-
紫杉醇(PTX)是从裸子植物红豆杉树皮分离得到的天然次生代谢产物,属于微管蛋白抑制剂,在临床上广泛用于卵巢癌、非小细胞肺癌和乳腺癌的治疗[1]。传统的PTX注射液因添加了聚氧乙烯蓖麻油而导致过敏反应,并加重PTX的外周神经毒性,还影响药物分子向组织间扩散,影响抗肿瘤效应,且滴注时间过长[2]。前药设计在提高药物生物利用度,增加药物稳定性,减小毒副作用,延长药物作用时间等方面具有很大的优势[3]。其中,长链饱和脂肪酸如肉豆蔻酸(MA)[4]、棕榈酸(PA)[5]和硬脂酸(SA)[6]等常用于药物成酯前药修饰。例如,治疗类风湿性关节炎的上市药物地塞米松棕榈酸酯注射液,就是通过饱和脂肪酸棕榈酸与地塞米松成酯反应形成地塞米松棕榈酸酯前药,继而制备成纳米前药,极大地增加了制剂的稳定性与成药性[6]。
脂质体作为载体递送脂溶性药物近年来受到广泛关注,这为PTX脂质体制剂的研发提供了重要依据。据此,我们对PTX的C2′羟基进行酯化修饰形成脂溶性较强的PTX肉豆蔻酸酯(PTX-MA)、PTX棕榈酸酯(PTX-PA)和PTX硬脂酸酯(PTX-SA)等前药分子,然后将其分别制备成PTX-MA脂质体(PTX-MA-L)、PTX-PA脂质体(PTX-PA-L)和PTX-SA脂质体(PTX-SA-L),不仅可以解决PTX成药性差的问题,也可以提高载药量、增加药物稳定性、改善药代动力学和药效学[7-10]。
该研究以卡马西平为内标,成功建立了小鼠血浆中PTX-MA、PTX-PA和PTX-SA含量的超高效液相色谱-串联质谱(UPLC-MS/MS)测定方法,在此基础上比较考察了其脂质体PTX-MA-L、PTX-PA-L和PTX-SA-L在小鼠体内的药代动力学特性,从而为PTX脂肪酸酯前药的纳米制剂研发提供科学依据。
-
Vanquish™ 超高相液相色谱仪(美国Thermo scientific公司);TSQ Altis™ 三重四级杆质谱仪(美国Thermo scientific公司);台式高速冷冻离心机(上海伟进生物科技有限公司)。
-
紫杉醇(纯度≥98%)购自江苏红豆杉生物医药科技股份有限公司;紫杉醇肉豆蔻酸酯(PTX-MA,纯度≥98%)及其脂质体(PTX-MA-L)、紫杉醇棕榈酸酯(PTX-PA,纯度≥98%)及其脂质体(PTX-PA-L)、紫杉醇硬脂酸酯(PTX-SA,纯度≥98%)及其脂质体(PTX-SA-L)均为海军军医大学药学系药剂学教研室自制;甲酸、超纯水、甲醇和乙腈购自赛默飞世尔(中国)有限公司,均为色谱纯;卡马西平购自上海源叶生物科技有限公司。
-
ICR小鼠[雌性,(18±2) g,购自浙江维通利华实验动物技术有限公司,动物许可证号:SCXK(浙)2020-0002]。
-
色谱柱:Eclipse Plus C8色谱柱(2.1 mm×50 mm,1.8 μm);流动相:0.2%甲酸水溶液(A)-甲醇(B)梯度洗脱;梯度洗脱程序:20% B~ 60% B(0~0.3 min),60% B~ 98% B(0.3~ 3.9 min),98% B~ 60% B(3.9~ 4.8 min),60% B~ 20% B(4.8~ 5.2 min),20% B(5.2~ 7.0 min);流速:0.3 ml/min;进样量:10 µl;柱温:30 ℃。
-
电喷雾离子源(ESI)采用正离子采集模式。离子源参数:电喷雾电压:3.5 kV(+);离子传输管温度:325 ℃;雾化温度:275 ℃;鞘气压力:35 Arb;辅气压力:5 Arb;毛细管压力:1.5 mTorr。定量分析离子分别为:m/z
1086.7 →518.3(PTX-MA),m/z1114.5 →546.3(PTX-PA),m/z1142.7 →574.4(PTX-SA),m/z 237.1→194.0(卡马西平,内标)。 -
分别精密称取10.00 mg 3种对照品(PTX-MA、PTX-PA、PTX-SA)置于10 ml容量瓶中,用甲醇溶解并定容,配制成1.00 mg/ml的对照品储备液。吸取一定量的对照品储备液,用甲醇稀释成一系列浓度的工作溶液,置于4 ℃冰箱保存备用。
-
精密称取10.00 mg卡马西平,用乙腈溶解并定容,配制成1.00 mg/ml的内标储备液。吸取一定量的内标储备液,用乙腈稀释成30.00 ng/ml工作溶液,置于4℃冰箱保存备用。
-
精密量取100 μl小鼠血浆样品液于1.5 ml离心管中,加入300 µl内标溶液,涡旋混合1 min后,13 000 r/min离心10 min,吸取上清液,置于新的EP管中,于40 ℃下真空离心挥干溶剂。精密量取200 µl乙腈复溶样品,过0.22 μm尼龙滤膜,即制得小鼠血浆样品溶液。
-
精密量取100 µl空白血浆,用300 µl乙腈代替300 µl内标液,按“2.3”项下方法处理后,再按“2.1”项下方法测定,记录空白血浆色谱图;精密量取100 µl空白血浆,按“2.3”项下操作处理后,再按“2.1”项下方法测定,记录含内标的血浆样品色谱图;精密量取含适量PTX-MA、PTX-PA、PTX-SA的空白血浆样品各100 µl,用300 µl乙腈代替300 µl内标液,按“2.3”项下方法处理后,再按“2.1”项下方法测定,记录含PTX-MA、PTX-PA和PTX-SA的血浆样品色谱图。结果见图1,内标、PTX-MA、PTX-PA和PTX-SA的色谱峰附近无明显内源性杂质峰干扰,其保留时间分别为2.41、4.37、4.84和5.28 min,表明血浆中内源性物质不干扰PTX-MA、PTX-PA、PTX-SA和内标的测定。
