留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

含丙基侧链的新型三唑类化合物的设计、合成和抗真菌活性研究

张海东 袁福淼 张大志 姜远英 俞世冲

李群英, 李盛建, 须添翼, 解李春子, 赵亮, 须秋萍. 肉桂预煎液中有效成分肉桂酸的稳定性研究[J]. 药学实践与服务, 2020, 38(3): 255-258. doi: 10.12206/j.issn.1006-0111.202002002
引用本文: 张海东, 袁福淼, 张大志, 姜远英, 俞世冲. 含丙基侧链的新型三唑类化合物的设计、合成和抗真菌活性研究[J]. 药学实践与服务, 2023, 41(2): 86-90. doi: 10.12206/j.issn.2097-2024.202208016
LI Qunying, LI Shengjian, XU Tianyi, XIELI Chunzi, ZHAO Liang, XU Qiuping. Study on the stability of the effective components cinnamic acid in the decoction of cinnamon[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 255-258. doi: 10.12206/j.issn.1006-0111.202002002
Citation: ZHANG Haidong, YUAN Fumiao, ZHANG Dazhi, JIANG Yuanying, YU Shichong. Design, synthesis and antifungal activity of novel triazoles containing propyl side chains[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(2): 86-90. doi: 10.12206/j.issn.2097-2024.202208016

含丙基侧链的新型三唑类化合物的设计、合成和抗真菌活性研究

doi: 10.12206/j.issn.2097-2024.202208016
基金项目: 国家重点研究与发展计划(2021YFC2300400),国家自然科学基金(21202200, 81830106)
详细信息
    作者简介:

    张海东,硕士研究生,研究方向:氮唑类抗真菌药物,Email:zhhd32512@163.com

    通讯作者: 俞世冲,副教授,硕士生导师,研究方向:抗真菌药物,Email:yuscc1008@163.com

Design, synthesis and antifungal activity of novel triazoles containing propyl side chains

  • 摘要:   目的  研究具有正丙基侧链和二取代苯环结构的三唑醇类化合物的抗真菌活性。  方法  设计合成了11个目标化合物;其结构通过1H NMR确证,部分化合物还通过13C NMR、高分辨质谱(HRMS)确证;选择3种真菌为实验菌株,根据美国国家临床实验室标准委员会(NCCLS)推荐的标准化抗真菌敏感性实验方法,进行体外抑菌活性测试。   结果  化合物 B11 对白念珠菌SC5314的活性较氟康唑更好,与泊沙康唑相当;化合物 B10B11B4 对新型隐球菌H99的活性较氟康唑更好,化合物 B2B3B5B6B7 对新型隐球菌H99的活性与氟康唑相当;所有化合物对烟曲霉菌活性欠佳。   结论  部分引入正丙基侧链和二取代苯基结构的目标化合物有一定抗真菌活性,可作为潜在的先导抗真菌药物。
  • 高脂血症是指血液中脂质水平异常,通常表现为总胆固醇(TC)和/或甘油三酯(TG)升高,高密度脂蛋白胆固醇(HDL-C)降低[1]。高脂血症是心脑血管疾病的重要危险因素,可诱发动脉粥样硬化,导致冠心病、脑卒中、心肌梗死,增加心脑血管疾病的发病率和病死率。因此,预防和控制高脂血症具有重要意义[2]。国内外研究和临床实践证明,血脂异常是可以预防和控制的。胆固醇水平降低可显著减少心肌梗死、缺血性卒中事件、心血管死亡,提高心血管病患者的生活质量,有效减轻疾病带来的负担[3]。据统计全球每年约有3000万人死于高脂血症等脂代谢紊乱疾病,且呈逐年增长趋势[4]

    姜黄素是从姜科植物姜黄的干燥根茎中提取的一种多酚类物质[5]。它被认为是姜黄中最重要一类活性成分,具有一系列药理活性,如抗氧化、抗癌、抗炎、细胞保护和降低血脂等[6]。有研究表明,姜黄素对氧化应激、抑制癌症和炎症的进展有显著疗效[7]。此外,姜黄素的降脂作用也被广泛研究。综上所述,姜黄素可作为一种潜在的候选药物用于控制高脂血症所诱导的疾病,如动脉粥样硬化。众所周知,他汀类药物是一种临床常用的治疗高胆固醇血症和相关动脉粥样硬化疾病的处方药,而目前姜黄素已被证明在降低血浆总胆固醇和甘油三酯方面与他汀类药物疗效相当。然而姜黄素存在溶解度低和渗透差的问题,从而导致其口服给药时药物生物利用度低,对于高脂血、动脉粥样硬化等需要达到一定血药浓度为疗效前提的病症来说,姜黄素的传统剂型与市售剂型均无法达到理想的治疗效果。

    本研究前期成功构建了姜黄素纳米乳口服给药系统,改善了姜黄素水溶性差的特性。基于此,本文继续探究了姜黄素纳米乳在大鼠体内的药动学特性,观察其对高脂血症模型大鼠的治疗作用,为姜黄素的临床应用提供更多的理论依据。

    101A-2型干燥箱(上海实验仪器总厂);AG285十万分之一电子分析天平(瑞士MettlerToledo公司);SB100D超声波清洗器(宁波新芝生物科技股份有限公司);Agilent 1100高效液相色谱仪(美国安捷伦科技有限公司);EPPENDORF5804R 高速冷冻离心机(德国Eppendorf有限公司);DF-101S 集热式恒温加热磁力搅拌器(巩义市英峪予华仪器厂);Agilent 6410 Triple Quad LC/MS(美国Agilent科技有限公司);全自动生化分析仪Chemray 240 (深圳雷杜生命科技有限公司);微型旋涡混合器(上海沪西分析仪器厂有限公司)。

    姜黄素原料药(批号XC20190521,西安小草植物科技有限公司);姜黄素对照品(批号1108135-201412,纯度>99.8 %,中国食品药品检定研究院);1,2-丙二醇(批号20190418,上海凌峰化学试剂有限公司);Tween-80(批号2018161,上海凌峰化学试剂有限公司);丙二醇单辛酸酯(Capryol 90,批号18139,上海嘉法狮贸易有限公司);高脂饲料(批号20036219,常州鼠一鼠二生物科技有限公司);姜黄素片(批号20190925,美国自然之宝®股份有限公司);辛伐他汀片(SV,批号J20190011,舒降之®杭州默沙东制药公司);TG试剂盒(批号2020012)、TC试剂盒(批号2020006)、HDL-c试剂盒(批号2020003)、LDL-c试剂盒(批号2020010,长春汇力生物技术有限公司);SOD试剂盒(批号20200617);MDA试剂盒(批号20200720);肝脏匀浆TG试剂盒(批号20200810);肝脏匀浆TC试剂盒(批号20200411,南京建成有限公司);乌来糖(国药集团化学试剂有限公司);甲醇、乙腈(色谱纯,美国 TEDIA 有限公司);水为重蒸水。

    雄性SD大鼠,SPF级,体重(180±20)g,海军军医大学实验动物中心提供,动物合格证号:SCXK(沪)2019-0004。温度:20~25 ℃;相对湿度:40 %~70 %;饮用水:高压灭菌,符合SPF级动物饮用水标准;光照条件:人工光线,12 h照射,12 h黑暗。

    姜黄素纳米乳的处方如下:油相Capryol 90在体系中占比为33.10 %,表面活性剂Tween-80为 34.16 %,助表面活性剂1,2-丙二醇为17.21 %,水相占比为15.52 %。制备方法为:精密称取处方量油相Capryol 90、表面活性剂Tween-80和助表面活性剂1,2-丙二醇,混合置于锥形瓶中,于45 ℃ 恒温搅拌至全溶,称取适量姜黄素原料药,搅拌至原料药完全溶解于上述体系中,冷却至室温后向体系中缓慢滴加蒸馏水至体系变为透明均匀的液体,即得姜黄素纳米乳,测得载药量为0.919 mg/g。对姜黄素纳米乳进行特性表征,结果表明所制备的纳米乳粒径分布范围窄且呈正态分布,平均粒径为(123.5±1.2)nm,PDI为(0.204±0.07),表明该制剂的粒径分布及均匀性均符合纳米乳制剂要求。最优处方制备的纳米乳的透射电镜如图1所示。结果表明,纳米乳呈圆整均一的球体或类球体,具明显层状结构,粒径大小约为123.5 nm。

    图  1  最优处方纳米乳的透射电镜图
    2.2.1   色谱质谱条件[8]

    色谱条件:色谱柱:Dikma Inspire C18柱(2.1 mm×100 mm,3 μm);流动相:乙腈-0.1 %(V/V)甲酸水溶液(70∶30);流速:0.3 ml/min;进样量:5 μl;柱温:35 ℃。

