36]

    土鳖虫为鳖蠊科昆虫地鳖Eupolyphaga sinensis Walker或冀地瞥Steleophaga plancyi的雌虫干燥体。味咸,性寒;有小毒;归肝经。具有破血逐瘀,接骨续筋的功效[3]。土鳖虫含有多种活性蛋白和多肽类成分,包含8种人体必需氨基酸以及尿囊素及尿嘧啶等生物碱和钙、镁等无机成分[37]

    土鳖虫主要通过抗氧化、免疫调节以及调节血液流变学发挥抗骨质疏松作用。土鳖虫提取物及地鳖多肽均能通过调控抗氧化酶基因的表达,提高抗氧化酶活力,减少炎症因子的产生,提高细胞和动物的抗氧化应激能力[38-40],在氧化应激损伤为主导的老年性骨质疏松中具有潜在的应用价值。研究发现[41],土鳖虫冻干粉可增强环磷酰胺诱导免疫抑制小鼠的机体抗氧化能力及免疫力,同时改善环磷酰胺诱导的小鼠骨丢失。土鳖虫提取物可显著上调成骨细胞中血管内皮生长因子(VEGF)和骨形态发生蛋白2(BMP2)的蛋白表达[42-43],促进成骨细胞分化。此外,土鳖虫活性肽具有良好的抗纤溶效果,可显著改善急性血瘀证大鼠血液流变学指标[44],在微循环障碍所致的骨质疏松症中具有潜在的应用价值。

    地龙为钜蚓科动物参环毛蚓Pheretima aspergillum(E.Perrier)、通俗环毛蚓Pheretima vu1garis Chen、威廉环毛蚓Pheretima guillelmi(Michaelsen)或栉盲环毛蚓Pheretima pectinifera Michaelsen的干燥体。味咸,性寒,归肝、肾、脾经。具有清热定惊,通络,平喘,利尿的功效[3]。地龙富含多种氨基酸、核苷酸、脂类、纤溶酶及微量元素等多种生物活性成分[45-46],具有抑制炎症反应、抗氧化、改善血液流变学等多种药理作用,在骨质疏松症尤其是骨质疏松伴脆性骨折的治疗中有较多应用。研究表明,地龙可通过促进血管生成和抗氧化途径发挥抗骨质疏松作用,可显著促进成骨细胞增殖、分化及细胞外基质矿化,抑制破骨细胞分化,增高骨密度,展现出良好的抗骨质疏松活性[47-48]。蚓激酶和蚯蚓素等地龙活性成分可抑制血栓形成,促进血管新生,改善血液流变学。同时地龙提取物可清除氧自由基,提高抗氧化酶活力并减轻脂质过氧化反应,提高机体抗氧化能力,提高骨折大鼠骨骼BMP2和VEGF蛋白表达,促进骨痂形成和成骨细胞分化[49]。此外,以补阳还五汤等益气活血方剂为代表的地龙复方制剂在骨质疏松伴脆性骨折的治疗中有着广泛的应用。临床研究发现,补阳还五汤可以通过调节骨代谢增加骨质疏松患者骨密度,提高体内微血管密度和血流量,减少细胞氧化应激损伤,促进骨折愈合和骨骼新生[50-51]。因此,地龙抗骨质疏松机制可能与促进血管新生和抗氧化相关,具有进一步的研究价值。

    除上述者外,还有一些动物类药,如虎骨、豹骨等同样具有抗骨质疏松作用。然而,为加强野生动物保护,研究者对虎骨、豹骨等骨骼类药物的研究转向羊骨、牛骨、猪骨等替代品的研究,其中以动物骨胶原肽的研究最多。牛骨、猪骨等骨骼中提取的骨胶原肽在体内外实验中均显示出不同程度的抗氧化和促进成骨细胞增殖分化的能力[52-53]。研究发现[52],羊骨胶原肽可增加OVX大鼠骨密度,改善股骨微观结构,并提高机体抗氧化能力。从家畜骨骼中提取的骨胶原肽因其来源广泛,有望成为防治骨质疏松症的保健食品或药品。全蝎、蜈蚣、水蛭等虫类药材均具有活血化瘀的功效,在临床治疗中多用于骨质疏松伴骨折的患者,具有促进骨折愈合的作用,其抗骨质疏松作用机制多与改善骨骼血液微循环,以及抗氧化相关。

    现就各动物药抗骨质疏松作用机制进行梳理,以期为动物药在抗骨质疏松的治疗和研究提供参考,见表1

    表  1  动物药抗骨质疏松作用比较
    名称功效主要成分作用机制
    补益类
    海马温肾壮阳,散结消肿甾体类、多肽、氨基酸性激素样作用,改善性腺功能减退;促进成骨细胞增殖[6]
    海龙温肾壮阳,散结消肿甾体类、核苷酸、氨基酸性激素样作用,改善性腺功能减退[912]
    牡蛎牡蛎壳:重镇安神,潜阳补阴,软坚散结;
    牡蛎肉:养血安神,软坚消肿,
    牡蛎壳:碳酸钙;
    牡蛎肉:氨基酸、糖原、多肽
    牡蛎壳:补充钙、磷、镁等矿物质,减少骨矿物质流失[14]
    牡蛎肉:降低氧化应激水平,抑制破骨细胞吸收并促进成骨细胞分化[19]
    蛤蟆油补肾益精,养阴润肺类固醇、多肽、核苷酸、氨基酸雌激素样作用,具有抗绝经后骨质疏松作用[24-25];抗氧化应激损伤[26-27]
    紫河车益气养血,补肾益精类固醇、多肽、氨基酸、细胞因子调节甲状腺素、雌二醇等内分泌激素,改善骨代谢[29];抗氧化损伤和内质网损伤,促进成骨细胞分化[31-32]
    鹿茸壮肾阳,益精血,强筋骨,调冲任,托疮毒甾醇、多肽、氨基酸、无机盐雌激素样作用,减缓去卵巢动物骨丢失[34];抑制炎症反应和氧化应激损伤,促进成骨细胞分化并抑制破骨细胞活力[35]
    龟甲滋阴潜阳,益肾强骨,养血补心,固经止崩骨胶原、氨基酸、碳酸钙抑制炎症微环境,并促进成骨相关基因表达[36]
    牛羊骨祛风通络,强筋健骨无机盐、骨胶原肽抑制破骨细胞形成,并促进成骨细胞增殖,促进无机盐在骨骼沉积[52-53];抗氧化[52]
    活血化瘀类
    土鳖虫破血逐瘀,续筋接骨多肽、氨基酸、无机盐提高抗氧化应激能力并促进骨形成相关蛋白表达,促进骨形成[38-40];改善骨骼局部血供,促进骨形成[42- 43]
    地龙清热定惊,通络,平喘,
    利尿
    蚯蚓素、多肽、脂肪酸提高机体抗氧化能力,促进成骨细胞增殖并抑制破骨细胞分化[47-48];提高体内微血管密度和血流量,促进骨骼新生[50-51]
    下载: 导出CSV 
    | 显示表格

