留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

高通量代谢组学在药用植物研究中的应用

郭志英 周正 谭何新 张磊 刁勇

郭志英, 周正, 谭何新, 张磊, 刁勇. 高通量代谢组学在药用植物研究中的应用[J]. 药学实践与服务, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
引用本文: 郭志英, 周正, 谭何新, 张磊, 刁勇. 高通量代谢组学在药用植物研究中的应用[J]. 药学实践与服务, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
GUO Zhiying, ZHOU Zheng, TAN Hexin, ZHANG Lei, DIAO Yong. Application in medicinal plants research by high-throughput metabolomics method[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
Citation: GUO Zhiying, ZHOU Zheng, TAN Hexin, ZHANG Lei, DIAO Yong. Application in medicinal plants research by high-throughput metabolomics method[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005

高通量代谢组学在药用植物研究中的应用

doi: 10.3969/j.issn.1006-0111.2017.06.005

Application in medicinal plants research by high-throughput metabolomics method

  • 摘要: 高通量代谢组学近年来发展十分迅速,并在药用植物的研究中得到了广泛的应用。目前,它主要被用于通过指纹图谱对药用植物进行质量控制,比较基因改造后药用植物的代谢差异,监测不同环境对药用植物的代谢变化以及研究药用植物基因的功能。高通量代谢组学具有良好的前景,但也存在对仪器要求较高及数据整合烦琐等问题,限制其更好的推广和应用。随着科学技术的发展及仪器设备联用的普及,高通量代谢组学必将在药用植物的研究中发挥不可替代的作用。
  • [1] Nielsen J. Systems Biology of Metabolism[J]. Annu Rev Biochem, 2017, 86:245-275.
    [2] Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Mol Biol, 2002, 48(1-2):155-171.
    [3] Karahalil B. Overview of Systems Biology and Omics Technologies[J]. Curr Med Chem, 2016, 23(37):4221-4230.
    [4] Petersson SV, Lindén P, Moritz T,et al. Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology[J]. Metabolomics, 2015, 11(6):1679-1689.
    [5] Danielsson AP, Moritz T, Mulder H,et al. Development and optimization of a metabolomic method for analysis of adherent cell cultures[J]. Anal Biochem, 2010, 404(1):30-39.
    [6] Wolfender JL, Glauser G, Boccard J,et al. MS-based plant metabolomic approaches for biomarker discovery[J]. Nat Prod Commun, 2009, 4(10):1417-1430.
    [7] Ramautar R, Somsen GW, de Jong G J. CE-MS for metabolomics:Developments and applications in the period 2014-2016[J]. Electrophoresis, 2017, 38(1):190-202.
    [8] Tohge T, Fernie AR. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function[J]. Nat Protoc, 2010, 5(6):1210-1227.
    [9] Ernst M, Silva DB, Silva RR,et al. Mass spectrometry in plant metabolomics strategies:from analytical platforms to data acquisition and processing[J]. Nat Prod Rep, 2014, 31(6):784-806.
    [10] Mak TD, Laiakis EC, Goudarzi M,et al. MetaboLyzer:a novel statistical workflow for analyzing Postprocessed LC-MS metabolomics data[J]. Anal Chem, 2014, 86(1):506-513.
    [11] Culibrk L, Croft CA, Tebbutt SJ, et al. Systems Biology Approaches for Host-Fungal Interactions:An Expanding Multi-Omics Frontier[J]. OMICS, 2016, 20(3):127-138.
    [12] Wan JY, Liu P, Wang HY, et al. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry[J]. J Chromatogr A, 2013, 1286:83-92.
    [13] Kim N, Kim K, Lee D,et al. Nontargeted metabolomics approach for age differentiation and structure interpretation of age-dependent key constituents in hairy roots of Panax ginseng[J]. J Nat Prod, 2012, 75(10):1777-1784.
    [14] Park HE, Lee SY, Hyun SH,et al. Gas chromatography/mass spectrometry-based metabolic profiling and differentiation of ginseng roots according to cultivation age using variable selection[J]. J AOAC Int, 2013, 96(6):1266-1272.
    [15] Chu C, Xu S, Li X,et al. Profiling the ginsenosides of three ginseng products by LC-Q-TOF/MS[J]. J Food Sci, 2013, 78(5):C653-C659.
    [16] Kim SH, Hyun SH, Yang SO,et al. (1)H-NMR-based discrimination of thermal and vinegar treated ginseng roots[J]. J Food Sci, 2010, 75(6):C577-C581.
    [17] Lee EJ, Shaykhutdinov R, Weljie AM,et al. Quality assessment of ginseng by (1)H NMR metabolite fingerprinting and profiling analysis[J]. J Agric Food Chem, 2009, 57(16):7513-7522.
    [18] Li SL, Song JZ, Choi FF,et al. Chemical profiling of Radix Paeoniae evaluated by ultra-performance liquid chromatography/photo-diode-array/quadrupole time-of-flight mass spectrometry[J]. J Pharm Biomed Anal, 2009, 49(2):253-266.
    [19] Montoro P, Maldini M, Piacente S,et al. Metabolite fingerprinting of Camptotheca acuminata and the HPLC-ESI-MS/MS analysis of camptothecin and related alkaloids[J]. J Pharm Biomed Anal, 2010, 51(2):405-415.
    [20] Pan Q, Wang Q, Yuan F,et al. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics[J]. PLoS One, 2012, 7(8):e43038.
    [21] Dai H, Xiao C, Liu H,et al. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion[J]. J Proteome Res, 2010, 9(3):1460-1475.
    [22] Yamazaki M, Mochida K, Asano T,et al. Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones[J]. Plant Cell Physiol, 2013, 54(5):686-696.
    [23] Chen J, Dong X, Li Q,et al. Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling[J]. BMC Genomics, 2013, 14(1):857.
    [24] Toh DF, New LS, Koh HL,et al. Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed Panax notoginseng[J]. J Pharm Biomed Anal, 2010, 52(1):43-50.
    [25] Bondia-Pons I, Savolainen O, Törrönen R, et al. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight massspectrometry[J]. Food Res Int, 2014, 63:132-138.
    [26] Duan LX, Chen TL, Li M,et al. Use of the metabolomics approach to characterize Chinese medicinal material Huangqi[J]. Mol Plant, 2012, 5(2):376-386.
    [27] Jung JY, Jung Y, Kim JS,et al. Assessment of peeling of Astragalus roots using 1H NMR-and UPLC-MS-based metabolite profiling[J]. J Agric Food Chem, 2013, 61(43):10398-10407.
    [28] Kwon J, Kim N, Lee D,et al. Metabolomics approach for the discrimination of raw and steamed Gastrodia elata using liquid chromatography quadrupole time-of-flight mass spectrometry[J]. J Pharm Biomed Anal, 2014, 94:132-138.
    [29] de Oliveira Dal'Molin Cristiana G, Orellana Camila, Gebbie Leigh,et al. Metabolic reconstruction of setaria italica:A systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses[J]. Front Plant Sci, 2016, 7:1138.
    [30] Murch SJ, Rupasinghe HP, Goodenowe D,et al. A metabolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi) genotypes:discovery of novel compounds[J]. Plant Cell Rep, 2004, 23(6):419-425.
    [31] Kim HK, Choi YH, Erkelens C,et al. Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis[J]. Chem Pharm Bull (Tokyo), 2005, 53(1):105-109.
    [32] Li SL, Shen H, Zhu LY,et al. Ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry based chemical profiling approach to rapidly reveal chemical transformation of sulfur-fumigated medicinal herbs, a case study on white ginseng[J]. J Chromatogr A, 2012, 1231:31-45.
    [33] Lee EJ, Shaykhutdinov R, Weljie AM,et al. Quality assessment of ginseng by1H-NMR metabolite fingerprinting and profiling analysis[J]. J Agric Food Chem, 2009, 57(16):7513-7522.
    [34] Winzer T, Gazda V, He Z,et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336(6089):1704-1708.
    [35] Happyana N, Kayser O. Monitoring metabolite profiles of Cannabis sativa L. Trichomes during flowering period using 1H NMR-based metabolomics and real-time PCR[J]. Planta Med, 2016, 82(13):1217-1223.
    [36] Jia X, Sun C, Zuo Y,et al. Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress[J]. BMC Genomics, 2016, 17(1):88.
    [37] Guldbrandsen N, Kostidis S, Schäfer H,et al. NMR-based metabolomic study on isatis tinctoria:comparison of different accessions, harvesting dates, and the effect of repeated harvesting[J]. J Nat Prod, 2015, 78(5):977-986.
    [38] Goossens A. It is easy to get huge candidate gene lists for plant metabolism now, but how to get beyond?[J]. Mol Plant, 2015, 8(1):2-5.
    [39] Tian L, Hu Y, Chen XY. Advancing human health through exploration of plant metabolism and reaping the benefits of edible medicinal plants[J]. Mol Plant, 2017, 10(3):533-536.
    [40] Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future[J]. Science, 2016, 353(6305):1232-1236.
  • [1] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [2] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [3] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [4] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [5] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [6] 何静, 安晔, 张朝绅.  复方黑参滴丸与复方黑参丸药效学实验比较研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404009
    [7] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [8] 白云俊, 赵玉洋, 金艳, 付璐, 袁媛.  蓝草类药材基原植物叶片表皮显微结构研究 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202404069
    [9] 练鲁英, 刘盈, 殷佳, 诸国樑, 徐飞.  上海某三级公立医院药品管理内部控制评价实践研究 . 药学实践与服务, 2024, 42(12): 1-7. doi: 10.12206/j.issn.2097-2024.202402003
    [10] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
    [11] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
  • 加载中
计量
  • 文章访问数:  3950
  • HTML全文浏览量:  540
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-15
  • 修回日期:  2017-09-15