    质谱条件:ESI离子源,正离子化模式,扫描方式为多反应监测(MRM模式),干燥气温度:350 ℃,干燥气流速:10 L/min,雾化压力:35 psi,裂解电压145eV,碰撞能量30 eV,定量离子对为m/z=369.3→286.4和m/z=369.3→177.0。

    2.2.2   方法学考察

    取7份大鼠空白血浆,每份600 μl,分别加入各浓度姜黄素标准品溶液 600 μl,涡旋震荡2 min,再加入1 000 μl甲醇及2 000 μl乙腈沉淀蛋白,涡旋震荡5 min,于4 ℃ 12 000 r/min离心15 min。上清液用氮气吹干,1 000 μl甲醇复溶,过0.22 μm针式微孔滤膜,所得滤液即加药血浆样品。同法处理空白血浆。按2.2.1项下条件进样测定,记录色谱图及峰面积。方法学考察表明,血浆中姜黄素在2.00~500.00 ng/ml浓度范围内线性关系良好,回归方程为:Y = 411.32 X+2071.88(r= 0.999 9)。专属性考察结果表明,血浆内源物质对姜黄素的含量测定没有干扰,方法专属性良好(结果如图2)。低、中、高3个浓度的姜黄素-血浆溶液的日内精密度分别为0.54 %、1.21 %、0.93 %,日间精密度分别为0.91 %、0.76 %、0.42 %。3个浓度血浆中的姜黄素提取回收率分别为72.9.2%、78.3%、80.2%,表明该方法可用于血浆中姜黄素的含量测定。

    图  2  姜黄素血浆样品的专属性
    A.含药血浆;B.空白血浆;C.姜黄素对照品
    2.3.1   给药方案

    18只大鼠随机分为3组(姜黄素原料药组、姜黄素片剂组、姜黄素纳米乳组),每组6只,适应性饲养3 d后,禁食不禁水12 h。3组大鼠分别给予姜黄素原料药混悬液(62.8 mg/kg,以姜黄素含量计算)、姜黄素片剂粉末混悬液(62.8 mg/kg,以姜黄素含量计算)各1 ml,姜黄素纳米乳(31.4 mg/kg,以姜黄素含量计算)2 ml。于灌胃给药后的0、1、2、4、8、12、16、24、30、36 h时眼球后静脉丛取血1 ml,置预肝素化离心管中,上下颠倒混匀后3 000 r/min离心15 min,上清液即为含药血浆样品。吸取含药血浆样品600 μl,照“2.2.2”项下方法处理,上清液照“2.2.1”项下色谱条件进样测定。

    2.3.2   药动学参数计算

    药动学参数计算通过软件Kinetica 5.0对数据进行分析处理得到,计算结果如图3表1所示。结果表明,与原料药相比,片剂的相对生物利用度为112.10 %,纳米乳的相对生物利用度为313.47 %。与纳米乳组相比,原料药组的cmax为201.48 %,片剂组的cmax为193.02 %,且平均滞留时间(MRT)比原料药组及片剂组更高(为原料药组的183.52 %,是片剂组的154.21 %),表明纳米乳组具有延缓药物吸收的效果,从而在更大程度上发挥稳定血药浓度,提高药物生物利用度的作用。

    图  3  各给药组姜黄素的血药浓度-时间曲线 ($\bar x $±sn=6)
    表  1  各给药组姜黄素的药动学参数($\bar x $±sn=6)
    原料药组片剂组纳米乳组
    cmax (ng/ml)116.18±11.33121.27±12.12234.08±17.55
    Tmax (t/h)2.00±0.002.00±0.004.00±0.00
    AUC0→36(ng·h/ml)1151.12±125.771341.34±103.592914.42±323.15
    AUC0→∞(ng·h/ml)1202.71±115.281348.77±131.393770.15±333.28
    t1/2 (t/h)6.66±0.337.52±0.5112.17±0.35
    MRT(t/h)9.89±0.5911.77±0.3118.15±0.38
    下载: 导出CSV 
    | 显示表格
    2.4.1   动物分组、造模及给药

    取SD大鼠56只,进行为期一周的适应性饲养后随机分为空白对照组(n=8)和模型组(n=48),空白组饲喂正常饲料,模型组饲喂定制高脂饲料(饲料含2-硫氧嘧啶0.2 %,可可脂17.18 %,胆固醇1.25%,蔗糖12.5 %,胆盐0.22 %)。整个造模周期为16 d,造模期间每日观察各组大鼠的精神、活动、食量、排便量变化等。结束造模后,所有大鼠禁食不禁水12 h,于眼球后静脉丛取血1 ml,室温静置30 min,3 000 r/min离心20 min,取上层血清检测各项生化指标(TC、TG、HDL-c、LDL-c)[9,10]

    造模成功后将上述模型组大鼠再随机分为模型组、姜黄素片剂组、阳性药(SV)组和姜黄素纳米乳低、中、高剂量组,每组8只。空白组(A组)及模型组(B组)给予生理盐水5 ml/ (kg·d);阳性药组(C组)给与辛伐他汀20 mg/ (kg·d)(以辛伐他汀含量计);姜黄素片剂组(D组)给与姜黄素片 62.8 mg/ (kg·d)(以姜黄素的含量计);姜黄素纳米乳低(E组)、中(F组)、高(G组)3组给药剂量分别为15、30、60 mg/ (kg·d)(以姜黄素的含量计),连续21天灌胃给药。第21天给药结束后,各组大鼠禁食不禁水12 h,于第22天眼球后静脉丛取血1 ml离心取血清待测。

    2.4.2   统计学处理

    实验所得数据采用SPSS Statistics 22.0统计软件进行处理,方差齐性检验后,采用单因素方差分析,其中组间比较采用LSD法,两两比较采用独立样本t检验;若方差不齐,采用非参数检验。实验结果均以($\bar x $ ±s)表示,P<0.01表示具极显著性差异,P<0.05表示具显著性差异。采用 GraphPad Prism 6 绘制图表。

    2.4.3   肝脏指数

    大鼠颈椎脱臼处死,称定体重后解剖取肝脏,冰PBS洗净血迹,称定肝脏湿重并记录,计算肝脏指数;肝脏指数=肝脏湿重/体重×100 %。

    图4为给药前后各组大鼠的体重变化。结果表明,给药3周后,与空白组相比,各组均存在极显著性差异(P<0.001)。给药的前2周纳米乳组的体重均表现出正向增长趋势,而模型组、阳性药组以及姜黄素片剂组体重则呈现负增长情况;给药第3周时,仅姜黄素纳米乳高剂量组的体重出现正向增长,阳性药组以及姜黄素纳米乳低、中剂量组大鼠体重降低幅度略有缩小但仍呈下降趋势。

    图  4  给药前后大鼠体重变化

    实验结束后剖取大鼠肝脏,肉眼观察到空白组大鼠的肝脏呈现出鲜红色且有光泽,边缘清晰锐利,质地软,与周围组织无明显黏连;模型组大鼠的肝脏肥大,色泽偏黄,边缘圆钝,质地稍硬,且表面的白色沉积明显,与周围组织黏连明显。各给药组大鼠的肝脏比空白组略大,颜色呈不同程度的泛黄白带红,其中以姜黄素纳米乳中剂量组肝脏的颜色与空白组最为接近。

    肝脏湿重:如图5所示,除空白组外,各给药组与模型组间均无显著差异,但各给药组肝脏湿重与空白组均具极显著性差异(P<0.001);

    图  5  肝脏湿重以及肝脏指数变化($\bar x $±sn=8)
    *P<0.05,**P<0.001,与空白比较,;#P<0.05,##P<0.001,与模型组比较。

    肝脏指数:如图5所示,除姜黄素纳米乳低剂量组外,其他各给药组与模型组之间均存在显著性差异,表明肝脏指数的降低与药物剂量间存在依赖性。阳性药组和片剂组肝脏指数尚未恢复到正常水平,推测原因可能是阳性药和片剂的给药周期还不能完全抵消造模导致的肝脏增重所致。