-
精密量取95 µl小鼠空白血浆,加入5 µl紫杉醇脂肪酸酯对照样品(PTX-MA或PTX-PA或PTX-SA)工作溶液配制成5.00、25.00、50.00、100.00、300.00和500.00 ng/ml的PTX-MA或PTX-PA或PTX-SA系列浓度对照样品小鼠血浆液,按“2.3”项下操作处理后,再按“2.1”项下进样测定。以PTX-MA或PTX-PA或PTX-SA对照样品浓度为横坐标(X),样品峰面积与内标峰面积的比值为纵坐标(Y)进行线性回归分析,求得各自回归方程,结果见表1。
表 1 PTX-MA、PTX-PA和PTX-SA的标准曲线参数
对照样品 回归方程 r 线性范围(ng/ml) PTX-MA Y=0.186 2 X−1.984 0.995 8 5.00~500.00 PTX-PA Y=0.668 5 X−12.977 0.998 4 5.00~500.00 PTX-SA Y=0.402 1 X−7.171 0.998 8 5.00~500.00 -
取空白小鼠血浆,分别配制含PTX-MA、PTX-PA和PTX-SA浓度为10.00、250.00和375.00 ng/ml的低、中、高3个浓度的小鼠血浆样品溶液,置于−80 ℃低温冰箱保存。按“2.3”项下方法处理后,再按“2.1”项下方法进样分析测定。每个浓度5份,每天连续进样3次,连续3 d。根据测得PTX-MA、PTX-PA、PTX-SA和内标的峰面积,计算PTX-MA、PTX-PA和PTX-SA的实测浓度,考察PTX-MA、PTX-PA和PTX-SA低、中、高浓度在小鼠血浆中的日内及日间的准确度和精密度。如表2结果显示,PTX-MA、PTX-PA和PTX-SA在低、中、高3个浓度的日内和日间的精密度RSD均<8.4%,准确度均>95%,表明仪器精密度良好。
表 2 PTX-MA、PTX-PA和PTX-SA样本的精密度(n = 5)
对照样品 理论浓度(ng/ml) 日内精密度 日间精密度 实测浓度(ng/ml) 回收率(%) RSD(%) 实测浓度(ng/ml) 回收率(%) RSD(%) PTX-MA 10.00 9.93±0.83 99.36±8.32 8.38 10.37±0.61 103.67±6.06 5.84 250.00 242.29±10.93 96.84±4.51 4.51 247.42±5.30 98.97±2.12 2.14 375.00 371.31±6.30 99.02±1.68 1.70 373.37±6.20 99.57±1.65 1.66 PTX-PA 10.00 9.83±0.50 98.28±5.00 5.09 10.25±0.55 102.53±5.52 5.38 250.00 248.42±6.81 99.37±2.72 2.74 246.93±5.74 98.77±2.29 2.32 375.00 373.79±8.70 99.68±2.32 2.33 371.59±4.12 99.09±1.10 1.11 PTX-SA 10.00 9.59±0.51 95.90±5.08 5.30 10.33±0.67 103.27±6.72 6.50 250.00 248.81±7.89 99.53±3.16 3.17 245.92±5.04 98.37±2.01 2.05 375.00 374.36±8.81 99.83±2.35 2.35 371.26±2.43 99.00±0.65 0.65 -
取空白小鼠血浆,分别配制低、中、高3个浓度(10.00、250.00和375.00 ng/ml)的血浆样品(PTX-MA、PTX-PA和PTX-SA)液各3份,分别于室温放置12 h、−20 ℃冻存5 d后复融或−20 ℃反复冻融3次,按“2.3”项下方法处理样本,再按“2.1”项下方法进样分析测定。结果显示,在上述考察条件下,PTX-MA、PTX-PA和PTX-SA的低、中、高3个实测浓度的RSD均<10%,表明PTX-MA、PTX-PA和PTX-SA的小鼠血浆样品在室温放置12 h、−20 ℃冻存5 d及−20 ℃反复冻融3次条件下稳定性良好。
-
取空白小鼠血浆,分别配制低、中、高3个浓度(10.00、250.00和375.00 ng/ml)的血浆样品(PTX-MA、PTX-PA和PTX-SA)液各3份,按“2.3”项下方法处理样本,再按“2.1”项下方法进样分析测定,计算所得浓度为A。另取空白血浆,按“2.3”项下方法处理样本后,再加入PTX-MA或PTX-PA或PTX-SA工作液形成终浓度分别为10.00、250.00和375.00 ng/ml的3种不同浓度的标准溶液,按“2.1”项下方法进样分析测定,计算所得浓度为B。用甲醇配制含内标(30 ng/ml)的低、中、高3个浓度(10.00、250.00 和375.00 ng/ml)的PTX-MA或PTX-PA或PTX-SA的样品溶液,按“2.1”项下方法进样分析测定,计算所得浓度为C。提取回收率为(A/B)×100%,基质效应为(B/C)×100%。结果见表3,PTX-MA、PTX-PA或PTX-SA的平均提取回收率和基质效应的RSD均<10%,符合测定要求。