    动物药的研究与开发目前主要受到资源短缺方面的限制。由于近年来生态环境破坏,动物栖息地面积大幅缩小,动物族群数量和规模均大幅下降,部分野生动物濒危灭绝,严重制约了药用动物的进一步研究与发展。随着养殖驯化技术的成熟,梅花鹿、蚯蚓、牡蛎、东北林蛙等大宗动物药的资源短缺问题已得到缓解[54-55]。但由于部分动物受限于生长环境及养殖驯化技术不成熟,海马、海龙等药用动物仍以野生来源为主,资源短缺问题严重[56]

    此外,动物药质量参差不齐,质量标准未统一,也制约了药用动物的进一步开发利用。由于动物药价格昂贵,市场上伪品众多,品种混乱,掺假增重现象严重。不同种属动物有效成分含量差异较大,混淆品与正品相比,往往不能取得良好的临床效果[57-58]。此外,由于动物药富含蛋白质等有机物,生产加工及存储过程中容易受到细菌、真菌等微生物影响而变质,给临床疗效带来不利影响[59]

    动物药的临床用药多为复方制剂,且动物药成分复杂,难以确定其中的有效成分。囿于动物药成分的复杂性,目前动物药抗骨质疏松作用机制的研究主要集中于提取物,对于单一活性成分的抗骨质疏松作用机制研究仍然较少,其抗骨质疏松作用的深层机制仍有待阐明。目前动物药抗骨质疏松的研究主要集中于体外实验和动物实验,缺乏大样本的临床研究,也限制了该项作用研究的临床转化。

    动物药作为天然药物的重要组成部分,药用历史悠久。中医认为动物药属“血肉有情之品”,性猛力专,可以补肝益肾、健脾益气、活血化瘀。现有研究表明动物药及其活性成分主要通过发挥性激素样作用、抗氧化损伤、调节激素分泌以及改善骨骼微循环等多种途径发挥抗骨质疏松作用。并且,动物药中的多种活性成分在发挥抗骨质疏松作用的同时,具有减轻炎症反应、延缓衰老、改善微循环等作用,而这些作用是抑制骨吸收药物、促进骨形成药物、基础补充剂等单一作用途径的抗骨质疏松药所不具备的。

    针对目前动物药资源严重稀缺和药材质量控制不完善的现状,其发展方向应着重围绕人工养殖驯化技术的发展、珍稀动物药替代品的发掘、常见驯养动物品种药用价值的深入研究以及药材质量标准的建立与完善等几个方面开展。针对动物药有效成分复杂的事实,动物药抗骨质疏松作用的研究应进一步加强对其抗骨质疏松活性成分的鉴定和筛选,提高有效成分的提取分离和纯化技术。同时,加强动物药抗骨质疏松作用活性成分的人工合成和结构优化,使其更好地为广大骨质疏松症患者服务。相信随着动物药抗骨质疏松作用研究的逐步深入,动物药将在现代中医药的发展中发挥更大的作用。

  • 图  1  供试品溶液的HPLC图

    1.羟基-α-山椒素;2.羟基-β-山椒素

    图  2  三菱HP-20型大孔树脂动态吸附泄漏曲线

    图  3  不同上样条件对HAS、HBS总得率的影响

    A.上样液浓度;B树脂柱径高比;C吸附流速*P<0.05,**P<0.01,与白色组比较。

    图  4  正离子模式下花椒生物碱BPI图

    表  1  除杂、洗脱条件正交试验因素水平表

    条件 水平 因素
    A因素溶剂 B因素体积(BV) C因素流速(BV/h)
    除杂 1 蒸馏水 1 2
    2 10%乙醇 2 3
    3 20%乙醇 3 5
    洗脱 1 55%乙醇 3 2
    2 70%乙醇 5 3
    3 80%乙醇 8 5
    下载: 导出CSV

    表  2  不同类型树脂对HAS、HBS总得率的影响(n=3)

    树脂类型 HAS、HBS
    总浓度(mg/ml)
    HAS、HBS
    总含量(%)
    $ \bar{X} $±SD(%)
    APS-17 2.42 4.06 4.06±2.17
    NKA-9 2.08 3.50 3.50±1.76
    宝恩HP-20 3.68 6.19 6.19±1.09
    AB-8 3.58 6.02 6.02±1.28
    HPD-400 3.59 6.03 6.03±0.98
    三菱HP-20 4.10 6.89 6.89±0.62
    下载: 导出CSV

    表  3  除杂条件L9(33)正交设计及结果

    编号 因素 总得率(%)
    除杂溶剂(A) 除杂体积(B) 除杂流速(C)
    1 1 1 1 7.87
    2 1 2 2 9.09
    3 1 3 3 9.31
    4 2 1 2 10.33
    5 2 2 3 10.42
    6 2 3 1 10.67
    7 3 1 3 11.82
    8 3 2 1 10.73
    9 3 3 2 11.66
    k1 8.75 10.06 9.71
    k2 10.44 10.07 10.34
    k3 11.37 10.48 10.52
    R 2.62 0.64 0.81
    下载: 导出CSV

    表  4  洗脱条件L9(33)正交设计及结果

    编号 因素 总得率
    (%)
    洗脱溶剂(A) 洗脱体积(B) 洗脱流速(C)
    1 1 1 1 2.55
    2 1 2 2 5.38
    3 1 3 3 7.15
    4 2 1 2 5.75
    5 2 2 3 8.11
    6 2 3 1 9.57
    7 3 1 3 9.20
    8 3 2 1 8.28
    9 3 3 2 6.36
    k1 5.03 5.83 6.80
    k2 7.81 7.26 5.83
    k3 7.95 7.69 8.15
    R 2.92 1.86 2.32
    下载: 导出CSV

