留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

栀子及其有效部位的质量标准研究

葛稳 高葱葱 李东阳 陈卫东 周婷婷

潘青杰, 张文文, 王芳. 羁押人员应用抗感染药物所致的158例不良反应分析[J]. 药学实践与服务, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
引用本文: 葛稳, 高葱葱, 李东阳, 陈卫东, 周婷婷. 栀子及其有效部位的质量标准研究[J]. 药学实践与服务, 2023, 41(2): 113-118. doi: 10.12206/j.issn.2097-2024.202210003
PAN Qingjie, ZHANG Wenwen, WANG Fang. Analysis on 158 detainees with adverse reactions due to anti-infective drugs[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
Citation: GE Wen, GAO Congcong, LI Dongyang, CHEN Weidong, ZHOU Tingting. Study on quality standard of Gardenia jasminoides and its effective parts[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(2): 113-118. doi: 10.12206/j.issn.2097-2024.202210003

栀子及其有效部位的质量标准研究

doi: 10.12206/j.issn.2097-2024.202210003
基金项目: 国家自然科学基金项目(81973457);上海市科委科技行动创新计划(21S21902400)
详细信息
    作者简介:

    葛稳,硕士研究生,研究方向:药物分析,Email:gwww1010@163.com

    通讯作者: 周婷婷,博士,教授,博士生导师,研究方向:中药药效物质基础与体内代谢研究,Email:tingting_zoo@163.com
  • 中图分类号: R917

Study on quality standard of Gardenia jasminoides and its effective parts

  • 摘要:   目的  对栀子及其有效部位的质量标准进行研究。  方法  采用薄层色谱法(TLC)对栀子及其有效部位进行定性鉴别;采用电感耦合等离子体质谱法(ICP-MS)检查其重金属及有害元素;根据现行版《中国药典》中水分测定法对其进行水分检查;采用高效液相色谱法(HPLC)测定其中栀子苷的含量。  结果  TLC法能够对栀子及其有效部位进行鉴别。栀子及其有效部位的水分含量分别为8.4%、3.2%。同时测定栀子及其有效部位中5种元素的含量,砷、镉、铜、汞、铅分别在0~20、0~10、0~500、0~5、0~20 ng/ml范围内呈现良好的线性关系,各金属元素的方法检出限为3.3×10−5~1.3×10−3 mg/kg,精密度的RSD值为0.32%~0.82%,该方法的重复性较好,砷、镉、铜、汞、铅的加样回收率分别为103%~112%、98%~99%、98%~99%、105%~106%、100%~103%(n=3),各测定元素在8 h内的稳定性良好,5种元素的含量均在现行版《中国药典》限量范围内。采用高效液相色谱法同时测定栀子及其有效部位中栀子苷的含量,栀子苷标准曲线方程为Y=15860X+22543,r=0.9999,表明栀子苷在20.16~322.6 μg/ml范围内呈现良好的线性关系,精密度的RSD值为1.86%,两种供试品中栀子苷含量的RSD值分别为2.38%、2.60%,表明该测定方法的重复性良好,栀子药材的平均加样回收率为99.1%(n=6),两种供试品溶液在8 h内稳定性良好,栀子及其有效部位中栀子苷的含量分别为5.71%、34.2%。  结论  栀子有效部位的质量研究在栀子质量研究基础上开展,且结果符合要求,本实验所建立的方法能够实现同时对栀子及其有效部位的质量进行控制。
  • 超多孔水凝胶(SPF)是一种三维结构的亲水性高分子聚合网格,在水中能够溶胀但不溶解,且因其具有良好的生物相容及生物可降解性,被广泛应用于医学、药学等领域。与传统水凝胶相比,超多孔水凝胶通过致孔剂、模板等方法调整孔隙率,从而改变溶胀速率以及释药速率[1-3]。胰岛素等生物大分子类药物不仅体内稳定性差、易被酶解、生物半衰期短、不易透过生理屏障,故现有给药方式多以注射为主,患者依从性差[4]。有研究显示[5],超多孔水凝胶承载胰岛素灌胃后可以显著降低大鼠血糖:给药2 h后血糖显著下降,4~6 h降至最低,但12 h即回至最初血糖的80%,说明该制剂起效快但持续时间短,血糖波动大,需频繁给药,患者依从性差。上述情况,结合胃肠道对胰岛素的灭活等原因,本实验拟合成具有缓释作用的聚(丙烯酸-丙烯酰胺)/O-羧甲基壳聚糖[P(AA-co-AM)/O-CMC]互穿网络聚合物超多孔水凝胶(SPH-IPN),以期通过皮下给药包载胰岛素的SPH-IPN后,实现长效、减小血糖波动的目的。

    丙烯酰胺(AM)、丙烯酸(AA)、N,N′-亚甲基-双丙烯酸胺(Bis)、过硫酸铵(APS)、N,N,N′,N′-四甲基乙二胺(TEMED)均购自上海阿拉丁生化科技股份有限公司;泊洛沙姆127(PF127,北京化工厂);O-羧甲基壳聚糖(O-CMC,大连美仑生物技术有限公司);戊二醛(GA,上海阿拉丁生化科技股份有限公司);姜黄素(宝鸡国康生物科技有限公司);牛胰岛素(上海源叶生物有限公司);十二烷基硫酸钠(SDS)、乙二胺四乙酸二钠(EDTA)、碳酸氢钠、盐酸、乙醇、甲醇、乙酸乙酯、氢氧化钠均为分析纯,实验用水为去离子水。

    85-2型恒温磁力搅拌器(上海司乐仪器有限公司);恒温水浴锅(余姚市东方电工仪器厂);透析袋(Viskase,美国);Nicolet iS50傅里叶变换红外光谱仪(Thermo,美国);AVANCE III 400核磁共振谱仪(Bruker,德国);FE28型pH计(Mettler Toledo,美国);Waters UPLC:二元溶剂管理系统、在线脱气机、自动进样器、PDA检测器(Waters公司,美国);TTL-DC型多功能氮吹仪(北京同泰联科技发展有限公司);SHA-B双功能恒温水浴振荡器(常州金坛良友仪器有限公司)。