表 3 小鼠血浆中PTX-MA、PTX-PA和PTX-SA的提取回收率和基质效应(n = 3)
对照样品 理论浓度(ng/ml) 回收率(%) RSD(%)a 基质效应(%) RSD(%)b PTX-MA 10.00 79.82±6.60 8.28 95.36±6.55 6.87 250.00 88.35±2.84 3.22 96.28±3.59 3.73 375.00 92.08±2.46 2.67 98.86±1.46 1.48 PTX-PA 10.00 73.34±7.24 9.88 94.28±1.96 2.08 250.00 83.58±2.24 2.68 98.46±1.86 1.89 375.00 89.47±1.51 1.68 98.88±0.68 0.69 PTX-SA 10.00 61.90±4.11 6.63 95.90±5.08 5.30 250.00 77.26±2.88 3.73 98.78±2.22 2.25 375.00 84.43±1.21 1.44 99.08±1.01 1.02 注:a:回收率的相对标准偏差;b:基质效应的相对标准偏差。 -
雌性ICR小鼠90只,于实验前12 h禁食不禁水, 标记称重后分为PTX-MA-L、PTX-PA-L、PTX-SA-L 3组。以紫杉醇等摩尔剂量15.00 mg/kg小鼠尾静脉给药,分别于给药后2 min、30 min、1 h、2 h、4 h、6 h、12 h、1 d、3 d、14 d,小鼠眼眶静脉丛取血0.3 ml(每个时间点各取3只小鼠),置于装有肝素钠的离心管中,以10 000 r/min离心3 min后,上清液置于−80 ℃冰箱保存待测。上述血浆样品液按“2.3”项下方法处理后按“2.1”项下方法进样测定。所得数据用DSA2.0软件进行处理,以三房室模型计算得到药代动力学参数,结果见表4。
表 4 小鼠尾静脉注射3种紫杉醇脂肪酸酯前药脂质体药代动力学参数(n = 3)
关键参数 单位 PTX-MA-L PTX-PA-L PTX-SA-L Cmax ng/L 226 436.10±4 932.89 289 171.80±5 311.62 333 508.00±3 464.10 AUC0-14 d ng·h/L 502 384.75±3 464.10 776 973.44±5 196.15 1 668 984.05±6 350.85 AUC0-∞ ng·h/L 503 800.86±8 082.90 777 835.54±6 429.10 1 669 696.54±5 773.50 t1/2 h 14.78±2.00 44.49±3.51 69.32±2.15 V L/kg 45.68±1.00 62.57±1.53 68.58±3.10 CL L·kg/h 29.06±2.52 24.94±2.08 13.74±2.52 -
该研究以卡马西平为内标,建立了小鼠血浆中3种紫杉醇脂肪酸酯前药含量的UPLC-MS/MS测定方法。其中,内标、PTX-MA、PTX-PA和PTX-SA色谱峰保留时间分别为2.41、4.37、4.84和5.28 min,均达到基线分离。相比前期研究中血浆PTX-MA、PTX-PA和PTX-SA含量的传统HPLC测定方法存在分离度差、灵敏度低的缺陷而无法满足检测要求,该方法具有选择性更好、分离范围更广、分离能力更强、灵敏度及重现性更高等优点,并成功应用于3种紫杉醇脂肪酸酯前药脂质体(PTX-MA-L、PTX-PA-L和PTX-SA-L)的小鼠体内药代动力学参数的测定。
该研究采用乙腈直接沉淀血浆蛋白的方式,短时间内可检测小鼠血浆中3种紫杉醇脂肪酸酯,体现了方法的便捷性和可控性。另外,通过优化流动相组成以及比例,使得内源性杂质与药物样品具有较好的分离效果。特别是在流动相中加入甲酸,不仅可以改善峰形,也可促进样品离子化,提高质子化检测能力,从而提高该方法的检测灵敏度。
总之,该研究建立的UPLC-MS/MS测定方法专属性强、操作简便、灵敏度和精密度高、重现性和稳定性好, 可用于定量测定小鼠体内血浆中3种紫杉醇脂肪酸酯前药含量。小鼠体内药代动力学研究结果显示, 3种紫杉醇脂肪酸酯脂质体PTX-MA-L、PTX-PA-L和PTX-SA-L在小鼠体内的t1/2分别为14.78、44.49和69.32 h,清除率(CL)分别为29.06、24.94和13.74 L·kg/h,提示随着脂肪酸碳链长度的增加,紫杉醇脂肪酸酯在小鼠体内的t1/2大幅延长、CL则显著降低,表明紫杉醇经不同链长饱和脂肪酸酯化修饰可明显改变其体内药动学特性,其中,紫杉醇棕榈酸酯脂质体(PTX-PA)具有适宜的药动学参数,值得下一步深入开发研究。
Determination and pharmacokinetics investigation of prodrugs of paclitaxel fatty acid esters in mouse plasma by UPLC-MS/MS