    2.4.4   HE染色、油红O染色及病理切片

    取肝脏左、右外叶上端分别于多聚甲醛中固定,脱水,切片,染色后置于光镜下观察。图6为肝脏的HE染色切片。其中A组肝细胞排列整齐,呈索状,内壁边界清晰,无中性粒细胞浸润,仅有零星小泡性脂肪病变;B组视野内可见明显的弥漫性大泡性脂肪病变,肝细胞肿胀,胞浆基质疏松,淡染,存在严重的气球样病变,可见Mallory小体,肝小叶边界不清,汇管区肿大,呈现中性粒细胞浸润,存在重度的肝细胞脂变率;C组和D组以中轻度脂肪病变为主,脂肪细胞占比显著减少;E组汇管区细胞排列比C、D两组更为整齐,肝细胞整体肿胀程度减轻,大泡性脂肪病变仅存在于Ⅲ带,炎性浸润程度减轻,水样病变减轻;F组和G组以小泡性脂变为主,少见大泡性脂变。

    图  6  各组大鼠肝脏病理切片H&E染色(200×)
    A.空白组;B.模型组;C.阳性药组;D.姜黄素片剂组;E.姜黄素纳米乳低剂量组;F.姜黄素纳米乳中剂量组;G.姜黄素纳米乳高剂量组;黑色箭头指大泡样脂肪病变,黄色箭头指小泡样脂肪病变,黄色无柄箭头指气球样病变,黑色无柄箭头指Mallory小体。染色结果:空泡为脂滴,细胞核为蓝紫色,细胞质为紫红色。

    图7为油红O染色切片。A组大鼠肝细胞结构完整,细胞核颜色明显;B组肝细胞存在大片鲜艳脂滴,细胞核萎缩、色浅,存在重度脂肪病变;C组和D组仍存在大片连续脂滴,但汇管区附近脂滴颜色明显变淡;E组Ⅲ带脂滴色浅且小;F组和G组视野内所见均为浅色小脂滴,细胞核体积趋向空白组细胞核体积。

    图  7  各组大鼠肝脏病理切片油红O染色(200×)
    A.空白组;B.模型组;C.阳性药组;D.姜黄素片剂组;E.姜黄素纳米乳低剂量组;F.姜黄素纳米乳中剂量组;G.姜黄素纳米乳高剂量组;染色结果:脂滴呈橘红色至鲜红色,细胞核呈蓝色。
    2.4.5   血清中TC、TG、HDL-c、LDL-c的表达水平

    第21天给药结束后,所有大鼠禁食不禁水12 h,于第22天眼球后静脉丛取血1ml,室温静置2 h后3 000 r/min离心15 min取血清,按试剂盒操作说明检测血清中TC、TG、HDL-c、LDL-c的表达水平。

    给药3周后,大鼠血清中各生化指标变化如表2所示。与模型组相比,姜黄素纳米乳低、中、高3个剂量组对TC降低效果均有统计学意义(P<0.001),其中,以中剂量组为佳,低剂量组对LDL-c的改善效果更为明显。对于血清中TG、TC的改善情况,与阳性药组相比,纳米乳低、中、高3个剂量组之间差异无统计学意义(P<0.05);中、高剂量组TC与HDL比值的降低具有统计学意义(P<0.05,表明血脂比存在纳米乳剂量依赖性。

    表  2  大鼠血清中TG、TC、HDL-c、LDL-c的表达水平及TC/HDL-C的变化趋势($\bar x $±sn=8)
    组别TG(mmol/L)TC(mmol/L)HDL-c(mmol/L)LDL-c(mmol/L)TC/HDL
    空白组1.34±0.092.90±0.440.31±0.101.88±0.179.35±0.41
    模型组2.88±0.5112.45±0.131.84±0.103.56±0.666.77±1.14
    阳性药组1.41±0.25##10.81±0.36##3.03±0.53#2.87±0.20##3.57±0.47
    姜黄素片剂组1.79±0.22##11.24±1.213.42±0.42#4.08±0.323.29±0.89
    姜黄素纳米乳低剂量组1.29±0.20##8.88±0.73##2.39±0.62##2.85±0.33#3.72±0.57#
    姜黄素纳米乳中剂量组1.44±0.04##7.68±0.34##1.94±0.78##2.57±0.823.96±0.36#
    姜黄素纳米乳高剂量组1.38±0.28##8.89±0.64##1.83±0.34##2.85±0.674.86±0.49##
    *P<0.05, **P<0.001,与空白组比较;#P<0.05,##P<0.001,与模型组比较
    下载: 导出CSV 
    | 显示表格
    2.4.6   肝脏中TC、TG、MDA、SOD的表达水平

    将肝脏分为4份,一份置于−80 ℃冷冻保存,一份按如下步骤处理后待测:冰PBS冲洗肝组织表面血迹→研磨后制成10 %匀浆→离心→取上清液→测定各生化指标。

    给药3周后大鼠肝脏匀浆中各生化指标表达水平如表3所示。结果表明,模型组肝脏匀浆中TG、TC表达水平的增幅与空白组相比具有统计学意义(P<0.001);给药3周后,阳性药组和纳米乳低、中剂量组的TG、TC表达水平与模型组相比均有统计学差异(P<0.001),姜黄素纳米乳低、中、高3个剂量对大鼠肝脏中TG、TC表达水平的降低均具有统计学意义(P<0.05),其中,低剂量组效果最佳,这也与血清中TC水平变化趋势相一致。

    表  3  大鼠肝脏匀浆中TG、TC、SOD以及MDA的变化趋势($\bar x $±s,n=8
    组别TG(mmol/L)TC(mmol/L)SOD(U/mgprot)MDA(nmol/mgprot)
    空白组0.42±0.160.11±0.03956.31±142.640.47±0.06
    模型组0.69±0.05**0.09±0.02**769.26±141.64**##1.98±0.26**
    阳性药组0.50±0.11*##0.7±0.01*##988.25±168.90##0.64±0.15*##
    姜黄素片剂组0.66±0.10**#0.04±0.01*##933.99±103.39#0.79±0.11**
    姜黄素纳米乳低剂量组0.64±0.07**##0.06±0.02*##972.23±142.10##0.80±0.03**#
    姜黄素纳米乳中剂量组0.58±0.05**##0.07±0.02**##916.55±117.32#0.59±0.09##
    姜黄素纳米乳高剂量组0.54±0.13##0.10±0.03**799.81±121.85**0.70±0.23*##
    *P<0.05, **P<0.001,与空白组比较;#P<0.05,##P<0.001,与模型组比较
    下载: 导出CSV 
    | 显示表格

    超氧化物歧化酶(SOD)是机体内重要的抗氧化酶,能催化自由基清除反应,保护细胞免受自由基的攻击,明显改善肝肾等组织的氧化损伤,能直观的反映体内抗氧化酶的活性[11]。MDA是脂质过氧化反应的产物,反映了自由基的活跃程度,可用于评价机体内脂质过氧化的程度[12]。因此,选择SOD和MDA作为评价高脂血症大鼠肝功能损伤程度的指标。

    给药3周后,与模型组相比,阳性药组及姜黄素纳米乳低剂量组均能够上调大鼠肝脏中SOD的表达水平(P<0.001),姜黄素纳米乳中剂量组对其表达水平也有正向影响(P<0.05);此外,实验中发现,与姜黄素纳米乳低、中剂量组相比,高剂量组对体内SOD的表达呈现出抑制,推测此现象与姜黄素的双向调节机制有关;对于MDA的表达水平,与模型组相比,阳性药组和姜黄素纳米乳各剂量组对其表达的抑制作用均具有统计学意义(P<0.001),但效果仍以中剂量组为佳。

      姜黄素是一种被广泛研究的中药多酚类物质,具有抗氧化、抗炎和降血脂的药理活性。已有报道将他汀类与姜黄素对于改善血脂的功效进行了比较。他汀类药物是治疗高胆固醇血症和高脂血症的一线药物。研究表明,姜黄素在降低甘油三酯(TG)方面最有效,而他汀类药物在降低低密度脂蛋白胆固醇(LDL-C)方面最有效。姜黄素影响血浆脂质改变的途径与他汀类药物相似[13]。几乎所有胆固醇运输的途径都会受到药物制剂的影响,包括胃肠道对膳食中胆固醇的吸收、肝细胞对血浆胆固醇的清除、胆固醇逆向运输的介质以及从外周组织中清除胆固醇。此外,姜黄素的活性氧(ROS)清除能力降低了脂质过氧化的风险,而脂质过氧化会引发炎症反应,导致心血管疾病(CVD)和动脉粥样硬化[14]。综上所述,姜黄素或可作为一种安全且耐受性良好的他汀类药物辅助药物,更有效控制高脂血症。

