-
近年来,侵袭性真菌感染(IFD)的发病率和病死率逐年增高,临床上常见的侵袭性真菌主要有以念珠菌为主的酵母样真菌和以曲霉为主的丝状真菌。而念珠菌引起的IFD的总发病率达0.03%~0.50%,病死率可达35%~80%[1],白念珠菌(Candida albicans)是侵袭性真菌感染中最常见的致病真菌,约占40.1%[2]。尽管目前已研发出有效的抗真菌药物可供临床治疗,但仍存在着耐药性、价格昂贵、毒性大等问题亟需解决[3]。随着抗真菌药物经年累月使用,耐药性问题越发突出。唑类药物是临床常用的抗真菌药物,疗效好、毒性低,但因应用历史较长,临床上对其耐药的真菌越来越多[4]。目前,临床可选择的药物数量有限,解决真菌对药物的耐药性问题便成为一个必须攻克的难关。联合用药是一种有效的克服药物耐药性的方法,两者的协同作用不仅可以克服药物的耐药性,还可以增强原有药物的抗真菌作用[4]。
去甲泽拉木醛(DMZ)是从雷公藤根皮中提取的三萜类单体化合物,是雷公藤中含量较高的单体成分,其分子式是C29H36O6(图1)。DMZ具有抗炎、抗癌、免疫调节、抗生育、雌激素代谢调节等药理活性[5],但其在抗真菌方面的研究尚未见报道。本研究发现,DMZ具有良好的广谱抗真菌活性,并且与氟康唑联合使用具有协同抗耐药真菌作用。
-
测定DMZ对临床中常见的病原真菌的抗菌活性,共计23株。实验结果显示,DMZ对所试真菌都有一定的抑制效果(表1)。对白念珠菌(含11株临床株)的MIC范围为4~16 g/L,值得注意的是,其中有3株临床菌对FLC显示出较强的耐药性(901、904、632),DMZ对它们的MIC稳定在8 g/L,表现出与敏感菌类似的抗菌活性。对FLC天然耐药的耳念珠菌与克柔念珠菌,DMZ也表现出较好的抗真菌活性,MIC分别为32 g/L、2~8 g/L。对其他的念珠菌如热带念珠菌、近平滑念珠菌也有较强的抗菌活性,MIC为4~16 g/L,对丝状菌如烟曲霉菌、须毛癣菌有较好的抗菌活性,MIC分别为32 g/L和2 g/L。以上结果表明,DMZ对常见的病原真菌均表现出较好的抗菌活性,抗菌谱较广。
表 1 DMZ与FLC单独应用于23株真菌的MIC值
菌种 菌株 MIC80(g/L) FLC DMZ 白念珠菌 FLC敏感菌株 SC5314 0.25 8 7654 0.25 4 103 2 16 9161 0.25 4 10066 2 8 10060 0.25 4 10061 0.25 4 7879 1 8 9296 0.25 8 FLC耐药菌株 901 64 8 904 64 8 632 64 8 耳念珠菌 0029 64 32 热带念珠菌 8915 16 8 409 1 16 烟曲霉 7544 64 32 近平滑念珠菌 22019 2 4 90018 1 8 克柔念珠菌 4996 16 8 62588 16 8 10153 32 2 须毛癣菌 T5b 32 2 T5a 32 2 -
选取3株对FLC耐药的白念珠菌901、904和632,采用棋盘微量液基稀释法考察DMZ与FLC联合使用是否存在协同作用。结果显示,在与2 g/L DMZ联合使用的情况下,FLC对上述3株耐药菌的有效浓度从64 g/L降低至0.25 g/L(表2),是原抗菌浓度的1/256,两药联合使用的FICI为0.129~0.254,表明DMZ与FLC具有较强的协同抗耐药菌作用。
表 2 DMZ与FLC的协同抗氟康唑耐药白念珠菌的作用
菌株 MIC80(g/L) 协同指数 单用FLC 单用DMZ 联用FLC 联用DMZ 901 64 8 0.25 2 0.129 904 64 16 0.25 2 0.254 632 64 8 0.25 2 0.254 应用琼脂平板扩散实验更直观地验证了DMZ与FLC的协同抗真菌作用。结果显示,在单用DMZ的情况下,不同浓度的DMZ均产生了明显的抑菌圈,但抑菌圈直径的大小并没有显示出剂量依赖性;单用FLC能产生较大的抑菌圈,但抑菌作用较弱,抑菌圈内部仍有少量真菌菌落生长(图2A)。进一步用抑菌圈实验验证两药联用对耐药菌的抗真菌效果。结果显示,在含有一定浓度DMZ的琼脂中,真菌长得稀薄,DMZ的浓度越高,真菌长得越稀薄,表现出剂量依赖性。在含有不同浓度FLC的纸片周围都出现了直径较大的抑菌圈(图2B),抑菌圈的大小与FLC的含量呈现出明显的剂量依赖关系。上述实验结果表明,DMZ与FLC联合使用具有协同抗耐药菌的作用。
-
利用CCK-8法考察DMZ对小鼠胚胎成纤维细胞的毒性。CCK-8试剂中含有WST-8,在电子载体的作用下被细胞中的脱氢酶还原为具有高度水溶性的黄色甲瓒产物,生成的甲瓒物的数量与活细胞的数量成正比。因此,可利用这一特性考察DMZ对哺乳动物细胞的毒性。结果显示,当DMZ浓度为32 g/L时,小鼠胚胎成纤维细胞的存活率下降到54%,显示出一定毒性,而低于32 g/L时DMZ的毒性较低,没有表现出显著的细胞毒作用(图3)。实验结果通过单因素方差分析(ANOVA),然后进行事后Dunnett-t检验,标准偏差基于3次独立实验。
Study on antifungal effect of demethylzelamaldehyde in vitro
-
摘要:
目的 研究去甲泽拉木醛的体外抗真菌作用。 方法 采用微量液基稀释法测定去甲泽拉木醛与氟康唑单独应用于23株真菌的最低抑菌浓度(MIC),以棋盘式微量液基稀释法测定两药联合抗耐药白念珠菌的协同指数(FICI),判断两药联合抗菌效果;并通过纸片扩散实验直观验证两药联合的协同作用。最后通过CCK-8法测定去甲泽拉木醛的细胞毒性。 结果 去甲泽拉木醛单用时呈现广谱的抗真菌作用,MIC范围为4~32 g/L。两药联用时,可将氟康唑的有效浓度从大于64 g/L降至0.25 g/L,FICI值介于0.129~0.254之间,两药表现出协同抗耐药白念珠菌作用。CCK-8结果显示,去甲泽拉木醛在高于MIC值4倍浓度下才展示出细胞毒性。 结论 去甲泽拉木醛表现出较好的抗真菌作用,与氟康唑联合时有很好的协同效果,且毒性较低。 Abstract:Objective To study the antifungal effect of demethylzelamaldehyde in vitro. Methods The minimum inhibitory concentrations (MIC) of demethylzeylasteral and fluconazole against 23 fungal strains were determined by micro liquid dilution method. The synergistic index (FICI) of the two drugs was determined using a checkerboard micro liquid dilution method. The synergistic effect of the combination of the two drugs was visually verified by paper diffusion experiments. Finally, the cytotoxicity of demethylzelamaldehyde was determined by CCK-8 method. Results Demethylzelamaldehyde showed a broad spectrum of antifungal activity when used alone, with MICs ranging from 4 g/L to 32 g/L. When combined with fluconazole, the effective concentration of fluconazole could be reduced from over 64 g/L to 0.25 g/L, with FICI values ranging from 0.129 to 0.254, indicating the synergistic effect of the two drugs. The CCK-8 results showed that demethylzeylasteral exhibited cytotoxicity only at concentrations four times higher than the MIC value. Conclusion Demethylzelamaldehyde exhibited good antifungal effect and synergistic effect with fluconazole, and its toxicity was low. -
Key words:
- Candida albicans /
- demethylzeylasteral /
- fluconazole /
- synergistic effects /
- drug resistance
-
表 1 DMZ与FLC单独应用于23株真菌的MIC值
菌种 菌株 MIC80(g/L) FLC DMZ 白念珠菌 FLC敏感菌株 SC5314 0.25 8 7654 0.25 4 103 2 16 9161 0.25 4 10066 2 8 10060 0.25 4 10061 0.25 4 7879 1 8 9296 0.25 8 FLC耐药菌株 901 64 8 904 64 8 632 64 8 耳念珠菌 0029 64 32 热带念珠菌 8915 16 8 409 1 16 烟曲霉 7544 64 32 近平滑念珠菌 22019 2 4 90018 1 8 克柔念珠菌 4996 16 8 62588 16 8 10153 32 2 须毛癣菌 T5b 32 2 T5a 32 2 表 2 DMZ与FLC的协同抗氟康唑耐药白念珠菌的作用
菌株 MIC80(g/L) 协同指数 单用FLC 单用DMZ 联用FLC 联用DMZ 901 64 8 0.25 2 0.129 904 64 16 0.25 2 0.254 632 64 8 0.25 2 0.254 -
[1] CHEN M, XU Y, HONG N, et al. Epidemiology of fungal infections in China[J]. Front Med, 2018, 12(1):58-75. doi: 10.1007/s11684-017-0601-0 [2] MCCARTY T P, WHITE C M, PAPPAS P G. Candidemia and invasive candidiasis[J]. Infect Dis Clin N Am, 2021, 35(2):389-413. doi: 10.1016/j.idc.2021.03.007 [3] PEREIRA R, SANTOS FONTENELLE R O, BRITO E H S, et al. Biofilm of Candida albicans: formation, regulation and resistance[J]. J Appl Microbiol, 2021, 131(1):11-22. doi: 10.1111/jam.14949 [4] 杨偲睿, 任彪, 彭显, 等. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5):511-520. doi: 10.7518/gjkq.2022050 [5] BAI J P, SHI Y L, FANG X, et al. Effects of demethylzeylasteral and celastrol on spermatogenic cell Ca2+ channels and progesterone-induced sperm acrosome reaction[J]. Eur J Pharmacol, 2003, 464(1):9-15. doi: 10.1016/S0014-2999(03)01351-7 [6] PFALLER M A, BOYKEN L B, HOLLIS R J, et al. Validation of 24-hour fluconazole MIC readings versus the CLSI 48-hour broth microdilution reference method: results from a global Candida antifungal surveillance program[J]. J Clin Microbiol, 2008, 46(11):3585-3590. doi: 10.1128/JCM.01391-08 [7] AHSAN H, REAGAN-SHAW S, BREUR J, et al. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins[J]. Cancer Lett, 2007, 249(2):198-208. doi: 10.1016/j.canlet.2006.08.018 [8] 夏雅静. 我国中草药抗真菌的回顾性分析和研究方向的探讨[D]. 昆明: 昆明医科大学, 2019. [9] 路璐. 创新药物去甲泽拉木醛质量控制和稳定性研究[D]. 上海: 复旦大学, 2012. [10] VON LILIENFELD-TOAL M, WAGENER J, EINSELE H, et al. Invasive fungal infection[J]. Deutsches Ä rzteblatt Int, 2019, 116(16):271-278. [11] BASSETTI M, GARNACHO-MONTERO J, CALANDRA T, et al. Intensive care medicine research agenda on invasive fungal infection in critically ill patients[J]. Intensive Care Med, 2017, 43(9):1225-1238. doi: 10.1007/s00134-017-4731-2 [12] ARMSTRONG-JAMES D, BROWN G D, NETEA M G, et al. Immunotherapeutic approaches to treatment of fungal diseases[J]. Lancet Infect Dis, 2017, 17(12):e393-e402. doi: 10.1016/S1473-3099(17)30442-5 [13] BORMAN A M, SZEKELY A, JOHNSON E M. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species[J]. mSphere, 2016, 1(4): e00189-16. [14] BING J, HU T R, ZHENG Q S, et al. Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris[J]. Antimicrob Agents Chemother, 2020, 65(1):e01466-e01420. [15] SHAHI G, KUMAR M, SKWARECKI A S, et al. Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor[J]. Cell Surf, 2022, 8:100076. doi: 10.1016/j.tcsw.2022.100076 [16] MORSCHHÄUSER J. The development of fluconazole resistance in Candida albicans - an example of microevolution of a fungal pathogen[J]. J Microbiol, 2016, 54(3):192-201. doi: 10.1007/s12275-016-5628-4 [17] YANG Y, ZHAO M, HU T, et al. Identification of an antitumor effect of demethylzeylasteral on human gastric cancer cells[J]. Oncol Lett, 2021, 21(1):49.