-
摘要:
目的 建立小鼠血浆中紫杉醇肉豆蔻酸酯(PTX-MA)、紫杉醇棕榈酸酯(PTX-PA)和紫杉醇硬脂酸酯(PTX-SA)等3种紫杉醇脂肪酸酯的超高效液相色谱-串联质谱(UPLC-MS/MS)测定方法,并初步考察其脂质体的小鼠体内药代动力学特性。 方法 采用Eclipse Plus C8色谱柱(2.1 mm×50 mm,1.8 μm),0.2%甲酸水溶液(A)和甲醇(B)的不同比例混合液为流动相,梯度洗脱,三重四极杆串联质谱多重反应监检测(MRM),流速:0.3 ml/min,柱温:30℃,进样量:10 μl。 结果 PTX-MA、PTX-PA和PTX-SA在5.0~500.0 ng/ml范围内均呈良好的线性关系(r >0.995 0),日内和日间精密度、稳定性、提取回收率和基质效应试验结果的RSD均小于10%;3种紫杉醇脂肪酸酯脂质体PTX-MA-L、PTX-PA-L和PTX-SA-L在小鼠体内的半衰期(t1/2)分别为14.78、44.49和69.32 h,清除率(CL)分别为29.06、24.94和13.74 L·kg/h。 结论 该方法专属性高、灵敏、操作简便、稳定性好,可用于小鼠血浆中紫杉醇脂肪酸酯的含量测定。小鼠体内药代动力学研究结果表明,随脂肪酸碳链增加,紫杉醇脂肪酸酯在小鼠体内t1/2呈大幅延长,清除率则显著降低,提示紫杉醇经不同链长饱和脂肪酸酯化修饰可改变其体内药代动力学特性,从而为紫杉醇脂肪酸酯前药的纳米制剂研发提供科学依据。 -
关键词:
- 紫杉醇 /
- 脂肪酸酯 /
- 前药 /
- 高效液相色谱-串联质谱法 /
- 药动学
Abstract:Objective To establish an UPLC-MS/MS method for determinating content of three paclitaxel fatty acid esters such as paclitaxel myristate (PTX-MA), paclitaxel palmitate (PTX-PA) and paclitaxel myristate (PTX-SA) in mouse plasma, and preliminarily investigate the pharmacokinetic characteristics of their liposomes in mice. Methods Eclipse Plus C8 chromatography column (2.1 mm×50 mm, 1.8 μm) was used with different proportions of 0.2% formic acid aqueous solution (A) and methanol (B) mixture as mobile phase for gradient elution at a flow rate of 0.3 ml/min. The collum temperature was 30℃. The sample injection volume was 10 μl. The triple quadrupole mass series spectrometer was used as multi-reaction monitoring (MRM). Results PTX-MA, PTX-PA and PTX-SA all exhibited a good linear relationship in the range of 5.0~500.0 ng/ml (r> 0.9950 ). Their RSD of precision, stability, extraction recovery rate and matrix effect test results was all less than 10%. The half-lives (t1/2) for liposomes of three paclitaxel fatty acid esters PTX-MA-L、PTX-PA-L and PTX-SA-L in mice were 14.78 h, 44.49 h and 69.32 h individually, and their clearance rates (CL) were 29.06 L·kg/h, 24.94 L·kg/h and 13.74 L·kg/h, respectively.Conclusion This method had high specificity, sensitivity, easy operation and good stability, which could be used for the determination of paclitaxel fatty acid esters in mouse plasma. The results of pharmacokinetic studies in mice showed that t1/2 for paclitaxel fatty acid esters were