    表  5  最佳工艺验证结果

    编号 得膏率
    (%)
    富集前
    总含量(%)
    富集后
    总含量(%)
    富集后
    总含量RSD(%)
    1 6.88 0.82 5.73 0.87
    2 6.91 0.81 5.72 0.87
    3 6.95 0.82 5.64 0.87
    下载: 导出CSV

    表  6  正离子模式下花椒生物碱类成分碎片离子及鉴定结果

    峰号 保留时
    间(t/min)
    化合物 分子式 离子模式 理论值
    m/z
    实测值
    m/z
    误差
    (ppm)
    碎片离子
    m/z
    参考
    文献
    1 4.716 木兰花碱 C20H24NO4+ [M]+ 342.170 5 342.169 0 −4.38 342.169 0[M]+, 297.110 6[M-C2H7N]+, 282.088 2[M-C2H7N-CH3]+, 265.085 2[C17H13O3]+, 222.065 3[C15H10O2]+, 191.084 6[C15H11]+, 194.071 4[C14H10O]+, 165.069 3[C13H9]+ [17]
    2 5.483 ZP-amide D C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18]
    3 5.877 ZP-amide E C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 320.182 5[M+Na]+ [18]
    4 6.043 ZP-amide A C16H25NO4 [M+Na]+ 318.168 1 318.168 5 1.26 613.338 5[2M+Na]+, 319.169 2[M+H+Na]+, 318.168 5[M+Na]+, 296.183 8[M+H]+, 278.175 6[M-OH]+ [18-19]
    5 6.724 ZP-amide B C16H25NO4 [M+Na]+ 318.168 1 318.168 5 1.26 613.338 5[2M+Na]+, 319.169 2[M+H+Na]+, 318.168 5[M+Na]+, 296.183 8[M+H]+, 278.175 6[M-OH]+ [18-19]
    6 6.793 ZP-amide C C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18, 20]
    7 7.222 ZP-amide L C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18]
    8 7.902 ZP-amide K C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18]
    9 12.427 ZP-amide N C18H31NO4 [M+Na]+ 348.215 1 348.213 0 −6.03 349.217 7[M+H+Na]+, 348.213 0[M+Na]+ [18]
    10 16.168 茵芋碱 C14H13NO4 [M+H]+ 260.092 3 260.092 3 0.00 229.037 0[M-2CH3]+, 227.056 6[C13H9NO3]+, 202.046 8[C11H8NO3]+, 199.062 5[C12H9NO2], 184.037 9[C11H6NO2]+, 156.043 4[C10H6NO]+, 77.037 7[C6H5]+ [21]
    11 22.312 羟基-ε-山椒素 C16H25NO2 [M+Na]+ 286.178 3 286.178 3 0.00 302.171 4[M+K]+, 286.178 3[M+Na]+, 246.184 4[M-OH]+ [22]
    12* 22.701 羟基-α
    山椒素
    C16H25NO2 [M+Na]+ 286.178 3 286.178 3 0.00 287.179 5[M+H+Na]+, 286.178 3[M+Na]+, 246.184 4[M-OH]+ [23]
    13* 23.113 羟基-β
    山椒素
    C16H25NO2 [M+Na]+ 286.178 3 286.178 3 0.00 287.179 5[M+H+Na]+, 286.178 3[M+Na]+, 246.187 5[M-OH]+ [23]
    14 23.605 Zanthoamides A C18H27NO4 [M-OH]+ 304.191 3 304.191 3 0.00 345.184 4[M+H+Na]+, 344.181 6[M+Na]+ [24]
    15 26.156 羟基-γ−山椒素 C18H27NO2 [M+Na]+ 312.193 9 312.193 5 −1.28 601.398 7[2M+Na]+, 313.164 8[M+H+Na]+, 312.193 5[M+Na]+, 272.200 9[M-OH]+ [22]
    16 26.379 羟基-γ
    异山椒素
    C18H27NO2 [M+Na]+ 312.193 9 312.193 5 −1.28 601.398 7[2M+Na]+, 313.164 8[M+H+Na]+, 312.193 5[M+Na]+, 272.200 9[M-OH]+ [22]
    17 26.786 bungeanool C18H29NO2 [M-OH]+ 274.217 1 274.216 5 −2.19 565.363 6[2M-OH]+, 314.210 3[M+Na]+ [15]
    18 26.957 isobungeanool C18H29NO2 [M-OH]+ 274.217 1 274.216 5 −2.19 565.363 6[2M-OH]+, 314.210 3[M+Na]+ [15]
    19 27.586 α−山椒素 C16H25NO [M+H]+ 248.201 4 248.201 2 −0.81 286.178 3[M+K]+ [23]
    20 29.068 四氢花椒素 C18H33NO2 [M+H]+ 296.259 0 296.257 7 −4.39 318.237 8[M+Na]+, 279.137 4[M+H-OH]+ [25]
    *:为与对照品比对的化合物。
    下载: 导出CSV
  • [1] 国家药典委员会. 中华人民共和国药典(一部) 2020年版[S]. 北京: 中国医药科技出版社, 2020: 169-171.
    [2] SHAN C, SHU C, NIE W, et al. RETRACTED ARTICLE: Anti-aging effect of polysaccharides from the peel of Zanthoxylum schinifolium Sieb. et Zucc. on the nematode Caenorhabditis elegans[J]. Acta Agric Scand Sect B, 2022, 72:476-484.
    [3] 杨成峻, 陈明舜, 刘成梅, 等. 花椒果皮多酚类成分鉴定及降血糖活性[J]. 食品科学, 2023, 44(2):271-278.
    [4] LIANG W Y, YANG H Y, LEI H X, et al. Phytochemistry and health functions of Zanthoxylum bungeanum Maxim and Zanthoxylum schinifolium Sieb. et Zucc as pharma-foods: a systematic review[J]. Trends Food Sci Technol, 2024, 143:104225. doi:  10.1016/j.jpgs.2023.104225
    [5] ZHANG B C, LUO S H, WU S S, et al. Anti-inflammatory and anti-osteoclastogenesis activities of different kinds of Zanthoxylum bungeanum seed oil in vitro[J]. Chem Biodivers, 2023, 20(5):e202201157. doi:  10.1002/cbdv.202201157
    [6] 叶倩女, 石晓峰, 杨军丽. 花椒属植物中酰胺类成分的结构与功能研究进展[J]. 中国中药杂志, 2023, 48(9):2406-2418.
    [7] 吴蓉蓉, 田书璎, 陈勇, 等. 青花椒生物碱类化学成分及生物活性研究[J]. 中草药, 2019, 50(6):1305-1309.
    [8] 孟亚琴, 王雅, 郭涛. 花椒生物碱活性成分研究现状[J]. 中国食品工业, 2022,(10):110-113.
    [9] PENG W, HE C X, LI R L, et al. Zanthoxylum bungeanum amides ameliorates nonalcoholic fatty liver via regulating gut microbiota and activating AMPK/Nrf2 signaling[J]. J Ethnopharmacol, 2024, 318(Pt A): 116848.
    [10] 胡迎丽, 夏璐, 雷福厚. 大孔吸附树脂在天然产物的分离纯化中的应用进展[J]. 化工技术与开发, 2021, 50(11):29-34.
    [11] 刘岩, 陈伟豪, 亢迪, 等. 大孔树脂分离富集生物碱类成分研究进展[J]. 中草药, 2020, 51(6):1650-1659.
    [12] 骆党委, 叶静, 黄雅燕, 等. AB-8大孔吸附树脂精制芦柑皮总黄酮及黄酮类化合物的分离[J]. 食品科学, 2014, 35(6):30-35.