    雄性SD大鼠,体重范围(220±20)g,合格证号:SCXK(京)2017-0002,购自北京斯贝福实验动物科技有限公司,饲养于北京中医药大学动物房。

    依次向西林瓶中加入50% AM和AA溶液,以10 mol/L NaOH调节pH至5.0。随后再加入2.5% Bis溶液、10% PF 127溶液、20%APS溶液和50 μl 16.7% TEMED溶液,磁力搅拌混匀。室温放置15 min后,逐滴加入 6% O-CMC溶液,使溶液中O-CMC/单体比(w/w)为0.144,迅速加入NaHCO3粉末,搅拌约20 s使其产生气泡,将其置于40 ℃水浴加热5 min,室温固化30 min,即得半互穿网络水凝胶(semi-IPN)。将所得semi-IPN置于GA/O-CMC比(w/w)为2∶10的GA溶液(用0.2 mol/L的盐酸溶液调节pH至1.0)中至将其吸干,室温放置1 h,得粗P(AA-co-AM)/O-CMC超多孔水凝胶(SPH-IPN)。将SPH-IPN置于0.1 mol/L盐酸溶液中,透析5 d,无水乙醇中脱水透析2 d,30 ℃烘干至恒重,干燥密闭保存,即得纯化后的SPH-IPN。

    将样品充分干燥,KBr压片法制样,使用傅里叶变换红外光谱仪测定500~4 000 cm−1波数的SPH-IPN的IR谱。将样品置于氧化锆样品管(A=4 mm),转速5 000 Hz,固体碳谱测定。

    取干燥的SPH-IPN,室温下浸于过量水中(pH 7.0),于不同时间点用筛网取出SPH-IPN,吸去表面残余水后称重,根据以下公式计算SPH-IPN在不同时间点的溶胀比(QS):

    $$ {Q_{\rm{S}}} = \frac{{{W_{\rm{S}}} - {W_{\rm{d}}}}}{{{W_{\rm{d}}}}} $$

    其中,WS为溶胀后SPH-IPN质量(g);Wd为干SPH-IPN质量(g)。

    采用乙醇替代法测定SPH-IPN的孔隙率[6]。取干燥的SPH-IPN,置无水乙醇中浸泡12 h,取出后吸去表面残余乙醇,称重,根据以下公式计算孔隙率:

    $$ {\text{孔隙率}}=\frac{{M}_{2}-{M}_{1}}{\rho V}\times 100\;\text{%}$$

    其中,M1为干SPH-IPN质量(g);M2为乙醇浸泡后的SPH-IPN质量(g);ρ为乙醇密度(g/cm),V为SPH-IPN体积(cm3,以游标卡尺测量长方体SPH-IPN的长、宽、高后计算而得)。

    2.5.1   载胰岛素SPH-IPN的制备

    取胰岛素15 mg,精密称定,置10 ml量瓶中,加0.1 mol/L pH 7.4 PBS溶解并定容至刻度,得1.5 mg/ml的胰岛素溶液。称取50 mg SPH-IPN置装有10 ml胰岛素溶液的西林瓶中,37 ℃温浴放置2 h,取出,置烘箱内,30 ℃恒温干燥。

    2.5.2   载药量的测定

    取胰岛素SPH-IPN适量,研磨粉碎,取20 mg,精密称定,置10 ml量瓶中,加入0.1 mol/L pH 7.4 PBS,定容至刻度。37 ℃温浴2 h,超声10 min,精密量取上清液20 μl注入HPLC仪,记录色谱图,计算胰岛素含量,并根据以下公式计算载药量:

    $$ {\text{载药量}}(\%)=\frac{cV}{M}\times 100$$

    其中,c为测得胰岛素的浓度(mg/ml),V为量瓶体积(ml),M为SPH-IPN的质量(mg)。

    2.6.1   不同方法载药SPH-IPN的制备

    按“2.5.1”项下方法制备载胰岛素SPH-IPN,采用冷冻干燥法将其冻干即得含胰岛素的冻干SPH-IPN。称取空白凝胶200 mg置于1.5 mg/ml的胰岛素溶液37 ℃中溶胀2 h,备用,即得含胰岛素的预溶胀SPH-IPN。

    2.6.2   糖尿病大鼠模型的建立

    给大鼠喂食高脂饲料(88.8%基础饲料、1%胆固醇、10%猪油和 0.2%胆盐[7])喂养4周,动物自由进食和饮水,每周记录体重。于喂养的第28天晚禁食,在第29天一次性腹腔注射链脲佐菌素(STZ)35 mg/kg,将一次性注射STZ 3 d后大鼠空腹血糖≥11.1 mmol/L或随机血糖≥16.7 mmol/L作为成模标准[8]。对照组大鼠则腹腔注射无菌生理盐水(0.3 ml/100 g)。注意测血糖前应禁食12 h,空腹测血糖。造模期间要防止感染,注意消毒。未造模成功的大鼠再次注射STZ35 mg/kg,3 d后测血糖验证是否造模成功。

    2.6.3   分组、给药及血糖测定

    取糖尿病大鼠12只,按随机数字表分为2组,即模型1组和模型2组;取正常大鼠12只,按随机数字表分为2组,即正常1组和正常2组。模型组1组和正常1组皮下埋植含胰岛素的预溶胀SPH-IPN,模型2组和正常2组皮下埋植含胰岛素的冻干SPH-IPN。给药后分别于1、2、4、6、8、10、12、24、28、32、36、48、60、72 h不同时间间隔大鼠尾部取血0.02 ml,用血糖仪测定血糖值,考察不同时间血糖值的变化情况。

    3.1.1   傅立叶变换红外光谱(FTIR)

    图1为SPH-IPN的FTIR图。在1 651 cm−1处有-COOH的伸缩振动峰,且1 615 cm−1附近无AA和AM的C=C双键吸收峰,说明已聚合成P(AA-co-AM),SPH-IPN中存在P(AA-co-AM),图中3 335和2 922 cm-1处分别为-O-H和-C-H的伸缩振动峰;1 604和1 416 cm−1处分别为羧酸盐-COO-的反对称伸缩振动峰和对称伸缩振动峰;1 086、1 044和1 171 cm−1处分别为O-CMC中糖环羟基-CH-OH、一级羟基-CH2-OH和醚基C-O-C中的C-O伸缩振动峰。以上结果表明SPH-IPN中存在P(AA-co-AM),还存在的一些杂峰可能是还有一些未反应单体未被除尽。