significantly prolonged, and the clearance rate were significantly reduced with the length of fatty acid carbon chains increasement, which indicated that esterification of paclitaxel with different chain length saturated fatty acids could obviously alter its in vivo pharmacokinetic properties, which provided scientific basis for the research and development of nano formulations of paclitaxel fatty acid ester prodrug. -
Key words:
- Paclitaxel /
- Fatty acid esters /
- Prodrug /
- UPLC-MS/MS /
- Pharmacokinetics
-
奥卡西平(oxcarbazepine, OXC)是第二代抗癫痫药物,可用于儿童全面强直-阵挛发作,部分伴或不伴继发性全面发作的一线治疗[1],其具有与传统的抗癫痫药物(AEDs)如苯妥英钠、卡马西平和丙戊酸钠相同的疗效,但其对肝药酶和自身的诱导作用小,药物间相互作用较少,临床上可用于替代传统的AEDs。OXC是卡马西平(carbamazepine, CBZ)的一种10-酮类衍生物,但两者之间的药动学存在差异,OXC的耐受性好且不良反应少[2]。OXC是无活性的前体药物,在体内经过肝脏内细胞溶质芳基酮还原酶的作用转化为具有药理活性的中间代谢产物单羟基卡马西平(monohydroxy carbamazepine, MHD)[3-4]。国际抗癫痫联盟推荐MHD血清浓度的参考范围为3~35 μg/ml[5],有研究表明,当血药浓度高于30 μg/ml时,容易发生药物不良反应,且在许多患者中,不良反应间歇性的发生与MHD浓度的波动有关[6]。在临床用药中也发现OXC服药后的药物浓度个体化差异大,年龄、性别、体重、肝肾功能等均会影响MHD的药动学参数[7],故需要对其血药浓度进行监测。本研究在参考既往研究的基础上[8-12],对色谱条件进行了优化,并简化了血样处理的过程,建立了HPLC法测定OXC活性代谢产物MHD血药浓度的方法,该方法快速、简单、准确、选择性好、灵敏度高,为临床监测血药浓度、调整给药剂量提供了手段。
1. 仪器与材料
1.1 仪器
Agilent 1200高效液相色谱仪(美国Agilent公司);H1850R型台式高速冷冻离心机(湖南湘仪实验室仪器开发有限公司);DHG-9145A型电热恒温鼓风干燥箱(上海恒科仪器有限公司);SHB-B95A型循环水式多用真空泵(郑州长城科工贸有限公司);Discovery DV215CD型分析天平(美国OHAUS公司);Vortex-5型涡旋混合器(江苏海门市其林贝尔仪器制造有限公司)。
1.2 材料
MHD对照品(美国CATO公司);内标:奥硝唑(中国食品药品检定研究院);甲醇、乙腈(色谱纯,上海科丰化学试剂有限公司);空白血浆(医院血库提供);超纯水(实验室自制)。
2. 实验方法
2.1 色谱条件
色谱柱:ZORBAX Eclipse XDB-C18(150 mm×4.6 mm,5 μm),预柱为Eclipse XDB-C18(4.6 mm×12.5 mm,5 μm);流动相:水-乙腈(80:20,V/V);流速:1.0 ml/min;柱温:35 ℃;进样量:10 μl;双波长检测:在192 nm处检测MHD,318 nm处检测奥硝唑。
2.2 溶液及血浆样品的配制
2.2.1 储备液的配制
精密称取MHD对照品10 mg于10 ml的量瓶中,用甲醇溶解配制成浓度为1 mg/ml的储备液,置于−20 ℃下保存。
2.2.2 内标工作液的配制
精密称取奥硝唑1.4 mg于10 ml的量瓶中,用甲醇溶解配制成浓度为140 μg/ml的内标工作液,置于−20 ℃下保存。
2.2.3 血浆标准曲线和质控样品的配制
分别精密量取适量储备液,用甲醇稀释成20、50、100、200、300、400、500 μg/ml浓度梯度的标准对照溶液。取以上6个标准对照溶液,加入适量空白血浆,得2、5、10、20、30、40、50 μg/ml系列浓度的血浆标准曲线样品。同法配制相应的低、中、高浓度的血浆质控样品(QC),使得MHD对应的浓度分别为5、15、40 μg/ml。
2.3 血浆样品的预处理
取200 μl血浆样品,加入200 μl内标工作液、400 μl甲醇,涡旋混合30 s,10 ℃条件下13 000 r/min离心10 min,取上清液直接进样。
3. 结果
3.1 专属性试验
通过考察6份不同生物来源的空白血浆样品色谱图、空白血浆样品加入MHD对照品和内标的色谱图,以及临床实际用药后的患者血浆样品色谱图,以此反映方法的专属性。由图1可见,在本实验条件下,被测物MHD与内标的色谱峰分离良好,且血浆中的内源性物质不干扰测定。MHD和内标的保留时间分别为9.5 min和6.1 min。
