| [1] | CHEN M, XU Y, HONG N, et al. Epidemiology of fungal infections in China[J]. Front Med, 2018, 12(1):58-75. doi: 10.1007/s11684-017-0601-0 |
| [2] | MCCARTY T P, WHITE C M, PAPPAS P G. Candidemia and invasive candidiasis[J]. Infect Dis Clin N Am, 2021, 35(2):389-413. doi: 10.1016/j.idc.2021.03.007 |
| [3] | PEREIRA R, SANTOS FONTENELLE R O, BRITO E H S, et al. Biofilm of Candida albicans: formation, regulation and resistance[J]. J Appl Microbiol, 2021, 131(1):11-22. doi: 10.1111/jam.14949 |
| [4] | 杨偲睿, 任彪, 彭显, 等. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5):511-520. doi: 10.7518/gjkq.2022050 |
| [5] | BAI J P, SHI Y L, FANG X, et al. Effects of demethylzeylasteral and celastrol on spermatogenic cell Ca2+ channels and progesterone-induced sperm acrosome reaction[J]. Eur J Pharmacol, 2003, 464(1):9-15. doi: 10.1016/S0014-2999(03)01351-7 |
| [6] | PFALLER M A, BOYKEN L B, HOLLIS R J, et al. Validation of 24-hour fluconazole MIC readings versus the CLSI 48-hour broth microdilution reference method: results from a global Candida antifungal surveillance program[J]. J Clin Microbiol, 2008, 46(11):3585-3590. doi: 10.1128/JCM.01391-08 |
| [7] | AHSAN H, REAGAN-SHAW S, BREUR J, et al. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins[J]. Cancer Lett, 2007, 249(2):198-208. doi: 10.1016/j.canlet.2006.08.018 |
| [8] | 夏雅静. 我国中草药抗真菌的回顾性分析和研究方向的探讨[D]. 昆明: 昆明医科大学, 2019. |
| [9] | 路璐. 创新药物去甲泽拉木醛质量控制和稳定性研究[D]. 上海: 复旦大学, 2012. |
| [10] | VON LILIENFELD-TOAL M, WAGENER J, EINSELE H, et al. Invasive fungal infection[J]. Deutsches Ä rzteblatt Int, 2019, 116(16):271-278. |
| [11] | BASSETTI M, GARNACHO-MONTERO J, CALANDRA T, et al. Intensive care medicine research agenda on invasive fungal infection in critically ill patients[J]. Intensive Care Med, 2017, 43(9):1225-1238. doi: 10.1007/s00134-017-4731-2 |
| [12] | ARMSTRONG-JAMES D, BROWN G D, NETEA M G, et al. Immunotherapeutic approaches to treatment of fungal diseases[J]. Lancet Infect Dis, 2017, 17(12):e393-e402. doi: 10.1016/S1473-3099(17)30442-5 |
| [13] | BORMAN A M, SZEKELY A, JOHNSON E M. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species[J]. mSphere, 2016, 1(4): e00189-16. |
| [14] | BING J, HU T R, ZHENG Q S, et al. Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris[J]. Antimicrob Agents Chemother, 2020, 65(1):e01466-e01420. |
| [15] | SHAHI G, KUMAR M, SKWARECKI A S, et al. Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor[J]. Cell Surf, 2022, 8:100076. doi: 10.1016/j.tcsw.2022.100076 |
| [16] | MORSCHHÄUSER J. The development of fluconazole resistance in Candida albicans - an example of microevolution of a fungal pathogen[J]. J Microbiol, 2016, 54(3):192-201. doi: 10.1007/s12275-016-5628-4 |
| [17] | YANG Y, ZHAO M, HU T, et al. Identification of an antitumor effect of demethylzeylasteral on human gastric cancer cells[J]. Oncol Lett, 2021, 21(1):49. |