    图  1  SPH-IPN的傅立叶变换红外光谱
    3.1.2   核磁共振(13C-NMR)

    图2为SPH-IPN的13C-NMR图。图中41.926×10−6为P(AA-co-AM)上主链碳原子的化学位移峰;179.499处为羧基碳原子的化学位移峰,说明结构中含有羧基官能团,AA与AM已聚合形成P(AA-co-AM)。

    图  2  SPH-IPN的核磁共振碳谱

    由于制得的水凝胶未找到合适的溶液将其溶解,因此在测定核磁共振图谱时,采用的是固体核磁技术[9]

    综合红外和碳谱结果可知,通过该方法可聚合形成P(AA-co-AM)结构,而该结构又是超多孔水凝胶SPH-IPN的主要结构,由此可说明已成功聚合SPH-IPN。

    图3为不同温度介质中SPH-IPN的溶胀曲线,可见随着温度升高,SPH-IPN的溶胀速率加快,平衡溶胀比增大,原因是温度较高时相互缠绕的聚合物链松开,破坏分子间的氢键,增加链运动,水分子在凝胶骨架内外的扩散速率加快,从而促进了聚合物的溶胀[10]

    图  3  不同温度下SPH-IPN的溶胀性

    表1为SPH-IPN孔隙率测定结果,所制SPH-IPN超多孔水凝胶空隙分布均匀。除此之外,与传统水凝胶相比[11],孔隙率高,更利于药物的释放。

    表  1  SPH-IPN的孔隙率测定结果
    干重M1
    (m/g)
    湿重M2
    (m/g)
    乙醇密度
    (g/cm3)
    体积
    (V/cm3)
    孔隙率
    (%)
    平均值
    (%)
    RSD
    (%)
    0.54250.63270.8160.1385.0381.633.88
    0.57510.67790.8160.1678.74
    0.56280.66210.8160.1581.13
    下载: 导出CSV 
    | 显示表格

    37 ℃时SPH-IPN溶胀比较大,温度过高易引起胰岛素变性,故选择37 ℃温度载药,胰岛素的载药量试验结果见表2

    表  2  SPH-IPN对胰岛素的载药量
    试验组载药量(w/w,%)平均值(w/w,%)RSD(%)
    13.133.191.88
    23.25
    33.20
    下载: 导出CSV 
    | 显示表格

    图4是含胰岛素的预溶胀SPH-IPN和冻干SPH-IPN对糖尿病大鼠和正常大鼠降糖作用的比较。图中预溶胀模型组在10 h时血糖值才有所降低,最低值为10 h的16.8 mmol/L,之后血糖又开始慢慢升高;预溶胀正常大鼠组在给药4 h后血糖开始降低,到24 h时血糖达到7.3 mmol/L,之后维持平稳状态;冻干模型组在包埋1 h后血糖便开始下降,血糖值降到6.7 mmol/L,在24 h后血糖开始慢慢升高,冻干正常大鼠组在1 h后血糖降至5.3 mmol/L,之后虽有起伏,但也一直在正常范围内。说明冻干凝胶的降糖作用较预溶胀组好,冻干凝胶在1~24 h时间段内的降糖作用较平稳。

    图  4  载胰岛素SPH-IPN的降糖作用

    本实验选用了能够迅速聚合的水溶性原料AA、AM为聚合反应单体;以APS/TEMED为引发体系;PF127为泡沫稳定剂,使产生的泡沫稳定时间更长;NaHCO3为起泡剂;O-CMC在合成过程中作为增稠剂,维持合适的起泡速率,使产生的气泡均匀、稳定,不致产生的气泡过快逸散[12]。采用溶液聚合法制备了含semi-IPN的水凝胶。因为该聚合反应在反应过程中会产生大量热量,这对泡沫的稳定极为有利,因此在常温条件下便能进行聚合反应,条件温和。以pH 1.0的GA溶液交联O-CMC时,可避免过度溶胀对孔隙结构的破坏,且pH 1.0时GA的交联能力较好。除此之外,相较于参考文献[5],本实验中O-CMC/单体比较高,当O-CMC/单体比为0.144时,虽然可形成具有大量相互贯通孔隙的聚合物,但会导致其溶胀速率减慢,溶胀比降低,从而影响载药量和释药速率。随着溶胀速率减慢,药物溶出速率也相应减慢;随着溶胀比的降低,吸收的药物溶液减少,载药量随之降低。本实验提高O-CMC/单体的目的是希望通过减慢SPH-IPN的溶胀速率,从而尝试制备缓释制剂。

    水凝胶的载药方法通常有2种:一是将药物与单体溶液混合,随着单体聚合、交联将药物包埋于水凝胶中[13];另一种方法为吸附载药,即凝胶在被载药液中溶胀,将载药水凝胶干燥,实现药物包埋[14]。姜黄素属于脂溶性药物,课题组前期研究结果表明,0.5%的SDS对姜黄素有一定的增溶效果;0.1 mol/L pH 7.4 PBS中SPH-IPN的溶胀比较大,对胰岛素具有一定的增溶作用,故分别选用这两种溶剂配制胰岛素溶液。

    文献[5]表明,超多孔水凝胶载药后的释药性能与O-CMC的含量、pH、离子强度、温度等多个因素有关,同时也有可能与载药SPH-IPN的制备过程有关。

    笔者曾用SPH-IPN包载姜黄素,并开展探索性实验。结果发现20、40、60目不同粒径的凝胶累积释放率不同,前13 h三者的累积释放率均几乎一样(接近0),13 h后累积释放率逐渐增加,以40目凝胶的效果最佳,48 h后达到6.00%,明显高于其他组,但其释放速度慢,见图5。灌胃给予载姜黄素SPH-IPN后,部分大鼠排泄物中可见载姜黄素SPH-IPN,说明SPH-IPN在体内溶胀速率很慢;而载姜黄素SPH-IPN组和姜黄素原药组,灌胃后大鼠眼眶血中均未检出姜黄素,也进一步体现SPH-IPN未促进姜黄素的吸收。