3.2 标准曲线与线性范围
取上述浓度为2、5、10、20、30、40、50 μg/ml的血浆标准曲线样品按“2.3”项下方法处理。经HPLC法分析,以测得OXC的峰面积与内标峰面积之比(Y)作为纵坐标,以血浆MHD浓度(X)为横坐标,得到回归方程为:Y=0.047 1X+0.022 2(r=0.998 6)。线性范围:根据标准曲线,MHD血药浓度在2~50 μg/ml范围内线性关系良好,其定量下限浓度为2 μg/ml。
3.3 日内、日间精密度和准确度
配制定量下限、低、中、高(2、5、15、40 μg/ml)4种浓度的QC样品各6个,按“2.3”项下方法处理后测定,连续测定3 d,以当天的标准曲线计算QC样品的测定浓度,计算日内、日间精密度以及准确度。经测定,MHD的日内、日间精密度RSD均小于15%,准确度在95.57%~100.59%之间,均符合生物样品的测定要求,结果见表1。
表 1 单羟基卡马西平日内、日间精密度和准确度(n=6)理论浓度
(μg/ml)实测浓度
(μg/ml)RSD(%) RE(%) 日内精密度 日间精密度 2 1.85±0.16 8.64 12.21 −3.63 5 4.93±0.24 4.86 7.68 −4.43 15 14.32±0.37 6.86 6.16 −3.11 40 41.80±1.26 3.03 5.33 0.59 3.4 提取回收率
配制低、中、高(5、15、40 μg/ml)3种浓度的QC样品各6个,按“2.3”项下方法处理。同时另取18份空白血浆,除了不加系列对照品溶液和内标外,按“2.3”项下方法处理,在获得的上清液中加入MHD和内标溶液至相应浓度。进样分析,以每一浓度中2种不同处理方法的峰面积比值计算提取回收率。经测定,本法中MHD的平均提取回收率在89.62%~95.32%之间;内标的平均提取回收率为98.76%,符合生物学样品的分析要求,结果见表2。
表 2 单羟基卡马西平、MHD和内标提取回收率试验结果(n=6)化合物 浓度(μg/ml) 提取回收率(%) MHD 5 89.62±4.82 15 94.67±6.76 40 95.32±4.90 内标 140 98.76±5.92 3.5 稳定性试验
3.5.1 室温稳定性试验
取低、中、高(5、15、40 μg/ml)3种浓度的QC样品各5份,测定即时血药浓度,并在室温条件下放置4 h和10 h后测定样品血药浓度,求得RSD和RE值。经测定MHD血浆样品在室温下放置10 h后仍稳定,RSD均小于4.47%,RE值在1.50%~2.98%之间,结果见表3。
表 3 奥卡西平代谢产物单羟基卡马西平稳定性试验结果 (n=5)储存条件 理论浓度(μg/ml) 实测浓度(μg/ml) RSD(%) RE(%) 室温10 h 5 5.15±0.19 3.60 2.98 15 15.39±0.69 4.47 2.62 40 40.60±0.40 0.98 1.50 冻融3次 5 5.47±0.15 2.83 9.41 15 15.79±0.32 2.06 5.24 40 40.75±1.10 2.71 1.86 处理后36 h 5 5.39±0.27 5.09 7.74 15 15.66±0.58 3.70 4.39 40 39.46±1.80 4.57 −1.34 −20 ℃,30 d 5 5.16±0.23 4.39 3.19 15 14.62±0.39 2.64 −2.53 40 40.37±0.58 1.44 0.93 3.5.2 冻融稳定性试验
取低、中、高(5、15、40 μg/ml)3种浓度的QC样品各5份,测定即时血药浓度,并于−20 ℃冰箱中冷冻保存24 h后室温下解冻1 h后测定,反复冻融3次,求得RSD和RE值。经测定MHD血浆样品反复冻融3次后仍能保持稳定,RSD均小于2.83%,RE值在1.86%~9.41%之间,结果见表3。
3.5.3 处理后的血浆样品在自动进样器中储存的稳定性试验
取低、中、高3个浓度水平的血浆QC样品(5、15、40 μg/ml)各5份,测定即时血药浓度,然后放置在自动进样器内12 h、36 h后再次测定,求得RSD和RE值。经测定处理后的MHD血浆样品在进样器内放置36 h仍能保持稳定,RSD均小于5.09%,RE值在−1.34%~7.74%之间,结果见表3。
3.5.4 长期稳定性试验
取低、中、高3个浓度水平的血浆质控样品(5、15、40 μg/ml)各5份,测定即时血药浓度,并置于−20 ℃冰箱中冻存30 d后取出解冻后测定,求得RSD和RE值。经测定MHD血浆样品在−20 ℃冰箱中冻存30 d后仍能保持稳定,RSD均小于4.39%,RE值在−2.53%~3.19%之间,结果见表3。
4. 讨论
目前,有关MHD的检测方法的文献很多,其中,高效液相色谱法和高效液相色谱-质谱联用法都有报道,后者虽有灵敏度高、专属性强的特点,但其仪器昂贵,且需专业人员进行操作,很难在大部分的医疗机构普及[13-15]。另外,国内外文献报道中多使用固液萃取法或液液萃取法进行血样的前处理,但这种处理过程相对复杂、耗时,且经济成本较高[11, 16]。本方法采用甲醇沉淀蛋白进行血样的前处理,建立了HPLC法测定人血浆中MHD血药浓度的方法,整个过程操作简单、快速,样品分析时间较短,适用于临床大量样品的连续检测。