高通量代谢组学在药用植物研究中的应用

doi: 10.3969/j.issn.1006-0111.2017.06.005

摘要: 高通量代谢组学近年来发展十分迅速,并在药用植物的研究中得到了广泛的应用。目前,它主要被用于通过指纹图谱对药用植物进行质量控制,比较基因改造后药用植物的代谢差异,监测不同环境对药用植物的代谢变化以及研究药用植物基因的功能。高通量代谢组学具有良好的前景,但也存在对仪器要求较高及数据整合烦琐等问题,限制其更好的推广和应用。随着科学技术的发展及仪器设备联用的普及,高通量代谢组学必将在药用植物的研究中发挥不可替代的作用。

English Abstract

郭志英, 周正, 谭何新, 张磊, 刁勇. 高通量代谢组学在药用植物研究中的应用[J]. 药学实践与服务, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
引用本文: 郭志英, 周正, 谭何新, 张磊, 刁勇. 高通量代谢组学在药用植物研究中的应用[J]. 药学实践与服务, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
GUO Zhiying, ZHOU Zheng, TAN Hexin, ZHANG Lei, DIAO Yong. Application in medicinal plants research by high-throughput metabolomics method[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
Citation: GUO Zhiying, ZHOU Zheng, TAN Hexin, ZHANG Lei, DIAO Yong. Application in medicinal plants research by high-throughput metabolomics method[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(6): 499-503. doi: 10.3969/j.issn.1006-0111.2017.06.005
参考文献 (40)

目录

    /

    返回文章
    返回