    [13] 蔡淑慧, 丁梦磊, 甘逸夫, 等. 附子总生物碱纯化工艺优化[J]. 中成药, 2023, 45(9):3023-3028.
    [14] 贾凯, 刘俊, 耿晓桐, 等. 细叶十大功劳叶中总生物碱大孔树脂纯化及抗氧化研究[J]. 广西植物, 2023, 43(1):183-189.
    [15] ZHANG L L, ZHAO L, WANG H Y, et al. The relationship between alkylamide compound content and pungency intensity of Zanthoxylum bungeanum based on sensory evaluation and ultra-performance liquid chromatography-mass spectrometry/mass spectrometry(UPLC-MS/MS)analysis[J]. J Sci Food Agric, 2019, 99(4):1475-1483. doi:  10.1002/jsfa.9319
    [16] LIU Y, MENG X, SUN L, et al. Protective effects of hydroxy-α-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl3-induced Alzheimer’s disease-like mice via Nrf2/HO-1 signaling pathways[J]. Eur J Pharmacol, 2022, 914:174691. doi:  10.1016/j.ejphar.2021.174691
    [17] HUANG A H, CHI Y G, LIU J W, et al. Profiling and pharmacokinetic studies of alkaloids in rats after oral administration of Zanthoxylum nitidum decoction by UPLC-Q-TOF-MS/MS and HPLC-MS/MS[J]. Molecules, 2019, 24(3):585. doi:  10.3390/molecules24030585
    [18] CHEN J H, ZHANG T, ZHANG Q B, et al. Isobutylhydroxyamides from Sichuan pepper and their protective activity on PC12 cells damaged by corticosterone[J]. J Agric Food Chem, 2018, 66(13):3408-3416. doi:  10.1021/acs.jafc.7b06057
    [19] HATANO T, INADA K, OGAWA T O, et al. Aliphatic acid amides of the fruits of Zanthoxylum piperitum[J]. Phytochemistry, 2004, 65(18):2599-2604. doi:  10.1016/j.phytochem.2004.08.018
    [20] WANG Y, LIAO Z B, CAO R, et al. Isolation, structural characterization and neurotrophic activity of alkylamides from Zanthoxylum bungeanum[J]. Nat Prod Commun, 2017, 12(7): 1934578X1701200.
    [21] HUANG A H, XU H, ZHAN R T, et al. Metabolic profile of skimmianine in rats determined by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. Molecules, 2017, 22(4):489. doi:  10.3390/molecules22040489
    [22] BADER M, STARK T D, DAWID C, et al. All-trans-configuration in Zanthoxylum alkylamides swaps the tingling with a numbing sensation and diminishes salivation[J]. J Agric Food Chem, 2014, 62(12):2479-2488. doi:  10.1021/jf500399w
    [23] LI W L, WU Y, LIU Y S, et al. Chemical profiles and screening of potential α-glucosidase inhibitors from Sichuan pepper using ultra-filtration combined with UHPLC-Q-TOF[J]. Ind Crops Prod, 2020, 143:111874. doi:  10.1016/j.indcrop.2019.111874
    [24] WANG Y, LI C H, LUO B, et al. Isobutylhydroxyamides from Zanthoxylum bungeanum and their suppression of NO production[J]. Molecules, 2016, 21(10):1416. doi:  10.3390/molecules21101416
    [25] XIONG Q B, SHI D W, YAMAMOTO H, et al. Alkylamides from pericarps of Zanthoxylum bungeanum[J]. Phytochemistry, 1997, 46(6):1123-1126. doi:  10.1016/S0031-9422(97)84398-1
  • [1] 赵全公, 王国坤, 徐志云.  虾青素通过激活Nrf2/HO-1通路抑制瓣膜间质细胞钙化 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202412057
    [2] 舒飞, 孙蕊, 宋凯, 张元林, 闫家铭, 舒丽芯.  粉-液双室袋产品的综合评价 . 药学实践与服务, 2025, 43(2): 92-96. doi: 10.12206/j.issn.2097-2024.202312009
    [3] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408053
    [4] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [5] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [6] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [7] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [8] 吴海韵, 杨甜, 张弛, 梁文仪, 苏娟.  气相色谱-离子迁移谱技术在中药研究中的应用进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409007
    [9] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 163-168, 194. doi: 10.12206/j.issn.2097-2024.202406035
    [10] 吴若南, 叶爽, 李墨晨轩, 缪震元, 罗川.  冬凌草甲素磺酰脲衍生物的设计与抗炎活性的研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202401048
    [11] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [12] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(12): 528-532. doi: 10.12206/j.issn.2097-2024.202305005
    [13] 徐飞, 刘盈, 殷佳, 诸国樑, 练鲁英.  上海某三级公立医院药品管理内部控制评价实践研究 . 药学实践与服务, 2024, 42(12): 542-548. doi: 10.12206/j.issn.2097-2024.202402003
    [14] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [15] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [16] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [17] 凯丽比努尔·奥布力艾散, 李倩, 谢志, 贾文彦, 尹东锋.  星点设计-效应面法优化仑伐替尼混合胶束的制备工艺 . 药学实践与服务, 2024, 42(11): 495-502. doi: 10.12206/j.issn.2097-2024.202403019
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  7467
  • HTML全文浏览量:  700
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-18
  • 修回日期:  2024-09-06
  • 网络出版日期:  2025-02-21
  • 刊出日期:  2025-02-25