文献报道的流动相有乙腈-10 mmol/L磷酸二氢钾溶液(33∶67,V/V)[12]、水-乙腈(65∶35,V/V)[17]、水-甲醇-乙腈(64∶30∶6,V/V/V)[18]等。本方法采用了水-乙腈,按不同的配比进行试验,发现当水-乙腈的比例为80∶20时,色谱峰的峰形、出峰时间及分离度最佳。文献采用卡马西平[17]、苯巴比妥[19]和奥硝唑[20]等作为内标,本研究通过筛选发现奥硝唑的保留时间为6.1 min,不仅与MHD的保留时间相近,又能与其有很好的分离,且其性质稳定,满足内标的要求。
本实验建立的测定人血浆中OXC活性代谢产物MHD的HPLC法,MHD线性回归方程中的r=0.998 6,说明血药浓度在2~50 μg/ml范围内具有良好的线性关系,日内、日间精密度RSD均小于15%,准确度在95.57%~100.59%之间,MHD及内标的平均提取回收率在89.62%~98.76%之间。血浆样品的稳定性试验证明,在室温放置10 h、反复冻融、处理后放置进样器36 h以及低温保存30 d的情况下,样品未见明显降解,仍能保持稳定。本研究建立的HPLC法操作快速简单,精密度、回收率高,稳定性好,专属性强,不受血浆中内源性物质的干扰,结果准确可靠,且灵敏度高,适用于奥卡西平临床血药浓度的监测。
目前癫痫治疗主要以药物治疗为主,奥卡西平是第二代抗癫痫药物,我国诸多癫痫病专家也建议将其作为癫痫部分性发作和全面强直阵挛发作的首选药物[21]。但奥卡西平使用过程中可能出现瘙痒、荨麻疹、血管性水肿等超敏反应,包括Stevens Johnson综合征中毒性表皮坏死松解症[22]等,还可引起低钠血症、头晕、胃肠道不适等不良反应,有文献报道,其疗效及不良反应可能与血药浓度密切相关[23],因此开展奥卡西平血药浓度的测定,能提高药物治疗的疗效,同时可以有效避免或减少可能产生的药物不良反应,提高癫痫患者服药的依从性。本研究建立了测定人血浆中MHD血药浓度的方法,应用于临床,为临床个体化给药提供依据,值得临床推广使用。
-
表 1 PTX-MA、PTX-PA和PTX-SA的标准曲线参数
对照样品 回归方程 r 线性范围(ng/ml) PTX-MA Y=0.186 2 X−1.984 0.995 8 5.00~500.00 PTX-PA Y=0.668 5 X−12.977 0.998 4 5.00~500.00 PTX-SA Y=0.402 1 X−7.171 0.998 8 5.00~500.00 表 2 PTX-MA、PTX-PA和PTX-SA样本的精密度(n = 5)
对照样品 理论浓度(ng/ml) 日内精密度 日间精密度 实测浓度(ng/ml) 回收率(%) RSD(%) 实测浓度(ng/ml) 回收率(%) RSD(%) PTX-MA 10.00 9.93±0.83 99.36±8.32 8.38 10.37±0.61 103.67±6.06 5.84 250.00 242.29±10.93 96.84±4.51 4.51 247.42±5.30 98.97±2.12 2.14 375.00 371.31±6.30 99.02±1.68 1.70 373.37±6.20 99.57±1.65 1.66 PTX-PA 10.00 9.83±0.50 98.28±5.00 5.09 10.25±0.55 102.53±5.52 5.38 250.00 248.42±6.81 99.37±2.72 2.74 246.93±5.74 98.77±2.29 2.32 375.00 373.79±8.70 99.68±2.32 2.33 371.59±4.12 99.09±1.10 1.11 PTX-SA 10.00 9.59±0.51 95.90±5.08 5.30 10.33±0.67 103.27±6.72 6.50 250.00 248.81±7.89 99.53±3.16 3.17 245.92±5.04 98.37±2.01 2.05 375.00 374.36±8.81 99.83±2.35 2.35 371.26±2.43 99.00±0.65 0.65 表 3 小鼠血浆中PTX-MA、PTX-PA和PTX-SA的提取回收率和基质效应(n = 3)
对照样品 理论浓度(ng/ml) 回收率(%) RSD(%)a 基质效应(%) RSD(%)b PTX-MA 10.00 79.82±6.60 8.28 95.36±6.55 6.87 250.00 88.35±2.84 3.22 96.28±3.59 3.73 375.00 92.08±2.46 2.67 98.86±1.46 1.48 PTX-PA 10.00 73.34±7.24 9.88 94.28±1.96 2.08 250.00 83.58±2.24 2.68 98.46±1.86 1.89 375.00 89.47±1.51 1.68 98.88±0.68 0.69 PTX-SA 10.00 61.90±4.11 6.63 95.90±5.08 5.30 250.00 77.26±2.88 3.73 98.78±2.22 2.25 375.00 84.43±1.21 1.44 99.08±1.01 1.02 注:a:回收率的相对标准偏差;b:基质效应的相对标准偏差。 表 4 小鼠尾静脉注射3种紫杉醇脂肪酸酯前药脂质体药代动力学参数(n = 3)