  • 图  1  目标化合物的合成路线

    图  2  药理实验阳性对照药结构图

    表  1  目标化合物的结构和波谱数据

    化合物R波谱数据
    31H NMR(300 MHz, CDCl3) δ 8.14 (1H, s, triazole-H), 7.80 (1H, s, triazole-H), 7.59-7.50 (1H, q, Ar-H), 6.85-6.78 (2H, m, Ar-H), 5.06 (1H, s, -OH), 4.60-4.48 (2H, q, J = 11.35 Hz, –CH2), 3.32-3.27 (1H, dd, J=13.95 Hz, –CH2), 3.19-3.02 (2H, m, –CH2), 2.76-2.72 (1H, d, J = 13.96 Hz, –CH), 2.46-2.37 (1H, m, –CH2), 2.33-2.24 (1H, m, –CH2), 2.15 (1H, t, J=2.22 Hz, –CH), 1.34-1.22 (2H, m, –CH2), 0.79-0.74 (3H, t, J=7.35 Hz, –CH3).
    13C NMR(75 MHz, CDCl3) δ 164.51-161.04, 160.69-157.27, 151.09, 144.68, 129.52, 125.97, 111.49, 104.30, 78.12, 73.06, 72.37, 58.43, 57.03, 56.19, 43.37, 20.61, 11.40.
    B13-F, 4-F1H NMR(300 MHz, CDCl3) δ 8.10 (1H, s, triazole-H), 7.77 (1H, s, triazole-H), 7.59 (1H, q, Ar-H), 7.18 (1H, d, triazole-H), 7.05 (3H, d, Ar-H), 6.80 (2H, m, Ar-H), 5.49 (2H, s, –CH2) , 4.56-4.51 (1H, d, J=13.80 Hz, –CH2), 4.01-4.36 (1H, d, J=13.71 Hz, –CH2), 3.65-3.49 (2H, q, J=16.28 Hz, –CH2), 3.19-3.14 (1H, d, J=13.24 Hz, –CH2), 2.73-2.68 (1H, d, J=13.90 Hz, –CH2), 2.27-2.17 (2H, q, J=29.82 Hz, –CH2), 1.29 (2H, s, –CH2), 0.70-0.65 (3H, t, J=6.78 Hz, –CH3).
    B22-F, 6-F1H NMR(300 MHz, CDCl3) δ 8.10 (1H, d, triazole-H), 7.75 (1H, s, triazole-H), 7.60-7.53 (1H, q, Ar-H), 7.42-7.32 (1H, m, Ar-H), 7.20 (1H, s, triazole-H), 7.00-6.95 (2H, t, Ar-H), 6.82-6.73 (2H, m, Ar-H), 5.61 (2H, s, –CH2), 4.51-4.38 (2H, q, J=13.55 Hz, –CH2), 3.61-3.46 (2H, q, J=14.43 Hz, –CH2), 3.17-3.13 (1H, d, J=14.20 Hz, –CH2), 2.73-2.69 (1H, d, J=13.63 Hz, –CH2), 2.24 (2H, s, –CH2), 1.27 (2H, s, –CH2), 0.70-0.65 (3H, t, J=6.98 Hz, –CH3).
    B33-F, 5-F1H NMR(300 MHz, CDCl3) δ 8.08 (1H, d, triazole-H), 7.76 (1H, s, triazole-H), 7.63-7.55 (1H, m, Ar-H), 7.11 (1H, s, triazole-H), 6.85-6.74 (5H, m, Ar-H), 5.52 (2H, s, –CH2), 4.55-4.51 (1H, d, J=14.25 Hz, –CH2), 4.41-4.36 (1H, d, J=14.25 Hz, –CH2), 3.66-3.50 (2H, q, J=16.61 Hz, –CH2), 3.19-3.14 (1H, d, J=14.06 Hz, –CH2), 2.73-2.68 (1H, d, J=14.00 Hz, –CH2), 2.34-2.25 (1H, m, –CH2), 2.21-2.11 (1H, m, –CH2), 1.36-1.25 (2H, m, –CH2), 0.70-0.65 (3H, t, J=7.34 Hz, –CH3).
    B42-F, 4-F1H NMR(300 MHz, CDCl3) δ 8.09 (1H, d, triazole-H), 7.76 (1H, s, triazole-H), 7.63-7.54 (1H, m, Ar-H), 7.31 (1H, t, Ar-H), 7.17 (1H, s, triazole-H), 6.91-6.85 (2H, t, Ar-H), 6.84-6.74 (2H, t, Ar-H), 5.53 (2H, s, –CH2), 4.54-4.37 (2H, q, J=17.08 Hz, –CH2), 3.58-3.53 (2H, d, J=15.43 Hz, –CH2), 3.18-3.14 (1H, d, J=11.92 Hz, –CH2), 2.74-2.71 (1H, d, J=9.30 Hz, –CH2), 2.27-2.20 (2H, d, J=20.71 Hz, –CH2), 1.29-1.25 (2H, d, J=12.28 Hz, –CH2), 0.70-0.66 (3H, t, J=6.27 Hz, –CH3).
    B52-F, 5-F1H NMR(300 MHz, CDCl3) δ 8.10 (1H, d, triazole-H), 7.77 (1H, s, triazole-H), 7.63-7.55 (1H, m, Ar-H), 7.20 (1H, s, triazole-H), 7.11-7.05 (2H, m, Ar-H), 6.94 (1H, s, Ar-H), 6.84-6.75 (2H, m, Ar-H), 5.56 (2H, s, –CH2), 4.55-4.39 (2H, q, J=16.18 Hz, –CH2), 3.64-3.50 (2H, d, J=13.86 Hz, –CH2), 3.20-3.15 (1H, d, J=15.01 Hz, –CH2), 2.75-2.71 (1H, d, J=13.51 Hz, –CH2), 2.29-2.22 (2H, d, J=21.24 Hz, –CH2), 1.30 (2H, s, –CH2), 0.69 (3H, s, –CH3).
    B63-Cl, 4-Cl1H NMR(300 MHz, CDCl3) δ 8.11 (1H, d, triazole-H), 7.78 (1H, s, triazole-H), 7.63-7.55 (1H, m, Ar-H), 7.47-7.44 (1H, d, Ar-H), 7.35 (1H, s, triazole-H), 7.11-7.09 (2H, d, Ar-H), 6.84-6.75 (2H, m, Ar-H), 5.49 (2H, s, –CH2), 4.56-4.52 (1H, d, J=14.13 Hz, –CH2), 4.41-4.36 (1H, d, J=14.25 Hz, –CH2), 3.66-3.49 (2H, q, J=16.49 Hz, –CH2), 3.19-3.14 (1H, d, J=13.33 Hz, –CH2), 2.73-2.68 (1H, d, J=13.27 Hz, –CH2), 2.28-2.17 (2H, d, J=31.32 Hz, –CH2), 1.29 (2H, s, –CH2), 0.70-0.65 (3H, t, J=7.24 Hz, –CH3).
    B72-Cl, 3-Cl1H NMR(300 MHz, CDCl3) δ 8.13 (1H, d, triazole-H), 7.77 (1H, s, triazole-H), 7.62-7.54 (1H, m, Ar-H), 7.50-7.47 (1H, dd, Ar-H), 7.25-7.19 (2H, t, Ar-H), 7.05 (1H, d, triazole-H), 6.84-6.73 (2H, m, Ar-H), 5.68 (2H, s, –CH2), 4.55-4.39 (2H, q, J=15.71 Hz, –CH2), 3.64-3.50 (2H, q, J=14.53 Hz, –CH2), 3.19-3.14 (1H, d, J=14.05 Hz, –CH2), 2.75-2.70 (1H, d, J=13.48 Hz, –CH2), 2.28-2.22 (2H, d, J=20.34 Hz, –CH2), 1.29 (2H, s, –CH2), 0.71-0.65 (3H, t, J=7.28 Hz, –CH3).
    B83-Cl, 5-Cl1H NMR(300 MHz, CDCl3) δ 8.12 (1H, d, triazole-H), 7.78 (1H, s, triazole-H), 7.64-7.56 (1H, m, Ar-H), 7.36 (1H, s, triazole-H), 7.13 (3H, s, Ar-H), 6.86-6.75 (2H, m, Ar-H), 5.49 (2H, s, –CH2), 4.58-4.53 (1H, q, J=13.92 Hz, –CH2), 4.42-4.37 (1H, q, J=14.61 Hz, –CH2), 3.62-3.55 (2H, d, J=21.03 Hz, –CH2), 3.20-3.15 (1H, d, J=13.23 Hz, –CH2), 2.72-2.68 (1H, d, J=10.65 Hz, –CH2), 2.29-2.18 (2H, d, J=35.37 Hz, –CH2), 1.30 (2H, s, –CH2), 0.69 (3H, s, –CH3).
    B92-Cl, 5-Cl1H NMR(300 MHz, CDCl3) δ 8.10 (1H, d, triazole-H), 7.76 (1H, s, triazole-H), 7.63-7.54 (1H, m, Ar-H), 7.39-7.31 (2H, t, Ar-H), 7.21 (1H, s, triazole-H), 7.13 (1H, s, Ar-H), 6.84-6.75 (2H, m, Ar-H), 5.61 (2H, s, –CH2), 4.55-4.50 (1H, d, J=13.47 Hz, –CH2), 4.44-4.39 (1H, q, J=14.43 Hz, –CH2), 3.65-3.51 (2H, q, J=14.43 Hz, –CH2), 3.20-3.16 (1H, d, J=13.14 Hz, –CH2), 2.75-2.70 (1H, d, J=13.55 Hz, –CH2), 2.29-2.22 (2H, d, J=21.33 Hz, –CH2), 1.28 (2H, s, –CH2), 0.69 (3H, s, –CH3).
    B103-Cl, 4-F1H NMR(300 MHz, CDCl3) δ 8.13 (1H, d, triazole-H), 7.78 (1H, s, triazole-H), 7.62-7.54 (1H, m, Ar-H), 7.32-7.30 (1H, d, Ar-H), 7.15-7.13 (2H, d, Ar-H), 7.09 (1H, s, triazole-H), 6.83-6.73 (2H, m, Ar-H), 5.47 (2H, s, –CH2), 4.55-4.36 (2H, q, J=19.44 Hz, –CH2), 3.65-3.48 (2H, q, J=16.33 Hz, –CH2), 3.18-3.13 (1H, d, J=13.91 Hz, –CH2), 2.72-2.68 (1H, d, J=13.77 Hz, –CH2), 2.33-2.24 (1H, m, –CH2), 2.20-2.10 (1H, m, –CH2), 1.29 (2H, s, –CH2), 0.69-0.64 (3H, t, J=7.31 Hz, –CH3).
    13C NMR(75 MHz, CDCl3) δ 167.88-164.42, 164.02-160.59, 163.30, 159.98, 154.85, 148.29, 135.22, 133.72, 133.15, 131.26, 129.69, 125.38, 125.14, 120.71, 114.88, 107.58, 75.57, 61.42, 60.72, 59.63, 56.25, 52.75, 23.57, 14.81.
    B113-Br, 5-Br1H NMR(300 MHz, CDCl3) δ 8.08 (1H, d, triazole-H), 7.77 (1H, s, triazole-H), 7.66 (1H, s, Ar-H), 7.63-7.55 (1H, m, Ar-H), 7.32 (2H, d, Ar-H), 7.10 (1H, d, triazole-H), 6.85-6.74 (2H, m, Ar-H), 5.47 (2H, s, –CH2), 5.33 (1H, s, -OH), 4.56-4.52 (1H, d, J=14.16 Hz, –CH2), 4.41-4.36 (1H, d, J=14.22 Hz, –CH2), 3.67-3.50 (2H, q, J=16.40 Hz, –CH2), 3.20-3.16 (1H, d, J=13.56 Hz, –CH2), 2.73-2.68 (1H, d, J=14.27 Hz, –CH2), 2.29-2.19 (2H, d, J=29.70 Hz, –CH2), 1.29 (2H, s, –CH2), 0.71-0.66 (3H, t, J=7.31 Hz, –CH3).
    13C NMR(300 MHz, CDCl3) δ 164.50-161.03, 160.61-157.19, 150.88, 144.93, 138.40, 134.51, 129.75, 129.61, 129.61, 127.97, 126.35, 123.64, 123.64, 122.10, 111.51, 104.18, 72.23, 58.02, 57.36, 56.07, 52.66, 49.39, 20.18, 11.40.
    下载: 导出CSV