    图  5  不同粒径载姜黄素SPH-IPN的释药情况

    将载胰岛素SPH-IPN予灌胃给药溶胀很慢,降糖效果极不明显,为延长SPH-IPN溶胀时间,最终考虑将其进行皮下包埋给药。

    载胰岛素SPH-IPN皮下包埋给药发现,载胰岛素冻干SPH-IPN组的降糖效果优于载胰岛素溶胀SPH-IPN组,表明载药SPH-IPN的释放性能除与溶胀比有关外,其制备过程也会一定程度影响被载药物的疗效,与文献[5]报道一致。实验中将冻干组和溶胀组均进行包埋,均可延长溶胀时间,但冻干SPH-IPN组的降糖效果优,皮下包埋2 h后表现出明显的降糖作用,相比溶胀组而言,起效时间快(8 h左右)且持续时间长,24 h之内均具有良好的降糖作用。提示我们在制备载药SPH-IPN的过程中应该时刻关注被载药物的活性及稳定性,应在适当的条件下对药物进行包载以提高药物疗效,同时也说明载胰岛素冻干SPH-IPN可作为控释制剂,实现调节大鼠血糖的目的。结合实验结果分析可知,SPH-IPN能够增强药物的稳定性,提高生物利用度,比较适合作为蛋白质药物给药载体。

    文献研究发现,胰岛素经皮给药具有不错的疗效,与皮下给药效果几无差异,且依从性好,成为最新、有效、方便的给药方式。Norduist等[15]将微针贴剂用于胰岛素给药,结果发现,血浆胰岛素浓度变化与传统的皮下注射并无太大差异,但微针贴剂能极大地提高实验大鼠的依从性。无痛中空微针皮内胰岛素给药系统已获得 FDA批准,进入II期临床,相关产品有以色列纳米通道技术公司采用MEMS技术开发的中空微针器具,其中包括用于无痛释放胰岛素薄片与胰岛素微型泵相结合。Liu等[16]将可溶性材料透明质酸制备成负载胰岛素的微针阵列。在体实验发现,负载胰岛素的微针能够在1 h内完全溶解,携带的胰岛素快速释放入体内。

    与上述研究及应用相比,本实验的载胰岛素SPH-IPN,释放药物无需微型泵,皮下包埋给药可以24 h内保持平稳、正常的血糖浓度,适合作为一日一次给药的控释制剂。为了提高患者的依从性,进一步研究将载胰岛素SPH-IPN制备为微针阵列的形式,以期得到一种方便、快捷、安全的胰岛素缓释递药系统。

  • 图  1  栀子薄层色谱图

    1.栀子;2.栀子有效部位;3.栀子对照药材;4.栀子苷对照品

    图  2  专属性试验HPLC色谱图

    A.空白溶剂;B.栀子苷对照品溶液;C.栀子供试品溶液;D.栀子有效部位供试品溶液;1.栀子苷

    表  1  ICP-MS仪器主要参数

    参数参数设定参数参数设定
    高频功率1.20 kW等离子体气流速8.0 L/min
    辅助气流速1.10 L/min载气流速0.70 L/min
    矩管类型Mini矩管雾化器同心雾化器
    雾化室旋流雾化室温度5 ℃
    采样深度5.0 mm高频频率27.12 MHz
    碰撞气体He碰撞气流速6 ml/min
    池电压−21 V能量过滤器电压7.0 V
    下载: 导出CSV

    表  2  5种元素线性关系考察

    元素回归方程r线性范围
    (ng/ml)
    方法检出限
    (mg/kg)
    AsY=10.01048X+
    0.239892
    0.99990~209.5×10−5
    CdY=7.470893X+
    0.156068
    0.99990~103.3×10−5
    CuY=31.18023X
    44.78735
    0.99990~5003.5×10−4
    HgY=3.455492X+
    0.017324
    1.0000~51.3×10−3
    PbY=20.95865X+
    3.068030
    0.99980~204.9×10−5
    下载: 导出CSV

    表  3  栀子及栀子有效部位中重金属及有害元素加样回收率试验结果

    测定元素栀子栀子有效部位
    样品含量
    (ng)
    加入量
    (ng)
    测得量
    (ng)
    平均回收率
    (%)
    RSD
    (%)
    样品含量
    (ng)
    加入量
    (ng)
    测得量
    (ng)
    平均回收率
    (%)
    RSD
    (%)
    As77.5050133.71120.51195.0250453.21030.56
    Cd33.652558.33991.176.0502530.53980.12
    Cu374050008650980.00146550006433990.58
    Hg4.2651014.901061.411.1351011.681051.52
    Pb276.0250526.71001.15179.0250435.31030.69
    下载: 导出CSV

    表  4  栀子及栀子有效部位中5种重金属元素的含量(mg/kg)

    样品AsCdCuHgPb
    栀子0.1560.06707.280.008440.553
    栀子有效部位0.3900.01202.830.001790.361
    下载: 导出CSV

    表  5  栀子苷加样回收率试验结果

    编号药材粉
    末量(g)
    原有量
    (mg)
    加入量
    (mg)
    测得量
    (mg)
    回收率
    (%)
    平均回
    收率(%)
    RSD
    (%)
    10.09644.7086.00610.6598.999.12.18
    20.09514.6455.99410.80102.7
    30.09334.5576.13210.4596.1
    40.10054.9085.99410.8699.3
    50.09314.5476.09010.6099.4
    60.10064.9136.07210.8798.1
    下载: 导出CSV