关键参数 单位 PTX-MA-L PTX-PA-L PTX-SA-L Cmax ng/L 226 436.10±4 932.89 289 171.80±5 311.62 333 508.00±3 464.10 AUC0-14 d ng·h/L 502 384.75±3 464.10 776 973.44±5 196.15 1 668 984.05±6 350.85 AUC0-∞ ng·h/L 503 800.86±8 082.90 777 835.54±6 429.10 1 669 696.54±5 773.50 t1/2 h 14.78±2.00 44.49±3.51 69.32±2.15 V L/kg 45.68±1.00 62.57±1.53 68.58±3.10 CL L·kg/h 29.06±2.52 24.94±2.08 13.74±2.52 -
[1] VYAS D M, KADOW J F. Paclitaxel: a unique tubulin interacting anticancer agent[J]. Prog Med Chem, 1995, 32:289-337. [2] ADAMS J D, FLORA K P, GOLDSPIEL B R, et al. Taxol: a history of pharmaceutical development and current pharmaceutical concerns[J]. J Natl Cancer Inst Monogr, 1993, 15:141-147. [3] ABET V, FILACE F, RECIO J, et al. Prodrug approach: An overview of recent cases[J]. Eur J Med Chem, 2017, 127:810-827. doi: 10.1016/j.ejmech.2016.10.061 [4] MIKHALIN A A, EVDOKIMOV N M, FROLOVA L V, et al. Lipophilic prodrug conjugates allow facile and rapid synthesis of high-loading capacity liposomes without the need for post-assembly purification[J]. J Liposome Res, 2015, 25(3):232-260. doi: 10.3109/08982104.2014.992022 [5] HARADA H, YAMASHITA U, KURIHARA H, et al. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga[J]. Anticancer Res, 2002, 22(5):2587-2590. [6] LORSCHEIDER M, TSAPIS N, UR-REHMAN M, et al. Dexamethasone palmitate nanoparticles: an efficient treatment for rheumatoid arthritis[J]. J Control Release, 2019, 296:179-189. doi: 10.1016/j.jconrel.2019.01.015 [7] MENG Z, LV Q, LU J, et al. Prodrug strategies for paclitaxel[J]. Int J Mol Sci, 2016, 17(5):796-819. doi: 10.3390/ijms17050796 [8] CHEN K J, PLAUNT A J, LEIFER F G, et al. Recent advances in prodrug-based nanoparticle therapeutics[J]. Eur J Pharm Biopharm, 2021, 165:219-243. doi: 10.1016/j.ejpb.2021.04.025 [9] FANG J Y, AL-SUWAYEH S A. Nanoparticles as delivery carriers for anticancer prodrugs[J]. Expert Opin Drug Del, 2012, 9(6):657-669. doi: 10.1517/17425247.2012.679927 [10] 程丹, 余侬, 许幼发, 等. 紫杉醇棕榈酸酯脂质体的制备及初步药效学和安全性评价[J]. 中国药学杂志, 2018, 53(8):614-619. doi: 10.11669/cpj.2018.08.010 -