    表  2  部分化合物的高分辨质谱数据

    化合物RChemDraw提示分子量HRMS测得分子量
    3334.16335.1694
    B22-F, 6-F503.21504.2127
    B33-F, 5-F503.21504.2141
    B52-F, 5-F503.21504.2152
    B72-Cl, 3-Cl535.15536.1546
    下载: 导出CSV

    表  3  目标化合物的体外抗真菌活性(MIC80, μg/ml)

    化合物RC.alb SC5314C.neo h99A.fum 7544
    B13-F, 4-F216>64
    B22-F, 6-F18>64
    B33-F, 5-F48>64
    B42-F, 4-F14>64
    B52-F, 5-F28>64
    B63-Cl, 4-Cl28>64
    B72-Cl, 3-Cl18>64
    B83-Cl, 5-Cl4>64>64
    B92-Cl, 5-Cl116>64
    B103-Cl, 4-F11>64
    B113-Br, 5-Br0.1252>64
    VCZ0.01560.1250.125
    POS0.1250.51
    FCZ0.258>64
    注 :C.alb: 白念珠菌;C.neo: 新型隐球菌;A.fum: 烟曲霉菌;VCZ: 伏立康唑; POS: 泊沙康唑;FCZ: 氟康唑。
    下载: 导出CSV
  • [1] GUPTA A K, VENKATARAMAN M, RENAUD H J, et al. The increasing problem of treatment-resistant fungal infections: a call for antifungal stewardship programs[J]. Int J Dermatol,2021,60(12):e474-e479.
    [2] CLARK C, DRUMMOND R A. The hidden cost of modern medical interventions: how medical advances have shaped the prevalence of human fungal disease[J]. Pathogens,2019,8(2):45. doi:  10.3390/pathogens8020045
    [3] VAN DAELE R, SPRIET I, WAUTERS J, et al. Antifungal drugs: what brings the future? Med Mycol,2019,57(Supplement_3):S328-S343. doi:  10.1093/mmy/myz012
    [4] BROWN G D, DENNING D W, GOW N A R, et al. Hidden killers: human fungal infections[J]. Sci Transl Med,2012,4(165):165rv13.
    [5] PEMÁN J, RUIZ-GAITÁN A, GARCÍA-VIDAL C, et al. Fungal co-infection in COVID-19 patients: should we be concerned? Rev Iberoam Micol,2020,37(2):41-46. doi:  10.1016/j.riam.2020.07.001
    [6] PAPADIMITRIOU-OLIVGERIS M, KOLONITSIOU F, KEFALA S, et al. Increased incidence of candidemia in critically ill patients during the Coronavirus Disease 2019 (COVID-19) pandemic[J]. Braz J Infect Dis,2022,26(2):102353. doi:  10.1016/j.bjid.2022.102353
    [7] SHISHIDO A A, MATHEW M, BADDLEY J W. Overview of COVID-19-associated invasive fungal infection[J]. Curr Fungal Infect Rep,2022,16(3):87-97. doi:  10.1007/s12281-022-00434-0
    [8] CAO X F, WANG W D, WANG S S, et al. Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action[J]. Eur J Med Chem,2017,139:718-725. doi:  10.1016/j.ejmech.2017.08.057
    [9] 元子青云, 陈安九, 沈怡雯, 等. 三唑类抗真菌药物临床应用研究进展[J]. 药学与临床研究, 2018, 26(2):125-129. doi:  10.13664/j.cnki.pcr.2018.02.013
    [10] AGUILAR G, DELGADO C, CORRALES I, et al. Epidemiology of invasive candidiasis in a surgical intensive care unit: an observational study[J]. BMC Res Notes,2015,8:491. doi:  10.1186/s13104-015-1458-4
    [11] PFALLER M A. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment[J]. Am J Med, 2012, 125(1 Suppl): S3-S13.
    [12] SANATI H, BELANGER P, FRATTI R, et al. A new triazole, voriconazole (UK-109, 496), blocks sterol biosynthesis in Candida albicans and Candida krusei[J]. Antimicrob Agents Chemother,1997,41(11):2492-2496. doi:  10.1128/AAC.41.11.2492
    [13] WANG X L, WAN K, ZHOU C H. Synthesis of novel sulfanilamide-derived 1, 2, 3-triazoles and their evaluation for antibacterial and antifungal activities[J]. Eur J Med Chem,2010,45(10):4631-4639. doi:  10.1016/j.ejmech.2010.07.031
    [14] LI J C, ZHANG J, RODRIGUES M C, et al. Synthesis and evaluation of novel 1, 2, 3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity[J]. Bioorg Med Chem Lett,2016,26(16):3881-3885. doi:  10.1016/j.bmcl.2016.07.017
    [15] BOECHAT N, FERREIRA V F, FERREIRA S B, et al. Novel 1, 2, 3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain[J]. J Med Chem,2011,54(17):5988-5999. doi:  10.1021/jm2003624
    [16] THIRUMURUGAN P, MATOSIUK D, JOZWIAK K. Click chemistry for drug development and diverse chemical-biology applications[J]. Chem Rev,2013,113(7):4905-4979. doi:  10.1021/cr200409f
    [17] DOGAN S, SARAÇ S, SARI S, et al. New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies[J]. Eur J Med Chem,2017,130:124-138. doi:  10.1016/j.ejmech.2017.02.035
    [18] QIAN A R, ZHENG Y Z, WANG R L, et al. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity[J]. Bioorg Med Chem Lett,2018,28(3):344-350. doi:  10.1016/j.bmcl.2017.12.040
    [19] RASTEGARI A, NADRI H, MAHDAVI M, et al. Design, synthesis and anti-Alzheimer's activity of novel 1, 2, 3-triazole-chromenone carboxamide derivatives[J]. Bioorg Chem,2019,83:391-401. doi:  10.1016/j.bioorg.2018.10.065
  • [1] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [2] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [3] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [4] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 163-168, 194. doi: 10.12206/j.issn.2097-2024.202406035
    [5] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [6] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [7] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [8] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [9] 徐飞, 刘盈, 殷佳, 诸国樑, 练鲁英.  上海某三级公立医院药品管理内部控制评价实践研究 . 药学实践与服务, 2024, 42(12): 542-548. doi: 10.12206/j.issn.2097-2024.202402003
    [10] 石晓萍, 吕迁洲, 李晓宇, 许青.  泊沙康唑对比伏立康唑经验治疗或诊断驱动治疗免疫功能低下患者侵袭性霉菌病的成本-效果分析 . 药学实践与服务, 2024, 42(12): 512-519. doi: 10.12206/j.issn.2097-2024.202401050
    [11] 杨凤艳, 张月, 陈恩贤, 缪雪蓉, 魏凯.  瑞马唑仑临床应用研究进展 . 药学实践与服务, 2024, 42(9): 365-374. doi: 10.12206/j.issn.2097-2024.202405026
    [12] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [13] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [14] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [15] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(12): 528-532. doi: 10.12206/j.issn.2097-2024.202305005
    [16] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [17] 顾佳钰, 胡馨儿, 王晓飞, 张颖, 张海, 曹岩.  侧流免疫层析定量检测方法的研究进展 . 药学实践与服务, 2024, 42(7): 273-277, 284. doi: 10.12206/j.issn.2097-2024.202307037
    [18] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [19] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
    [20] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  4545
  • HTML全文浏览量:  1689
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 修回日期:  2022-11-01
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-02-25