花椒生物碱富集纯化工艺优化及其成分分析

doi: 10.12206/j.issn.2097-2024.202404066
    基金项目:  国家自然科学基金(82304813);大学生创新能力培养项目(FH2023095)
    作者简介:

    杨贺英,硕士研究生,研究方向:中药活性成分,Email: yhy991231_zd@163.com

    通讯作者: 苏 娟,博士,副教授,硕士生导师,研究方向:中药活性成分,Email: juansu_2008@126.com

摘要:   目的  优化大孔树脂富集纯化花椒生物碱的工艺条件,并进行成分分析。   方法  单因素实验与正交试验相结合,以羟基-α-山椒素(HAS)、羟基-β-山椒素(HBS)含量为指标,确定最佳工艺参数。利用超高效液相色谱-四级杆-飞行时间质谱(UPLC-Q-TOF-MSE)技术定性分析生物碱类化学成分。   结果  最佳条件为选用三菱HP-20型大孔树脂,上样液浓度为0.2 g生药/ml,生药量与树脂体积比为1 g∶2.5 ml,树脂柱径高比为1∶7,以每小时4倍柱体积(BV)的速率动态吸附,静置1 h;20%乙醇2 BV除杂;80%乙醇5 BV洗脱。HAS、HBS的含量分别为4.71%、1.02%,共鉴定出20种生物碱。   结论  该方法稳定可行,得到高纯度多种类的花椒生物碱,可用于花椒生物碱的富集纯化。

English Abstract

张警文, 夏天爽, 蒋益萍, 辛海量. 动物药抗骨质疏松研究概况[J]. 药学实践与服务, 2023, 41(1): 8-13. doi: 10.12206/j.issn.2097-2024.202101032
引用本文: 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟. 花椒生物碱富集纯化工艺优化及其成分分析[J]. 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
ZHANG Jingwen, XIA Tianshuang, JIANG Yiping, XIN Hailiang. Research overview of anti-osteoporosis effects of traditional animal medicines[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(1): 8-13. doi: 10.12206/j.issn.2097-2024.202101032
Citation: YANG Heying, LUO Caiping, PENG Ting, LIANG Wenyi, SHEN Songzhang, SU Juan. Optimization of purification process and component analysis of alkaloids from Zanthoxylum bungeanum Maxim[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
  • 花椒为芸香科植物红花椒Zanthoxylum bungeanum Maxim.或青花椒Zanthoxylum schinifolium Sieb.et Zucc.的干燥成熟果皮,味辛,性温,具有温中止痛、杀虫止痒的功效,主治脘腹冷痛、呕吐泄泻、虫积腹痛[1]。生物碱是花椒的主要特征性成分,组成丰富、结构多样,具有抗炎、镇痛、抗菌、抗氧化、降脂和抗肿瘤等多种药理活性[2-8]。其中,不饱和脂肪酰胺类生物碱如羟基-α-山椒素(HAS)、羟基-β-山椒素(HBS)已经被证实能够调节脂质代谢,对非酒精性脂肪肝病等代谢性疾病的预防具有潜在效果[9]。然而,对花椒生物碱的制备、富集纯化工艺优化的研究较少。花椒生物碱高效提取与纯化是其后续活性评价和产品开发的基础,有利于花椒药用价值的深度开发,因此优化花椒生物碱的富集纯化工艺具有重要意义。

    大孔吸附树脂法是最常用的富集纯化手段,具有选择性好、吸附能力强、富集效果好、环保绿色等优点,在中药材、中药制剂方面应用广泛[10-11]。因此,本实验以HAS、HBS的得率为指标,筛选适宜纯化花椒生物碱的大孔树脂类型,采用单因素实验和正交试验确定树脂的最佳吸附、除杂、洗脱条件,建立大孔树脂富集纯化花椒生物碱的最佳工艺。采用超高效液相色谱-四级杆-飞行时间质谱(UPLC-Q-TOF-MSE)技术鉴定成分,以期为花椒生物碱的物质基础研究和进一步的综合开发利用提供科学依据。

    • 花椒药材(批号:20220705-2,购于陕西省渭南韩城市),经海军军医大学张成中副教授鉴定为芸香科花椒属红花椒(Zanthoxylum bungeanum Maxim)的干燥果皮。

    • 1260型高效液相色谱仪(美国安捷伦公司);Acquity I-CLASSTM UPLC 超高效液相色谱系统、Xevo G2-XS 四级杆串联飞行时间质谱(美国沃特世科技有限公司);R-100型旋转蒸发仪(瑞士步琦有限公司);DZF-6050型真空干燥箱(巩义市予华仪器有限责任公司);XS205DU电子分析天平(梅特勒托利多科技公司)。

      HAS对照品(纯度≥98%,批号:P2834270,源叶);HBS对照品(纯度≥98%,批号:P2832664,诗丹德);95%乙醇(分析纯,上海泰坦科技股份有限公司);甲酸、甲醇、乙腈(色谱纯,赛默飞世尔科技公司);APS-17型、NKA-9型、HP-20型、AB-8型大孔吸附树脂(沧州宝恩吸附材料科技有限公司);HPD-400型大孔吸附树脂(上海一飞生物科技有限公司);HP-20型大孔吸附树脂(日本三菱化学株式会社)。

    • 称取50 g花椒于圆底烧瓶中,加入500 ml的50%乙醇,95℃水浴加热,回流提取1 h,共提取3次。过滤后合并滤液,45℃减压浓缩至无醇味,过滤,加水分散至250 ml,即得上样液。