    表  6  栀子药材及有效部位中栀子苷含量测定结果

    种类编号称样量(mg)含量(%)平均(%)
    栀子1100.75.765.71
    2100.55.87
    3100.55.51
    栀子有效部位113.6033.534.2
    213.4034.7
    313.5734.4
    下载: 导出CSV
  • [1] 国家药典委员会. 中华人民共和国药典(一部)2020年版[S]. 北京: 中国医药科技出版社, 2020.
    [2] 马金凤. 中药栀子主要化学成分研究[D]. 广州: 暨南大学, 2019.
    [3] 韩燕. 栀子豉汤的药效物质基础研究[D]. 福州: 福建中医药大学, 2015.
    [4] 曹亚楠. 栀子有效成分提取及其抑制LDL氧化修饰的研究[D]. 天津: 天津科技大学, 2020.
    [5] 张陆勇, 季慧芳, 曹于平, 等. 栀子西红花总苷对神经、心血管及呼吸系统的影响[J]. 中国药科大学学报, 2000, 31(6):455-457. doi:  10.3321/j.issn:1000-5048.2000.06.015
    [6] 尚新涛, 张琳, 祖元刚, 等. 京尼平苷对CCl4诱导的大鼠慢性肝损伤保护作用研究[J]. 中药药理与临床, 2012, 28(4):29-31.
    [7] 张立明. 京尼平甙和藏红花素对四氯化碳急性肝中毒小鼠的保护作用研究[D]. 成都: 中国科学院研究生院(成都生物研究所), 2005.
    [8] 杨超, 刘婧, 钟瑞, 等. 栀子有效部位的溃疡性结肠炎活性及其化学成分研究[J]. 中国药理学通报, 2021, 37(2):263-269. doi:  10.3969/j.issn.1001-1978.2021.02.021
    [9] 谢文利, 李宏捷, 晋玉章. 京尼平苷的降血糖作用研究[J]. 武警医学院学报, 2008, 17(7):580-581.
    [10] 颜静恩, 李晚忱, 吕秋军, 等. 栀子苷的降糖作用和对PPARγ受体的激活[J]. 四川农业大学学报, 2007, 25(4):415-418. doi:  10.3969/j.issn.1000-2650.2007.04.010
    [11] 黄洪林, 杨怀瑾, 刘立超, 等. 栀子降血糖作用的实验研究[J]. 中药新药与临床药理, 2006, 17(1):1-3. doi:  10.3321/j.issn:1003-9783.2006.01.001
    [12] 孙旭群, 赵新民, 杨旭. 栀子苷利胆作用实验研究[J]. 安徽中医学院学报, 2004, 23(5):33-36.
    [13] 朱江, 蔡德海, 芮菁. 栀子的抗炎镇痛作用研究[J]. 中草药, 2000, 31(3):198-200. doi:  10.3321/j.issn:0253-2670.2000.03.020
    [14] 赵维民, 季新泉, 叶庆华, 等. 栀子兰色素可能为栀子粉末外用抗炎消肿时的活性物质[J]. 天然产物研究与开发, 2000, 12(4):41-44. doi:  10.3969/j.issn.1001-6880.2000.04.008
    [15] 杨然, 陆远, 郝昊, 等. 金银花环烯醚萜苷类化学成分和药理活性研究进展[J]. 中国中药杂志, 2021, 46(11):2746-2752.
    [16] 张冰冰, 欧则民, 严林, 等. 栀子总环烯醚萜和总西红花苷的提取纯化工艺考察[J]. 中国实验方剂学杂志, 2022, 28(11):156-163. doi:  10.13422/j.cnki.syfjx.20220153
    [17] 鲁艳梅, 马趣环, 石晓峰, 等. 糙叶败酱总环烯醚萜苷的纯化工艺及抗炎活性研究[J]. 中国现代应用药学, 2021, 38(21):2675-2682.
    [18] 向雪滢, 杨建华, 胡君萍, 等. 新疆假龙胆的保肝活性部位环烯醚萜苷提取纯化工艺研究[J]. 西北药学杂志, 2019, 34(2):151-158. doi:  10.3969/j.issn.1004-2407.2019.02.003
    [19] 周婷婷, 闻俊, 佟典承, 等. 栀子总环烯醚萜苷含量的紫外分光光度法测定[J]. 时珍国医国药, 2011, 22(2):273-275. doi:  10.3969/j.issn.1008-0805.2011.02.003
  • [1] 江冼芮, 段雅倩, 刘畅, 张成中.  淫羊藿中黄酮苷类化合物的群体感应抑制作用研究 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409060
    [2] 冯一帆, 严啸东, 张文彬, 李炳锋, 郭美丽.  菸花苷长期给药对脑缺血再灌注损伤大鼠神经功能的影响 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407038
    [3] 乔方良, 蒋益萍, 夏天爽, 刘爱军, 赵凯, 辛海量.  对萼猕猴桃苷E提取分离纯化工艺的研究 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202407001
    [4] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 185-189. doi: 10.12206/j.issn.2097-2024.202401072
    [5] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [6] 吴海韵, 杨甜, 张弛, 梁文仪, 苏娟.  气相色谱-离子迁移谱技术在中药研究中的应用进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409007
    [7] 余小翠, 王习文, 张贵英, 徐君伟, 祝雨薇, 胡丹.  麝香接骨胶囊的HPLC特征图谱的研究及7种成分含量测定 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202307059
    [8] 陈方剑, 赵娟娟, 叶侃倜, 孙煜昕, 刘继勇, 杨骏.  血通胶囊提取工艺优化及质量控制研究 . 药学实践与服务, 2025, 43(2): 82-86, 91. doi: 10.12206/j.issn.2097-2024.202409003
    [9] 韩丹, 高文, 王璐暖, 孙蕊, 郭明明, 舒丽芯.  美国FDA有关药品紧急授权的做法与启示 . 药学实践与服务, 2024, 42(12): 533-536. doi: 10.12206/j.issn.2097-2024.202309044
    [10] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [11] 凯丽比努尔·奥布力艾散, 李倩, 谢志, 贾文彦, 尹东锋.  星点设计-效应面法优化仑伐替尼混合胶束的制备工艺 . 药学实践与服务, 2024, 42(11): 495-502. doi: 10.12206/j.issn.2097-2024.202403019
    [12] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [13] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [14] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  4786
  • HTML全文浏览量:  1950
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-11-16
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-02-25

栀子及其有效部位的质量标准研究

doi: 10.12206/j.issn.2097-2024.202210003
    基金项目:  国家自然科学基金项目(81973457);上海市科委科技行动创新计划(21S21902400)
    作者简介:

    葛稳,硕士研究生,研究方向:药物分析,Email:gwww1010@163.com

    通讯作者: 周婷婷,博士,教授,博士生导师,研究方向:中药药效物质基础与体内代谢研究,Email:tingting_zoo@163.com
  • 中图分类号: R917