含丙基侧链的新型三唑类化合物的设计、合成和抗真菌活性研究

doi: 10.12206/j.issn.2097-2024.202208016
    基金项目:  国家重点研究与发展计划(2021YFC2300400),国家自然科学基金(21202200, 81830106)
    作者简介:

    张海东,硕士研究生,研究方向:氮唑类抗真菌药物,Email:zhhd32512@163.com

    通讯作者: 俞世冲,副教授,硕士生导师,研究方向:抗真菌药物,Email:yuscc1008@163.com

摘要:   目的  研究具有正丙基侧链和二取代苯环结构的三唑醇类化合物的抗真菌活性。  方法  设计合成了11个目标化合物;其结构通过1H NMR确证,部分化合物还通过13C NMR、高分辨质谱(HRMS)确证;选择3种真菌为实验菌株,根据美国国家临床实验室标准委员会(NCCLS)推荐的标准化抗真菌敏感性实验方法,进行体外抑菌活性测试。   结果  化合物 B11 对白念珠菌SC5314的活性较氟康唑更好,与泊沙康唑相当;化合物 B10B11B4 对新型隐球菌H99的活性较氟康唑更好,化合物 B2B3B5B6B7 对新型隐球菌H99的活性与氟康唑相当;所有化合物对烟曲霉菌活性欠佳。   结论  部分引入正丙基侧链和二取代苯基结构的目标化合物有一定抗真菌活性,可作为潜在的先导抗真菌药物。

English Abstract

李群英, 李盛建, 须添翼, 解李春子, 赵亮, 须秋萍. 肉桂预煎液中有效成分肉桂酸的稳定性研究[J]. 药学实践与服务, 2020, 38(3): 255-258. doi: 10.12206/j.issn.1006-0111.202002002
引用本文: 张海东, 袁福淼, 张大志, 姜远英, 俞世冲. 含丙基侧链的新型三唑类化合物的设计、合成和抗真菌活性研究[J]. 药学实践与服务, 2023, 41(2): 86-90. doi: 10.12206/j.issn.2097-2024.202208016
LI Qunying, LI Shengjian, XU Tianyi, XIELI Chunzi, ZHAO Liang, XU Qiuping. Study on the stability of the effective components cinnamic acid in the decoction of cinnamon[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 255-258. doi: 10.12206/j.issn.1006-0111.202002002
Citation: ZHANG Haidong, YUAN Fumiao, ZHANG Dazhi, JIANG Yuanying, YU Shichong. Design, synthesis and antifungal activity of novel triazoles containing propyl side chains[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(2): 86-90. doi: 10.12206/j.issn.2097-2024.202208016
    • 由于免疫缺陷人群的增加和新真菌物种的出现,全球人口中侵袭性真菌感染(IFIs)越来越频繁[1-2]。IFIs对人类的发病率和死亡率有重大影响,全球每年造成约150万人死亡,并且这个数字还在增加[3-4]

      有研究发现,重症新型冠状病毒肺炎患者患侵袭性真菌感染的风险增加,有患者的临床相关标本中发现真菌标记物[5-6]。与非新冠肺炎患者相比,新冠肺炎患者中的侵袭性真菌感染发病率和死亡率都更高[7]

      目前临床常用的抗真菌药物有多烯类、唑类、棘白菌素和氟胞嘧啶等4类,其中氮唑类药物作为治疗和预防侵袭性真菌感染的一线疗法[8-9]。然而现有抗真菌药物的耐药性是一个日益严重的问题,具有可变敏感性或获得性耐药性的真菌种类数量呈增长趋势[3],且交叉耐药已被广泛报道[10]。有研究发现感染具有氟康唑和伏立康唑耐药念珠菌分离株患者的临床预后明显较差[11]。因此,开发具有高敏感的新型抗真菌药物迫在眉睫。

    • MSL300型核磁共振仪(CDCl3为溶剂,TMS为内标,Bruker公司);1260-1620LC-MS液相质谱联用仪、UPLC-QTOF/MS高分辨质谱仪(Agilent公司);HB10S096型旋转蒸发仪(IKA公司);2537型紫外分析仪(上海科艺光学仪器厂);DLSB型低温冷却液循环泵、B20-8-YK型耐腐蚀隔膜泵(上海豫康科教仪器设备有限公司)。监测反应使用的薄层色谱硅胶板(以硅胶GF254为固定相)和柱层析所用硅胶由烟台江友硅胶开发有限公司提供。起始原料(化合物1)、各类试剂均为市售分析纯或化学纯。

    • 三唑类抗真菌药的作用机制是通过抑制对真菌细胞色素P450具有依赖性的羊毛甾醇14α-去甲基化酶,进而导致真菌细胞膜上麦角甾醇缺失,破坏真菌细胞立体结构的完整性,最终导致真菌的死亡[3,12]。根据国内外同行对三氮唑类化合物的研究,我们发现1,2,3-三唑是一种医学上有特殊意义的结构,在许多生物活性分子和药物中作为关键的结构特征。许多含有1,2,3-三唑结构的分子具有抗结核、抗真菌、抗过敏、抗病毒、抗肿瘤、抗疟疾作用以及神经保护活性[8,13-16]

      根据前人对氮唑类药物所作的构效关系的研究,其活性必需基团为叔醇结构和三唑环,2,4-二氟苯基为重要药效基团[17]。在此基础上,我们开展了以氟康唑为先导药物,设计合成新衍生物,引入不同的胺基侧链,尔后引入三氮唑环、各种取代苄基,观察活性情况。目标是获得高活性抗耐药的新型氮唑类化合物,丰富三氮唑类化合物的结构类型和构效关系。

      我们以1-[2-(2,4-二氟苯基)-2,3环氧丙基]-1H-1,2,4-三唑甲磺酸盐为起始原料,设计和合成了一系列氟康唑的类似物,结构为1-(1H-1,2,4-三唑-1-基)-2-(2,4-二氟苯基)-3-[N-正丙基-N-((1-取代-1H-1,2,3-三唑-4基)甲基)氨基]-2-丙醇类化合物。通过对3种人体致病真菌的初步抑菌试验,显示部分化合物具有一定的抗真菌活性。