      取216 ml上样液,上样于直径为2.7 cm、高度为18.9 cm的三菱HP-20型大孔树脂柱,动态吸附30 min,静置1 h后,取216 ml 20%乙醇除杂24 min;540 ml 80%乙醇洗脱1 h。收集洗脱液,45℃减压浓缩并干燥,即得提取物粉末。

      对照品溶液:精密称定HAS、HBS对照品适量,加50%乙醇定容,分别制成0.61 mg/ml、0.11 mg/ml的对照品溶液。

      供试品溶液:精密称定适量提取物粉末,加50%乙醇定容后,0.45 μm微孔滤膜过滤,即为供试品溶液。

    • 色谱柱:Agilent ZORBAX Eclipse Plus-C18柱(2.1 mm×100 mm, 1.8 μm);流速:0.3 ml/min;检测波长:270 nm;柱温:30℃;进样量:5 μl。流动相:乙腈(A)-0.1%三乙胺(B);洗脱梯度:0~18 min,10%→35%A;18~30 min,35%→50%A;30~36 min,50%→90%A,36~39 min,90%A,39~40 min,90%→10%A。

    • 取HAS对照品溶液、HBS对照品溶液0.2、0.5、1.0、2.0、4.0 ml置于5个5 ml容量瓶中,50%乙醇定容至刻度,摇匀后得到系列梯度浓度的标准工作溶液,0.45 μm微孔滤膜过滤,在“2.1.2”项下色谱条件下进样。

    • 取“2.1.1”项下对照品溶液2.0 ml置于5 ml容量瓶中,50%乙醇定容至刻度,混匀后0.45 μm微孔滤膜过滤,连续进样6次。

    • 取“2.1.1”项下的供试品溶液,于0、1、2、4、8、24 h分别进样。

    • 按照“2.1.1”项方法平行制备供试品溶液 6 份,在“2.1.2”项下色谱条件进样测定。

    • 精密称取已知HAS、HBS含量的花椒生物碱粉末适量, 共取9份,分别准确加入HAS、HBS对照品适量,按“2.1.1”项下方法制备供试品溶液,进样分析并计算加样回收率。

    • 95%乙醇浸泡树脂24 h,充分溶胀后湿法装柱,95%乙醇淋至洗脱液澄清透明,水洗至洗脱液无醇味,备用。取预处理后的不同类型的大孔树脂,按“2.1.1”项下方法制备供试品溶液并进样,计算HAS、HBS的总得率。

    • 湿法装柱,取“2.1.1”项下制备的上样液450 ml,以2 BV/h上样,流出液每30 ml收集1份。按“2.1.2”项下色谱条件进样,以累计上样体积(V/ml)为横坐标(X),以HAS、HBS的总泄漏率(%)为纵坐标(Y),绘制泄漏曲线。

    • 除变量外固定其他工艺条件(树脂类型、上样量与树脂体积比、除杂溶剂、除杂体积、除杂流速、洗脱溶剂、洗脱体积及洗脱流速分别为三菱HP-20型、1 g∶2.5 ml、10%乙醇,2 BV、5 BV/h、70%乙醇、5 BV及5 BV/h)不变的情况下,分别考察上样液浓度(0.1、0.2、0.4 g生药/ml)、树脂柱径高比(1∶5、1∶7、1∶9)及吸附流速(1、2、4 BV/h)对花椒生物碱中HAS、HBS总得率的影响。

    • 在单因素实验的基础上,采用L9(33)正交试验进一步分析除杂条件(除杂溶剂、体积、流速)、洗脱条件(洗脱溶剂、体积、流速)对花椒生物碱中HAS、HBS总得率的影响(表1),总结最佳工艺并进行验证。统计分析使用SPSS 26.0 软件。

      表 1  除杂、洗脱条件正交试验因素水平表

      条件 水平 因素
      A因素溶剂 B因素体积(BV) C因素流速(BV/h)
      除杂 1 蒸馏水 1 2
      2 10%乙醇 2 3
      3 20%乙醇 3 5
      洗脱 1 55%乙醇 3 2
      2 70%乙醇 5 3
      3 80%乙醇 8 5
    • 精密称定“2.2.4”项下以最佳工艺制备的花椒生物碱粉末5.0 mg,50%甲醇定容至25 ml,0.45 μm微孔滤膜过滤备用。

    • 色谱柱:Waters ACQUITY HSS T3柱(2.1×100 mm, 1.7 μm);检测波长:270 nm;流速:0.3 ml/min;柱温:30℃;进样量:3 μl。流动相:乙腈(A)-0.1%甲酸水(B),洗脱梯度:0~18 min,10%→35%A;18~24 min,35%→46%A;24~30 min,46%→90%A;30~32 min,90%A;32~33 min,90%~10%A;33~36 min,10%A。

    • 电喷雾离子源(ESI),正离子模式扫描。离子源温度120℃,雾化气流速为800 L/h,毛细管电压为3.0 kV。锥孔电压40 V,补偿电压80 V。低能量扫描电压6 eV,高能量扫描电压30~60 eV;喷雾器压力为6.5×105 Pa,气帘气体积流量为50 L/h,扫描范围m/z为50~1500。亮氨酸-脑啡肽(m/z∶ 554.261 5 [M-H])和(m/z∶ 556.277 1[M+H]+)作为外标进行质量实时校正,体积流量设为5 μl/min。

      MassLynx V4.1工作站使用MSE模式采集质谱数据。

    • 供试品HPLC图如图1所示,该色谱条件下,HAS与HBS色谱峰分离度大于1.5、理论塔板数均大于30000、峰形稳定、无干扰,能够满足样品分析检测要求。

      图  1  供试品溶液的HPLC图

    • 以对照品溶液的浓度为横坐标(X),峰面积为纵坐标(Y),得到HAS的回归方程Y=3312.7 X−8.887,r=0.999;HBS的回归方程Y=33030 X+12.061,r=0.999。即HAS、HBS分别在进样浓度为24.4~488 μg/ml、4.4~88 μg/ml范围内呈良好的线性关系。

    • HAS、HBS峰面积的RSD分别为0.94%、0.34%,仪器精密度良好,符合定量测定要求。

    • HAS、HBS峰面积的RSD分别为0.20%、0.43%,表明供试品溶液在室温条件下24 h内稳定。

    • HAS、HBS峰面积的RSD分别为0.26% 和0.26%,表明方法重复性良好。

    • 计算得到HAS低、中、高浓度的加样回收率分别为(103.66±0.62)%、(100.22±3.10)%、(102.47±1.24)%;HBS的低、中、高浓度的加样回收率分别为(101.35±0.89)%、(98.58±2.48)%、(98.86±1.02)%。结果表明该测定方法准确性好,可用于样品中HAS、HBS的含量测定。