摘要:   目的  对栀子及其有效部位的质量标准进行研究。  方法  采用薄层色谱法(TLC)对栀子及其有效部位进行定性鉴别;采用电感耦合等离子体质谱法(ICP-MS)检查其重金属及有害元素;根据现行版《中国药典》中水分测定法对其进行水分检查;采用高效液相色谱法(HPLC)测定其中栀子苷的含量。  结果  TLC法能够对栀子及其有效部位进行鉴别。栀子及其有效部位的水分含量分别为8.4%、3.2%。同时测定栀子及其有效部位中5种元素的含量,砷、镉、铜、汞、铅分别在0~20、0~10、0~500、0~5、0~20 ng/ml范围内呈现良好的线性关系,各金属元素的方法检出限为3.3×10−5~1.3×10−3 mg/kg,精密度的RSD值为0.32%~0.82%,该方法的重复性较好,砷、镉、铜、汞、铅的加样回收率分别为103%~112%、98%~99%、98%~99%、105%~106%、100%~103%(n=3),各测定元素在8 h内的稳定性良好,5种元素的含量均在现行版《中国药典》限量范围内。采用高效液相色谱法同时测定栀子及其有效部位中栀子苷的含量,栀子苷标准曲线方程为Y=15860X+22543,r=0.9999,表明栀子苷在20.16~322.6 μg/ml范围内呈现良好的线性关系,精密度的RSD值为1.86%,两种供试品中栀子苷含量的RSD值分别为2.38%、2.60%,表明该测定方法的重复性良好,栀子药材的平均加样回收率为99.1%(n=6),两种供试品溶液在8 h内稳定性良好,栀子及其有效部位中栀子苷的含量分别为5.71%、34.2%。  结论  栀子有效部位的质量研究在栀子质量研究基础上开展,且结果符合要求,本实验所建立的方法能够实现同时对栀子及其有效部位的质量进行控制。

English Abstract

潘青杰, 张文文, 王芳. 羁押人员应用抗感染药物所致的158例不良反应分析[J]. 药学实践与服务, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
引用本文: 葛稳, 高葱葱, 李东阳, 陈卫东, 周婷婷. 栀子及其有效部位的质量标准研究[J]. 药学实践与服务, 2023, 41(2): 113-118. doi: 10.12206/j.issn.2097-2024.202210003
PAN Qingjie, ZHANG Wenwen, WANG Fang. Analysis on 158 detainees with adverse reactions due to anti-infective drugs[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(1): 90-93. doi: 10.12206/j.issn.1006-0111.202004087
Citation: GE Wen, GAO Congcong, LI Dongyang, CHEN Weidong, ZHOU Tingting. Study on quality standard of Gardenia jasminoides and its effective parts[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(2): 113-118. doi: 10.12206/j.issn.2097-2024.202210003
  • 栀子是茜草科植物栀子(Gardenia jasminoides Ellis)的干燥成熟果实[1],主要产地为江西省抚州市、河南省唐河县等,中医药应用历史悠久,是一种药食两用资源。其具有清热祛火、缓解心烦、消肿止痛、化痰止咳等功效,用于热病心烦、湿热黄疸、淋证涩痛、血热吐衄、目赤肿痛、火毒疮疡,外治扭挫伤痛[1]。近年来,国内外众多学者对栀子做了大量的研究,证明了栀子中含有环烯醚萜、单萜、二萜、三萜、黄酮类、有机酸和挥发性化合物等丰富的化学成分[2-4],具有抑制神经系统[5]、保肝[6-7]、抗氧化[8]、降血糖[9-11]、利胆[12]、镇痛[13-14]等药理作用,其中主要的有效成分为环烯醚萜苷类化合物。

    目前对于环烯醚萜苷类化合物的富集纯化主要以大孔吸附树脂为主[15-18],本课题组前期建立了一种用栀子果实制备总环烯醚萜苷的方法,并获得了国家发明专利授权(ZL200510026144.5)。此制备工艺得率高,成本低廉,为环烯醚萜苷类成分的研究及探索栀子的药效物质基础提供技术支持,对栀子及其有效部位的全面质量评价至关重要。

    栀子环烯醚萜苷类有效部位的质量控制指标与栀子药材相比,其重点在于薄层色谱鉴别、检查及含量测定,其中检查项包括水分、重金属及有害元素。中药在贮藏及保管的过程中,水分含量是影响药材质量及其性状的重要因素。水分较高可导致药材霉变或虫蛀,为微生物和害虫提供良好的生长繁殖条件,从而进一步影响其有效部位的质量。重金属污染是中药在生产、运输、贮藏过程中可能会出现的污染类型,而中药成分中的重金属污染主要包括铜、汞、砷、镉、铅等。现代科学表明,残留的重金属能够与人体中的酶蛋白牢固结合,对组织细胞的功能、结构产生不同程度的破坏。而用栀子果实制备总环烯醚萜苷时,有机化合物根据分子量大小可以经溶剂洗脱分开而达到除杂的目的,从而减少栀子有效部位中的重金属元素残留量。本研究采用大孔吸附树脂法制备栀子有效部位,选用电感耦合等离子体质谱法(ICP-MS)对栀子及其有效部位中残留的重金属元素进行测定,旨在为临床用药提供科学依据。

    目前,总环烯醚萜苷的质量控制方法中仅以紫外分光光度法测定其含量[19],缺少针对总环烯醚萜苷整体的质量控制标准,故本研究在栀子药材的质量控制基础上建立了栀子有效部位的质量控制标准。

    • 中药粉碎机(YF103-200g);KQ-800DE数控超声波清洗器(昆山市超声仪器有限公司);电热鼓风干燥箱(上海一恒科学仪器有限公司);SX2-4-10A箱式电阻炉(上海索域试验设备有限公司);ETHOS UP微波消解仪(意大利Milestone公司);Milli-Q Advantage超纯水仪(美国Merck Millipore公司);AP135W电子天平、ICPMS-2030电感耦合等离子体质谱仪、LC-10AT高效液相色谱仪[岛津企业管理(中国)有限公司]。

