留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

体外脂解模型在脂质制剂评价中的研究进展

吴慧仪 龙晓英

吴慧仪, 龙晓英. 体外脂解模型在脂质制剂评价中的研究进展[J]. 药学实践与服务, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
引用本文: 吴慧仪, 龙晓英. 体外脂解模型在脂质制剂评价中的研究进展[J]. 药学实践与服务, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
WU Huiyi, LONG Xiaoying. Research progress on in vitro lipolysis model for the evaluation of lipid formulations[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
Citation: WU Huiyi, LONG Xiaoying. Research progress on in vitro lipolysis model for the evaluation of lipid formulations[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001

体外脂解模型在脂质制剂评价中的研究进展

doi: 10.3969/j.issn.1006-0111.2017.06.001
基金项目: 国家自然科学基金资助项目(81373361);广东省自然基金资助项目(S2013020012980)

Research progress on in vitro lipolysis model for the evaluation of lipid formulations

  • 摘要: 体外脂解模型能模拟体内胃肠道生理环境,较好地反映脂质制剂口服后在人体肠道的性质,是一种具有应用前景的筛选和评价口服脂质制剂的新方法。综述脂质制剂的特性、胃肠道消化过程、体外脂解模型的应用及脂解液表征方法的研究进展,为脂解模型在脂质制剂口服吸收机制及体内外相关性研究中的深入应用提供依据。
  • [1] Pouton CW. Formulation of poorly water-soluble drugs for oral administration:Physicochemical and physiological issues and the lipid formulation classification system[J]. Eur J Pharm Sci, 2006, 29(3-4):278-287.
    [2] Porter CJ, Pouton CW, Cuine JF, et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems[J]. Adv Drug Deliv Rev, 2008, 60(6):673-691.
    [3] Pouton CW. Lipid formulations for oral administration of drugs:non-emulsifying, self-emulsifying and self-microemulsifying' drug delivery systems[J]. Eur J Pharm Sci, 2000, 11(Suppl 2):S93-98.
    [4] Carri re F. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs[J]. Biochimie. 2016, 125:297-305.
    [5] Kalantzi L, Persson E, Polentarutti B, et al. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents[J]. Pharm Res, 2006, 23(6):1373-1381.
    [6] van Tilbeurgh H, Sarda L, Verger R, et al. Structure of the pancreatic lipase-procolipase complex[J]. Nature, 1992, 359(6391):159-162.
    [7] Lowe ME. The triglyceride lipases of the pancreas[J]. J Lipid Res, 2002, 43(12):2007-2016.
    [8] Shiau YF. Mechanisms of intestinal fat absorption[J]. Am J Physiol, 1981, 240(1):G1-G9.
    [9] Nordskog BK, Phan CT, Nutting DF, et al. An examination of the factors affecting intestinal lymphatic transport of dietary lipids[J]. Adv Drug Deliv Rev, 2001, 50(1-2):21-44.
    [10] Mattson FH, Benedict JH, Martin JB, et al. Intermediates formed during the digestion of triglycerides[J]. J Nutr, 1952, 48(3):335-344.
    [11] Naylor LJ, Bakatselou V, Dressman JB. Comparison of the mechanism of dissolution of hydrocortisone in simple and mixed micelle systems[J]. Pharm Res, 1993, 10(6):865-870.
    [12] Humberstone AJ, Porter CJ, Charman WN. A physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine[J]. J Pharm Sci, 1996, 85(5):525-529.
    [13] Mu H, Hoy CE. The digestion of dietary triacylglycerols[J]. Prog Lipid Res, 2004, 43(2):105-133.
    [14] Zangenberg NH, Mullertz A, Kristensen HG, et al. A dynamic in vitro lipolysis model.Ⅱ:evaluation of the model[J]. Eur J Pharm Sci, 2001, 14(3):237-244.
    [15] Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations:Optimizing the oral delivery of lipophilic drugs[J]. Nat Rev Drug Discov, 2007, 6(3):231-248.
    [16] Fatouros DG, Müllertz A. In vitro lipid digestion models in design of drug delivery systems for enhancing oral bioavailability[J]. Expert Opin Drug Metab Toxicol, 2008, 4(1):65-76.
    [17] 曾棋平, 张晶, 刘志宏, 等. 脂解模型在脂质给药系统体外评价中的应用研究进展[J]. 药学实践杂志, 2014, 32(2):85-87.
    [18] Dening TJ, Rao S, Thomas N, et al. Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs:Formulation, characterization and in vitro lipolysis studies[J]. Int J Pharm, 2017, 526(1):95-105.
    [19] Kazi M, Al-Qarni H, Alanazi FK. Development of oral solid self-emulsifying lipid formulations of risperidone with improved in vitro dissolution and digestion[J]. Eur J Pharm Biopharm, 2017, 114:239-249.
    [20] 林婉婷, 龙晓英, 吴慧仪, 等. 灰黄霉素纳米乳体外脂解过程中药物动态分布研究[J]. 中国药学杂志, 2015, 50(6):512-520.
    [21] Xiao L, Yi T, Liu Y, et al. The in vitro lipolysis of lipid-based drug delivery systems:A newly identified relationship between drug release and liquid crystalline phase[J]. Biomed Res Int, 2016,2016:2364317.
    [22] Siqueira SD, M llertz A, Gr eser K, et al. Influence of drug load and physical form of cinnarizine in new SNEDDS dosing regimens:in vivo and in vitro evaluations[J]. AAPS J. 2017, 19(2):587-594.
    [23] Tanaka Y, Hara T, Waki R, et al. Regional differences in the components of luminal water from rat gastrointestinal tract and comparison with other species[J]. J Pharm Pharm Sci, 2012, 15(4):510-518.
    [24] Fatouros DG, Bergenstahl B, Mullertz A. Morphological observations on a lipid-based drug delivery system during in vitro digestion[J]. Eur J Pharm Sci, 2007, 31(2):85-94.
    [25] Roshan GD, Aagaard AE, Pedersen JS, et al. Experimental Set-up with flow-through cell with SAXS studies of in-situ degradation of drug formulations under gastro-intestinal mimicking conditions[R]. 13th International Conference of Small Angle Scattering, Kyoto:2006.
    [26] Sassene PJ, Knopp MM, Hesselkilde JZ, et al. Precipitation of a poorly soluble model drug during in vitro lipolysis:characterization and dissolution of the precipitate[J]. J Pharm Sci, 2010, 99(12):4982-4991.
    [27] Fernandez S, Jannin V, Chevrier S, et al. In vitro digestion of the self-emulsifying lipid excipient Labrasol by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate[J]. Pharm Res, 2013, 30(12):3077-3087.
  • [1] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202305005
    [2] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [3] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [4] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [5] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [6] 王鹏, 陈顺, 赵逸, 高守红, 王志鹏.  卡培他滨致小鼠手足综合征模型的建立及评价 . 药学实践与服务, 2024, 42(9): 385-388, 398. doi: 10.12206/j.issn.2097-2024.202308045
    [7] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
    [8] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [9] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [10] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [11] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [12] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [13] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [14] 唐淑慧, 凤美娟, 薛智霞, 鲁桂华.  帕博利珠单抗治疗所致免疫相关不良反应与中医体质的相关性研究 . 药学实践与服务, 2024, 42(5): 217-222. doi: 10.12206/j.issn.2097-2024.202311029
    [15] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
  • 加载中
计量
  • 文章访问数:  3251
  • HTML全文浏览量:  247
  • PDF下载量:  875
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-07
  • 修回日期:  2017-09-04