    • 使用三菱HP-20型树脂富集花椒生物碱类成分时,HAS、HBS两成分的总含量(X)最高且结果稳定,结果见表2。因此,优选三菱HP-20型大孔吸附树脂进行后续实验。

      表 2  不同类型树脂对HAS、HBS总得率的影响(n=3)

      树脂类型 HAS、HBS
      总浓度(mg/ml)
      HAS、HBS
      总含量(%)
      $ \bar{X} $±SD(%)
      APS-17 2.42 4.06 4.06±2.17
      NKA-9 2.08 3.50 3.50±1.76
      宝恩HP-20 3.68 6.19 6.19±1.09
      AB-8 3.58 6.02 6.02±1.28
      HPD-400 3.59 6.03 6.03±0.98
      三菱HP-20 4.10 6.89 6.89±0.62
    • 图2可知,当上样液体积为90 ml时,花椒生物碱开始少量泄漏;随着上样体积增加,流出液中生物碱浓度呈现上升趋势;当上样液为210 ml时,累计泄漏率为9.61%,接近上样液中HAS、HBS总浓度的10%[12]。因此确定最大上样量为210 ml,即上样生药量与树脂体积比约为1 g∶2.5 ml。

      图  2  三菱HP-20型大孔树脂动态吸附泄漏曲线

    • 图3可知,当上样液浓度为0.2 g生药/ml时,HAS和HBS的得率最高;随着浓度升高,杂质增多,与生物碱竞争吸附活性位点,得率下降;此外高浓度上样液在静置吸附过程中较容易发生絮凝和沉淀现象[13-14]。故优选上样液浓度为0.2 g生药/ml。树脂径高比为1∶7、吸附流速为4 BV/h时,HAS和HBS的总得率最高。故选用树脂径高比为1∶7的三菱HP-20型树脂柱,动态吸附流速为4 BV/h。

      图  3  不同上样条件对HAS、HBS总得率的影响

    • 表3所示,以HAS、HBS总得率为指标时,影响三菱HP-20型大孔树脂纯化花椒总生物碱的除杂因素依次为除杂溶剂(A)>除杂流速(C)>除杂体积(B)。除杂的最佳条件为20%乙醇、流速为5 BV/h。除杂体积由2 BV提升到3 BV,结果差异并不明显,为节约溶剂、提高效率,优选2 BV为除杂体积。

      表 3  除杂条件L9(33)正交设计及结果

      编号 因素 总得率(%)
      除杂溶剂(A) 除杂体积(B) 除杂流速(C)
      1 1 1 1 7.87
      2 1 2 2 9.09
      3 1 3 3 9.31
      4 2 1 2 10.33
      5 2 2 3 10.42
      6 2 3 1 10.67
      7 3 1 3 11.82
      8 3 2 1 10.73
      9 3 3 2 11.66
      k1 8.75 10.06 9.71
      k2 10.44 10.07 10.34
      k3 11.37 10.48 10.52
      R 2.62 0.64 0.81

      表4可知,洗脱因素对HAS、HBS总得率的影响次序依次为洗脱溶剂(A)>洗脱流速(C)>洗脱体积(B);最佳组合条件为洗脱溶剂80%乙醇,洗脱体积为5 BV,洗脱流速5 BV/h。

      表 4  洗脱条件L9(33)正交设计及结果

      编号 因素 总得率
      (%)
      洗脱溶剂(A) 洗脱体积(B) 洗脱流速(C)
      1 1 1 1 2.55
      2 1 2 2 5.38
      3 1 3 3 7.15
      4 2 1 2 5.75
      5 2 2 3 8.11
      6 2 3 1 9.57
      7 3 1 3 9.20
      8 3 2 1 8.28
      9 3 3 2 6.36
      k1 5.03 5.83 6.80
      k2 7.81 7.26 5.83
      k3 7.95 7.69 8.15
      R 2.92 1.86 2.32
    • 实验确立花椒生物碱制备的最佳工艺为料液比1∶10,溶剂为50%乙醇,95℃水浴加热,每次回流提取1 h,提取3次,过滤后合并滤液;45℃减压浓缩至无醇味,纱布过滤,加水分散至生药浓度相当于0.2 g/ml的上样液;按上样生药量与大孔吸附树脂的体积比1 g∶2.5 ml,上样于三菱HP-20型大孔树脂,树脂柱径高比1∶7,动态吸附流速4 BV/h,静置1 h后,2 BV、20%乙醇以5 BV/h除杂;80%乙醇洗脱,体积5 BV,流速5 BV/h。收集洗脱液,45℃减压浓缩并干燥,即得花椒生物碱提取物。

      表5可知,三次重复实验花椒生物碱得膏率相近,富集纯化后HAS、HBS总含量的RSD为0.87%,证明本方法确定的大孔树脂富集纯化花椒生物碱的工艺稳定可靠,重复性高。此外,经纯化后花椒生物碱中HAS、HBS的含量分别为4.71%、1.02%,与富集纯化前相比,花椒生物碱的含量得到明显升高。

      表 5  最佳工艺验证结果

      编号 得膏率
      (%)
      富集前
      总含量(%)
      富集后
      总含量(%)
      富集后
      总含量RSD(%)
      1 6.88 0.82 5.73 0.87
      2 6.91 0.81 5.72 0.87
      3 6.95 0.82 5.64 0.87
    • 通过中药系统药理学数据库与分析平台、PubChem、Web of science等数据库和国内外文献,收集花椒的化学成分信息,包括绘制化学结构、整理化合物名称与分子式、利用MasslynxV4.1计算化合物精确质量等,建立共包含95种生物碱的花椒化学成分数据库。

      图4可知,在正离子模式下,生物碱类化合物得到了较好的分离。结合质谱数据、相关文献对照品的裂解规律和紫外吸收,并与自建的花椒化学成分数据库进行对比分析,共识别鉴定或推导出20种生物碱类化合物,包括木兰花碱、茵芋碱、HAS、HBS等(见表6)。