    • 栀子药材购自安徽省亳州市;栀子有效部位(自制[15];栀子对照药材(批号:120986-201610,中国食品药品检定研究院);栀子对照品(批号:AF20062303,纯度98%,成都埃法生物科技有限公司);乙醇、乙酸乙酯、甲酸、甲醇(上海泰坦科技股份有限公司);丙酮、硫酸(国药集团化学试剂有限公司);浓硝酸(美国Fisher chemical公司);镉标准溶液(1000 μg/ml,批号:218025103,美国AccuStandard公司);铅标准溶液(1000 μg/ml,批号:221008-5)、砷标准溶液 (1000 μg/ml,批号:208030-6)、汞标准溶液(1000 μg/ml,批号:215022-7)、铜标准溶液(1000 μg/ml,批号:206020-5)均购自国家有色金属及电子材料分析测试中心;水为超纯水。

    • 称取栀子粉末、栀子有效部位粉末和栀子对照药材粉末适量,参照《中国药典》(2020年版)一部栀子鉴别项下薄层色谱法,制备得到浓度分别为0.1004、0.1006、0.1012 g/ml的栀子和栀子有效部位供试品溶液以及栀子对照药材溶液。再取栀子苷对照品,以乙醇为溶剂制成4 mg/ml的对照品溶液。吸取上述溶液各3 μl分别点于同一硅胶G薄层板上,以乙酸乙酯-甲酸-丙酮-水(5∶1∶5∶1)为展开剂展开,取出,晾干;喷以10%硫酸乙醇溶液,于110 ℃加热使其显色,直至斑点显色清晰。栀子及其有效部位供试品色谱中,在与栀子对照品和栀子对照药材色谱相应的位置上显示相同的特征斑点(见图1)。

      图  1  栀子薄层色谱图

    • 参照《中国药典》(2020年版)四部通则0832水分测定法第二法进行测定。测定栀子含水量为8.4%,符合《中国药典》(2020年版)一部栀子项下对水分的规定。栀子有效部位的含水量为3.2%。

    • 参照《中国药典》(2020年版)四部通则2302总灰分测定法进行测定。测定总灰分为5.4%,符合《中国药典》(2020年版)一部栀子项下对总灰分的规定。

    • ICP-MS仪器主要参数设定见表1

      表 1  ICP-MS仪器主要参数

      参数参数设定参数参数设定
      高频功率1.20 kW等离子体气流速8.0 L/min
      辅助气流速1.10 L/min载气流速0.70 L/min
      矩管类型Mini矩管雾化器同心雾化器
      雾化室旋流雾化室温度5 ℃
      采样深度5.0 mm高频频率27.12 MHz
      碰撞气体He碰撞气流速6 ml/min
      池电压−21 V能量过滤器电压7.0 V
    • 取栀子药材粗粉和栀子有效部位粉末各0.5 g,于60 ℃干燥2 h,加入硝酸8 ml,置于耐压耐高温微波消解罐中。0~10 min内温度从室温升至120 ℃,10~20 min从120 ℃升至180 ℃,于180 ℃保持20 min,最后从180 ℃降至60 ℃,按照此消解条件进行消解。消解完全后,待消解液冷却至60 ℃以下时,移出消解罐,将消解液转移至50 ml量瓶中,用适量水将消解罐洗涤3次,洗涤液合并于量瓶中,加入金标准溶液200 μl,以水为溶剂稀释至刻度,摇匀,即得。

    • 精密吸取各标准储备液,以10%硝酸为溶剂配制成各元素相应质量浓度的混合系列溶液。其中,铅:0、1、5、10、20 ng/ml;镉:0、0.5、2.5、5、10 ng/ml;砷:0、1、5、10、20 ng/ml;铜:0、50、100、200、500 ng/ml;汞:0、0.2、0.5、1、2、5 ng/ml。以系列标准液浓度(X,ng/ml)为横坐标,元素响应值(Y)为纵坐标绘制标准曲线,得到各元素线性关系见表2

      表 2  5种元素线性关系考察

      元素回归方程r线性范围
      (ng/ml)
      方法检出限
      (mg/kg)
      AsY=10.01048X+
      0.239892
      0.99990~209.5×10−5
      CdY=7.470893X+
      0.156068
      0.99990~103.3×10−5
      CuY=31.18023X
      44.78735
      0.99990~5003.5×10−4
      HgY=3.455492X+
      0.017324
      1.0000~51.3×10−3
      PbY=20.95865X+
      3.068030
      0.99980~204.9×10−5
    • 取含砷 1 ng/ml、镉 0.5 ng/ml、铜 50 g/ml、汞 0.2 ng/ml、铅1 ng/ml的混合标准溶液,在设定的仪器工作条件下重复测定5次,各测定元素的RSD值分别为0.53%、0.82%、0.32%、0.57%、0.40%,表明仪器精密度良好。

    • 取栀子药材、栀子有效部位供试品粉末分别按 “2.4.2”项下方法操作,平行制备5份,在相同的仪器工作条件下进行分析,所测5种元素的RSD为0.30%~4.67%,表明该方法重复性良好。

    • 各取上述栀子以及栀子有效部位的供试品溶液,分别于放置0、2、4、6、8 h后进行测定,计算两种供试品溶液中5种重金属元素的含量,结果各元素含量的RSD在0.15%~2.64%之间(n=5),表明两种供试品溶液中各测定元素在8 h内的稳定性良好。

    • 精密称取已知含量的栀子以及栀子有效部位供试品各3份,分别精密加入各测定元素相应的对照品溶液适量,按“2.4.2”项下步骤操作,测定,计算各测定元素的回收率及RSD值,结果见表3

      表 3  栀子及栀子有效部位中重金属及有害元素加样回收率试验结果

      测定元素栀子栀子有效部位
      样品含量
      (ng)
      加入量
      (ng)
      测得量
      (ng)
      平均回收率
      (%)
      RSD
      (%)
      样品含量
      (ng)
      加入量
      (ng)
      测得量
      (ng)
      平均回收率
      (%)
      RSD
      (%)
      As77.5050133.71120.51195.0250453.21030.56
      Cd33.652558.33991.176.0502530.53980.12
      Cu374050008650980.00146550006433990.58
      Hg4.2651014.901061.411.1351011.681051.52
      Pb276.0250526.71001.15179.0250435.31030.69
    • 按“2.4.2”项下方法制备供试品溶液,按“2.4.1”项下工作条件测定两种样品,每份样品平行测定3次,结果见表4