体外脂解模型在脂质制剂评价中的研究进展

doi: 10.3969/j.issn.1006-0111.2017.06.001
    基金项目:  国家自然科学基金资助项目(81373361);广东省自然基金资助项目(S2013020012980)

摘要: 体外脂解模型能模拟体内胃肠道生理环境,较好地反映脂质制剂口服后在人体肠道的性质,是一种具有应用前景的筛选和评价口服脂质制剂的新方法。综述脂质制剂的特性、胃肠道消化过程、体外脂解模型的应用及脂解液表征方法的研究进展,为脂解模型在脂质制剂口服吸收机制及体内外相关性研究中的深入应用提供依据。

English Abstract

吴慧仪, 龙晓英. 体外脂解模型在脂质制剂评价中的研究进展[J]. 药学实践与服务, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
引用本文: 吴慧仪, 龙晓英. 体外脂解模型在脂质制剂评价中的研究进展[J]. 药学实践与服务, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
WU Huiyi, LONG Xiaoying. Research progress on in vitro lipolysis model for the evaluation of lipid formulations[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
Citation: WU Huiyi, LONG Xiaoying. Research progress on in vitro lipolysis model for the evaluation of lipid formulations[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 481-484,489. doi: 10.3969/j.issn.1006-0111.2017.06.001
参考文献 (27)

目录

    /

    返回文章
    返回