      目标化合物的合成路线如图1所示。

      图  1  目标化合物的合成路线

    • 在500 ml的圆底烧瓶中加入化合物1(21 g, 63.05 mmol),正丙胺10 ml, 三乙胺20 ml,于250 ml乙醇中加热回流6~8 h[18],TLC监测,反应完毕后蒸除溶剂,用200 ml乙酸乙酯萃取,100 ml水洗2次,无水硫酸钠静置、干燥。过滤后旋蒸除掉乙酸乙酯,得油状的化合物2(12.042 g, 40.66 mmol),收率64.49%。

    • 在250 ml的茄形瓶中加入化合物2(12.042 g, 40.66 mmol),溴丙炔(6.965 g, 58.55 mmol),无水碳酸钾(8.092 g, 58.55 mmol),碘化钾(675 mg, 4.066 mmol),于50 ml N,N-二甲基甲酰胺中室温下反应8 h[19],TLC监测,反应完毕后,用50 ml乙酸乙酯提取,100 ml水洗2次,无水硫酸钠静置、干燥。过滤后旋蒸除掉乙酸乙酯,柱层析[流动相为石油醚/乙酸乙酯(V/V)=1/1]得化合物3,收率76.27%。

    • 在50 ml茄形瓶中加入叠氮钠(164 mg, 2.52 mmol)、3,4-二氟溴苄(261 mg, 1.26 mmol),二甲亚砜10 ml,室温下磁力搅拌反应3~5 h,然后加入化合物3(210 mg, 0.63 mmol),抗坏血酸钠 (20 mg, 0.10 mmol),无水硫酸铜 (25 mg, 0.10 mmol),水1 ml,室温搅拌反应10 min[19],TCL监测至化合物3反应完毕。将反应液倒入稀氨水中,乙酸乙酯萃取(30 ml×2次),乙酸乙酯层再用稀盐酸酸化萃取(30 ml×2次),分出水层,水层加无水碳酸钠调pH至7左右,乙酸乙酯萃取(30 ml×2次),乙酸乙酯层用无水硫酸钠干燥4 h后,过滤,减压抽溶剂得目标产物,收率67.99%。

    • 方法同化合物B1,收率50.10%~95.83%。

      中间体及目标化合物的波谱数据见表1, 部分化合物的高分辨质谱数据见表2

      表 1  目标化合物的结构和波谱数据

      化合物R波谱数据
      31H NMR(300 MHz, CDCl3) δ 8.14 (1H, s, triazole-H), 7.80 (1H, s, triazole-H), 7.59-7.50 (1H, q, Ar-H), 6.85-6.78 (2H, m, Ar-H), 5.06 (1H, s, -OH), 4.60-4.48 (2H, q, J = 11.35 Hz, –CH2), 3.32-3.27 (1H, dd, J=13.95 Hz, –CH2), 3.19-3.02 (2H, m, –CH2), 2.76-2.72 (1H, d, J = 13.96 Hz, –CH), 2.46-2.37 (1H, m, –CH2), 2.33-2.24 (1H, m, –CH2), 2.15 (1H, t, J=2.22 Hz, –CH), 1.34-1.22 (2H, m, –CH2), 0.79-0.74 (3H, t, J=7.35 Hz, –CH3).
      13C NMR(75 MHz, CDCl3) δ 164.51-161.04, 160.69-157.27, 151.09, 144.68, 129.52, 125.97, 111.49, 104.30, 78.12, 73.06, 72.37, 58.43, 57.03, 56.19, 43.37, 20.61, 11.40.
      B13-F, 4-F1H NMR(300 MHz, CDCl3) δ 8.10 (1H, s, triazole-H), 7.77 (1H, s, triazole-H), 7.59 (1H, q, Ar-H), 7.18 (1H, d, triazole-H), 7.05 (3H, d, Ar-H), 6.80 (2H, m, Ar-H), 5.49 (2H, s, –CH2) , 4.56-4.51 (1H, d, J=13.80 Hz, –CH2), 4.01-4.36 (1H, d, J=13.71 Hz, –CH2), 3.65-3.49 (2H, q, J=16.28 Hz, –CH2), 3.19-3.14 (1H, d, J=13.24 Hz, –CH2), 2.73-2.68 (1H, d, J=13.90 Hz, –CH2), 2.27-2.17 (2H, q, J=29.82 Hz, –CH2), 1.29 (2H, s, –CH2), 0.70-0.65 (3H, t, J=6.78 Hz, –CH3).
      B22-F, 6-F1H NMR(300 MHz, CDCl3) δ 8.10 (1H, d, triazole-H), 7.75 (1H, s, triazole-H), 7.60-7.53 (1H, q, Ar-H), 7.42-7.32 (1H, m, Ar-H), 7.20 (1H, s, triazole-H), 7.00-6.95 (2H, t, Ar-H), 6.82-6.73 (2H, m, Ar-H), 5.61 (2H, s, –CH2), 4.51-4.38 (2H, q, J=13.55 Hz, –CH2), 3.61-3.46 (2H, q, J=14.43 Hz, –CH2), 3.17-3.13 (1H, d, J=14.20 Hz, –CH2), 2.73-2.69 (1H, d, J=13.63 Hz, –CH2), 2.24 (2H, s, –CH2), 1.27 (2H, s, –CH2), 0.70-0.65 (3H, t, J=6.98 Hz, –CH3).
      B33-F, 5-F1H NMR(300 MHz, CDCl3) δ 8.08 (1H, d, triazole-H), 7.76 (1H, s, triazole-H), 7.63-7.55 (1H, m, Ar-H), 7.11 (1H, s, triazole-H), 6.85-6.74 (5H, m, Ar-H), 5.52 (2H, s, –CH2), 4.55-4.51 (1H, d, J=14.25 Hz, –CH2), 4.41-4.36 (1H, d, J=14.25 Hz, –CH2), 3.66-3.50 (2H, q, J=16.61 Hz, –CH2), 3.19-3.14 (1H, d, J=14.06 Hz, –CH2), 2.73-2.68 (1H, d, J=14.00 Hz, –CH2), 2.34-2.25 (1H, m, –CH2), 2.21-2.11 (1H, m, –CH2), 1.36-1.25 (2H, m, –CH2), 0.70-0.65 (3H, t, J=7.34 Hz, –CH3).
      B42-F, 4-F1H NMR(300 MHz, CDCl3) δ 8.09 (1H, d, triazole-H), 7.76 (1H, s, triazole-H), 7.63-7.54 (1H, m, Ar-H), 7.31 (1H, t, Ar-H), 7.17 (1H, s, triazole-H), 6.91-6.85 (2H, t, Ar-H), 6.84-6.74 (2H, t, Ar-H), 5.53 (2H, s, –CH2), 4.54-4.37 (2H, q, J=17.08 Hz, –CH2), 3.58-3.53 (2H, d, J=15.43 Hz, –CH2), 3.18-3.14 (1H, d, J=11.92 Hz, –CH2), 2.74-2.71 (1H, d, J=9.30 Hz, –CH2), 2.27-2.20 (2H, d, J=20.71 Hz, –CH2), 1.29-1.25 (2H, d, J=12.28 Hz, –CH2), 0.70-0.66 (3H, t, J=6.27 Hz, –CH3).
      B52-F, 5-F1H NMR(300 MHz, CDCl3) δ 8.10 (1H, d, triazole-H), 7.77 (1H, s, triazole-H), 7.63-7.55 (1H, m, Ar-H), 7.20 (1H, s, triazole-H), 7.11-7.05 (2H, m, Ar-H), 6.94 (1H, s, Ar-H), 6.84-6.75 (2H, m, Ar-H), 5.56 (2H, s, –CH2), 4.55-4.39 (2H, q, J=16.18 Hz, –CH2), 3.64-3.50 (2H, d, J=13.86 Hz, –CH2), 3.20-3.15 (1H, d, J=15.01 Hz, –CH2), 2.75-2.71 (1H, d, J=13.51 Hz, –CH2), 2.29-2.22 (2H, d, J=21.24 Hz, –CH2), 1.30 (2H, s, –CH2), 0.69 (3H, s, –CH3).
      B63-Cl, 4-Cl1H NMR(300 MHz, CDCl3) δ 8.11 (1H, d, triazole-H), 7.78 (1H, s, triazole-H), 7.63-7.55 (1H, m, Ar-H), 7.47-7.44 (1H, d, Ar-H), 7.35 (1H, s, triazole-H), 7.11-7.09 (2H, d, Ar-H), 6.84-6.75 (2H, m, Ar-H), 5.49 (2H, s, –CH2), 4.56-4.52 (1H, d, J=14.13 Hz, –CH2), 4.41-4.36 (1H, d, J=14.25 Hz, –CH2), 3.66-3.49 (2H, q, J=16.49 Hz, –CH2), 3.19-3.14 (1H, d, J=13.33 Hz, –CH2), 2.73-2.68 (1H, d, J=13.27 Hz, –CH2), 2.28-2.17 (2H, d, J=31.32 Hz, –CH2), 1.29 (2H, s, –CH2), 0.70-0.65 (3H, t, J=7.24 Hz, –CH3).
      B72-Cl, 3-Cl1H NMR(300 MHz, CDCl3) δ 8.13 (1H, d, triazole-H), 7.77 (1H, s, triazole-H), 7.62-7.54 (1H, m, Ar-H), 7.50-7.47 (1H, dd, Ar-H), 7.25-7.19 (2H, t, Ar-H), 7.05 (1H, d, triazole-H), 6.84-6.73 (2H, m, Ar-H), 5.68 (2H, s, –CH2), 4.55-4.39 (2H, q, J=15.71 Hz, –CH2), 3.64-3.50 (2H, q, J=14.53 Hz, –CH2), 3.19-3.14 (1H, d, J=14.05 Hz, –CH2), 2.75-2.70 (1H, d, J=13.48 Hz, –CH2), 2.28-2.22 (2H, d, J=20.34 Hz, –CH2), 1.29 (2H, s, –CH2), 0.71-0.65 (3H, t, J=7.28 Hz, –CH3).
      B83-Cl, 5-Cl1H NMR(300 MHz, CDCl3) δ 8.12 (1H, d, triazole-H), 7.78 (1H, s, triazole-H), 7.64-7.56 (1H, m, Ar-H), 7.36 (1H, s, triazole-H), 7.13 (3H, s, Ar-H), 6.86-6.75 (2H, m, Ar-H), 5.49 (2H, s, –CH2), 4.58-4.53 (1H, q, J=13.92 Hz, –CH2), 4.42-4.37 (1H, q, J=14.61 Hz, –CH2), 3.62-3.55 (2H, d, J=21.03 Hz, –CH2), 3.20-3.15 (1H, d, J=13.23 Hz, –CH2), 2.72-2.68 (1H, d, J=10.65 Hz, –CH2), 2.29-2.18 (2H, d, J=35.37 Hz, –CH2), 1.30 (2H, s, –CH2), 0.69 (3H, s, –CH3).
      B92-Cl, 5-Cl1H NMR(300 MHz, CDCl3) δ 8.10 (1H, d, triazole-H), 7.76 (1H, s, triazole-H), 7.63-7.54 (1H, m, Ar-H), 7.39-7.31 (2H, t, Ar-H), 7.21 (1H, s, triazole-H), 7.13 (1H, s, Ar-H), 6.84-6.75 (2H, m, Ar-H), 5.61 (2H, s, –CH2), 4.55-4.50 (1H, d, J=13.47 Hz, –CH2), 4.44-4.39 (1H, q, J=14.43 Hz, –CH2), 3.65-3.51 (2H, q, J=14.43 Hz, –CH2), 3.20-3.16 (1H, d, J=13.14 Hz, –CH2), 2.75-2.70 (1H, d, J=13.55 Hz, –CH2), 2.29-2.22 (2H, d, J=21.33 Hz, –CH2), 1.28 (2H, s, –CH2), 0.69 (3H, s, –CH3).
      B103-Cl, 4-F1H NMR(300 MHz, CDCl3) δ 8.13 (1H, d, triazole-H), 7.78 (1H, s, triazole-H), 7.62-7.54 (1H, m, Ar-H), 7.32-7.30 (1H, d, Ar-H), 7.15-7.13 (2H, d, Ar-H), 7.09 (1H, s, triazole-H), 6.83-6.73 (2H, m, Ar-H), 5.47 (2H, s, –CH2), 4.55-4.36 (2H, q, J=19.44 Hz, –CH2), 3.65-3.48 (2H, q, J=16.33 Hz, –CH2), 3.18-3.13 (1H, d, J=13.91 Hz, –CH2), 2.72-2.68 (1H, d, J=13.77 Hz, –CH2), 2.33-2.24 (1H, m, –CH2), 2.20-2.10 (1H, m, –CH2), 1.29 (2H, s, –CH2), 0.69-0.64 (3H, t, J=7.31 Hz, –CH3).
      13C NMR(75 MHz, CDCl3) δ 167.88-164.42, 164.02-160.59, 163.30, 159.98, 154.85, 148.29, 135.22, 133.72, 133.15, 131.26, 129.69, 125.38, 125.14, 120.71, 114.88, 107.58, 75.57, 61.42, 60.72, 59.63, 56.25, 52.75, 23.57, 14.81.
      B113-Br, 5-Br1H NMR(300 MHz, CDCl3) δ 8.08 (1H, d, triazole-H), 7.77 (1H, s, triazole-H), 7.66 (1H, s, Ar-H), 7.63-7.55 (1H, m, Ar-H), 7.32 (2H, d, Ar-H), 7.10 (1H, d, triazole-H), 6.85-6.74 (2H, m, Ar-H), 5.47 (2H, s, –CH2), 5.33 (1H, s, -OH), 4.56-4.52 (1H, d, J=14.16 Hz, –CH2), 4.41-4.36 (1H, d, J=14.22 Hz, –CH2), 3.67-3.50 (2H, q, J=16.40 Hz, –CH2), 3.20-3.16 (1H, d, J=13.56 Hz, –CH2), 2.73-2.68 (1H, d, J=14.27 Hz, –CH2), 2.29-2.19 (2H, d, J=29.70 Hz, –CH2), 1.29 (2H, s, –CH2), 0.71-0.66 (3H, t, J=7.31 Hz, –CH3).
      13C NMR(300 MHz, CDCl3) δ 164.50-161.03, 160.61-157.19, 150.88, 144.93, 138.40, 134.51, 129.75, 129.61, 129.61, 127.97, 126.35, 123.64, 123.64, 122.10, 111.51, 104.18, 72.23, 58.02, 57.36, 56.07, 52.66, 49.39, 20.18, 11.40.