      图  4  正离子模式下花椒生物碱BPI图

      表 6  正离子模式下花椒生物碱类成分碎片离子及鉴定结果

      峰号 保留时
      间(t/min)
      化合物 分子式 离子模式 理论值
      m/z
      实测值
      m/z
      误差
      (ppm)
      碎片离子
      m/z
      参考
      文献
      1 4.716 木兰花碱 C20H24NO4+ [M]+ 342.170 5 342.169 0 −4.38 342.169 0[M]+, 297.110 6[M-C2H7N]+, 282.088 2[M-C2H7N-CH3]+, 265.085 2[C17H13O3]+, 222.065 3[C15H10O2]+, 191.084 6[C15H11]+, 194.071 4[C14H10O]+, 165.069 3[C13H9]+ [17]
      2 5.483 ZP-amide D C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18]
      3 5.877 ZP-amide E C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 320.182 5[M+Na]+ [18]
      4 6.043 ZP-amide A C16H25NO4 [M+Na]+ 318.168 1 318.168 5 1.26 613.338 5[2M+Na]+, 319.169 2[M+H+Na]+, 318.168 5[M+Na]+, 296.183 8[M+H]+, 278.175 6[M-OH]+ [18-19]
      5 6.724 ZP-amide B C16H25NO4 [M+Na]+ 318.168 1 318.168 5 1.26 613.338 5[2M+Na]+, 319.169 2[M+H+Na]+, 318.168 5[M+Na]+, 296.183 8[M+H]+, 278.175 6[M-OH]+ [18-19]
      6 6.793 ZP-amide C C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18, 20]
      7 7.222 ZP-amide L C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18]
      8 7.902 ZP-amide K C16H27NO4 [M+Na]+ 320.183 8 320.182 5 −4.06 321.186 4[M+H+Na]+, 320.182 5[M+Na]+ [18]
      9 12.427 ZP-amide N C18H31NO4 [M+Na]+ 348.215 1 348.213 0 −6.03 349.217 7[M+H+Na]+, 348.213 0[M+Na]+ [18]
      10 16.168 茵芋碱 C14H13NO4 [M+H]+ 260.092 3 260.092 3 0.00 229.037 0[M-2CH3]+, 227.056 6[C13H9NO3]+, 202.046 8[C11H8NO3]+, 199.062 5[C12H9NO2], 184.037 9[C11H6NO2]+, 156.043 4[C10H6NO]+, 77.037 7[C6H5]+ [21]
      11 22.312 羟基-ε-山椒素 C16H25NO2 [M+Na]+ 286.178 3 286.178 3 0.00 302.171 4[M+K]+, 286.178 3[M+Na]+, 246.184 4[M-OH]+ [22]
      12* 22.701 羟基-α
      山椒素
      C16H25NO2 [M+Na]+ 286.178 3 286.178 3 0.00 287.179 5[M+H+Na]+, 286.178 3[M+Na]+, 246.184 4[M-OH]+ [23]
      13* 23.113 羟基-β
      山椒素
      C16H25NO2 [M+Na]+ 286.178 3 286.178 3 0.00 287.179 5[M+H+Na]+, 286.178 3[M+Na]+, 246.187 5[M-OH]+ [23]
      14 23.605 Zanthoamides A C18H27NO4 [M-OH]+ 304.191 3 304.191 3 0.00 345.184 4[M+H+Na]+, 344.181 6[M+Na]+ [24]
      15 26.156 羟基-γ−山椒素 C18H27NO2 [M+Na]+ 312.193 9 312.193 5 −1.28 601.398 7[2M+Na]+, 313.164 8[M+H+Na]+, 312.193 5[M+Na]+, 272.200 9[M-OH]+ [22]
      16 26.379 羟基-γ
      异山椒素
      C18H27NO2 [M+Na]+ 312.193 9 312.193 5 −1.28 601.398 7[2M+Na]+, 313.164 8[M+H+Na]+, 312.193 5[M+Na]+, 272.200 9[M-OH]+ [22]
      17 26.786 bungeanool C18H29NO2 [M-OH]+ 274.217 1 274.216 5 −2.19 565.363 6[2M-OH]+, 314.210 3[M+Na]+ [15]
      18 26.957 isobungeanool C18H29NO2 [M-OH]+ 274.217 1 274.216 5 −2.19 565.363 6[2M-OH]+, 314.210 3[M+Na]+ [15]
      19 27.586 α−山椒素 C16H25NO [M+H]+ 248.201 4 248.201 2 −0.81 286.178 3[M+K]+ [23]
      20 29.068 四氢花椒素 C18H33NO2 [M+H]+ 296.259 0 296.257 7 −4.39 318.237 8[M+Na]+, 279.137 4[M+H-OH]+ [25]
      *:为与对照品比对的化合物。
    • 实验前期,考察了酸提碱沉法与乙醇回流提取法,经比较发现两方法制备得到的花椒生物碱中HAS、HBS含量差别不显著。但以酸性溶液浸提生物碱时,耗时长、水溶性杂质较多,而且酸性溶液可能会使部分生物碱吸收氢离子导致质子化从而发生重排反应,破坏分子结构,综合考虑下本实验选择乙醇回流提取法。

      HAS、HBS是花椒的代表性酰胺类生物碱,具有降脂、抗氧化、麻醉、神经营养等多种活性,受到研究者的广泛关注[15-16]。本实验确立的工艺能够有效富集花椒生物碱,显著提高HAS、HBS含量,为后续HAS、HBS单体化合物的制备提供了基础。实验过程中尝试通过优化除杂条件、分段收集乙醇洗脱液等方法分离黄酮与生物碱类成分,但UPLC-Q-TOF-MSE得到的BPI图中,8~11 min仍存在着部分响应较高的黄酮类物质无法完全分离,后续还需要探索其他有效的方法进一步去除黄酮类成分。

      本实验在单因素实验基础上采用正交设计考察了花椒生物碱的最佳纯化工艺,利用UPLC-Q-TOF-MSE对生物碱成分进行分析鉴定,使用HPLC对制备得到的花椒生物碱中的HAS、HBS进行含量测定。本纯化工艺简单可行、稳定有效,可为花椒生物碱的综合开发利用及工业化生产提供科学依据,对提升花椒的综合经济价值具有深远意义。

参考文献 (25)

目录

/

返回文章
返回