      表 4  栀子及栀子有效部位中5种重金属元素的含量(mg/kg)

      样品AsCdCuHgPb
      栀子0.1560.06707.280.008440.553
      栀子有效部位0.3900.01202.830.001790.361
    • 色谱柱:Ultimate XB-C18(4.6 mm×150 mm,5 μm);流动相:乙腈-0.5%醋酸水(15:85);流速:1.0 ml/min;柱温:30 ℃;检测波长:238 nm;进样量:10 μl。

    • 精密称取栀子苷对照品25.21 mg置于25 ml量瓶中,加甲醇制成含栀子苷1.008 mg/ml的溶液,精密量取0.3 ml至10 ml量瓶中,以甲醇为溶剂稀释至刻度,制成含栀子苷30.24 μg/ml的溶液。

    • 分别精密称取栀子样品粉末(过四号筛)约0.1035g、栀子有效部位粉末13.36 mg,置于具塞锥形瓶中,精密加入25 ml甲醇,称定重量并记录,超声20 min后放冷,再次称定重量,用甲醇补足减失的重量,摇匀,滤过。精密量取续滤液10 ml,置于25 ml量瓶中,用甲醇加至刻度,摇匀,即得。

    • 将空白对照溶液(甲醇)、栀子苷对照品溶液、栀子供试品溶液和栀子有效部位供试品溶液,按照上述色谱条件进样,得到色谱图(图2),栀子药材中其余成分及空白溶液对栀子苷的测定无影响。

      图  2  专属性试验HPLC色谱图

    • 将1.008 mg/ml的栀子苷对照品溶液用甲醇稀释制成322.6、161.3、80.64、40.32、20.16 μg/ml的系列溶液,分别吸取10 μl注入液相色谱仪,以对照品浓度(X,μg/ml)为横坐标,峰面积(Y)为纵坐标绘制标准曲线,得到标准曲线方程为Y=15860X+22543,r=0.9999,表明栀子苷在20.16~322.6 μg/ml的浓度范围内具有良好的线性关系。

    • 吸取浓度为80.64 μg/ml的对照品溶液,在上述色谱条件下连续进样6次,结果栀子苷峰面积的RSD值为1.86%,表明仪器精密度良好。

    • 取同一批栀子药材以及栀子有效部位粉末各6份,分别按上述供试品制备方法制备供试品溶液,按照上述色谱条件进样分析,记录峰面积。计算栀子药材及有效部位中栀子苷的含量,RSD分别为2.38%、2.60%,表明该方法重复性良好。

    • 取栀子药材、栀子有效部位的供试品溶液,于制备后0、2、4、6、8 h分别按上述色谱条件进样测定。结果栀子苷峰面积的RSD分别为0.50%、0.81%。结果表明两种供试品溶液在室温下放置8 h稳定。

    • 取栀子药材粉末约0.1 g,共6份,精密称定,分别置于具塞锥形瓶中,加入浓度为1 mg/ml的对照品溶液6 ml,精密加入甲醇19 ml,称定重量并记录,超声处理20 min,放冷,再次称定重量,用甲醇补足减失的重量,摇匀,滤过。精密量取续滤液10 ml,置25 ml量瓶中,加甲醇至刻度,摇匀,即得供试品溶液。按照上述色谱条件进样分析,结果见表5

      表 5  栀子苷加样回收率试验结果

      编号药材粉
      末量(g)
      原有量
      (mg)
      加入量
      (mg)
      测得量
      (mg)
      回收率
      (%)
      平均回
      收率(%)
      RSD
      (%)
      10.09644.7086.00610.6598.999.12.18
      20.09514.6455.99410.80102.7
      30.09334.5576.13210.4596.1
      40.10054.9085.99410.8699.3
      50.09314.5476.09010.6099.4
      60.10064.9136.07210.8798.1
    • 取栀子及栀子有效部位粉末按“2.5.3”项下方法分别配制供试品溶液,并按上述色谱条件进行测定,每份样品平行测定3次,计算得栀子及其有效部位中栀子苷含量分别为5.71%、34.2%,结果见表6

      表 6  栀子药材及有效部位中栀子苷含量测定结果

      种类编号称样量(mg)含量(%)平均(%)
      栀子1100.75.765.71
      2100.55.87
      3100.55.51
      栀子有效部位113.6033.534.2
      213.4034.7
      313.5734.4
    • 栀子为传统中药,其有效部位是从栀子果实的乙醇提取物中制备得到的环烯醚萜苷类化合物,是后续制备中药复方制剂的常用成分,建立并规范栀子有效部位的质量标准,可以保证其质量,为临床疗效提供保障。

      本实验对栀子有效部位进行薄层色谱鉴别、水分检查、重金属及有害元素检查、含量测定。水分、重金属及有害元素的含量直接影响到栀子有效部位的质量。环烯醚萜苷类成分易溶于水,水分含量过高时,在一定温度、酸度条件下,可能会产生颜色变化或沉淀。本文建立了电感耦合等离子体质谱法测定栀子有效部位中5种重金属元素的分析方法,通过线性、检出限、精密度、重复性、稳定性、加样回收率,对该方法进行考察,结果表明该方法准确度高、选择性好,可用于栀子有效部位中5种重金属元素的同时检测。

      本实验测得栀子药材的含水量为8.4%,栀子有效部位的含水量为3.2%。栀子有效部位中镉、铜、汞、铅4种重金属元素的含量较栀子药材明显下降,而栀子苷的含量则显著提高。经分析,栀子果实制备得到总环烯醚萜苷粉末时,在减压浓缩干燥过程中水分蒸发导致栀子有效部位的含水量下降;栀子果实粗提物经大孔吸附树脂纯化时,先以少量水洗脱去除杂质,减少了环烯醚萜苷类成分的损失,再以低浓度乙醇洗脱有效成分,减少弱极性杂质的洗脱量,进而提高纯度,使得4种重金属元素含量降低,栀子苷含量提高。

      本研究首次建立了栀子有效部位的质量控制方法,此方法重现性好、操作性强,能够有效控制栀子有效部位的质量,为全面控制中药复方制剂的质量和临床疗效提供依据。

参考文献 (19)

目录

/

返回文章
返回