      表 2  部分化合物的高分辨质谱数据

      化合物RChemDraw提示分子量HRMS测得分子量
      3334.16335.1694
      B22-F, 6-F503.21504.2127
      B33-F, 5-F503.21504.2141
      B52-F, 5-F503.21504.2152
      B72-Cl, 3-Cl535.15536.1546
    • 选取了3种实验真菌,菌株由海军军医大学药学系军特药研究中心提供,阳性对照药为伏立康唑(VCZ)、泊沙康唑(POS)和氟康唑(FCZ),对照药结构式见图2

      图  2  药理实验阳性对照药结构图

      测试化合物体外抑菌活性的实验采用了美国国家临床实验室标准委员会(NCCLS)提出的标准化抗真菌敏感性实验方法。目标化合物对3种致病菌(C.alb SC5314, C.neo, A.fum.)的体外抑菌活性测试结果如表3所示。

      表 3  目标化合物的体外抗真菌活性(MIC80, μg/ml)

      化合物RC.alb SC5314C.neo h99A.fum 7544
      B13-F, 4-F216>64
      B22-F, 6-F18>64
      B33-F, 5-F48>64
      B42-F, 4-F14>64
      B52-F, 5-F28>64
      B63-Cl, 4-Cl28>64
      B72-Cl, 3-Cl18>64
      B83-Cl, 5-Cl4>64>64
      B92-Cl, 5-Cl116>64
      B103-Cl, 4-F11>64
      B113-Br, 5-Br0.1252>64
      VCZ0.01560.1250.125
      POS0.1250.51
      FCZ0.258>64
      注 :C.alb: 白念珠菌;C.neo: 新型隐球菌;A.fum: 烟曲霉菌;VCZ: 伏立康唑; POS: 泊沙康唑;FCZ: 氟康唑。
    • 根据目标化合物的体外抗真菌活性结果,化合物B11对白念珠菌SC5314的活性与泊沙康唑相当,是氟康唑的2倍; 化合物B2B3B5B6B7对新型隐球菌H99的活性与氟康唑相当,化合物B10B11B4对新型隐球菌h99的活性是氟康唑的2~4倍;所有化合物对烟曲霉菌活性欠佳。总体来看,活性最好的3个化合物依次是化合物B11B10B4,R取代基分别为3-Br, 5-Br、3-Cl, 4-F、2-F、4-F,侧链中均含有正丙基,对除烟曲霉菌以外的其他2种真菌的抑制活性比较突出,分析可能是正丙基作为疏水基团与靶酶的疏水腔结合较好,苯基上间位的取代基减小了分子空间位阻,提高了化合物的抗真菌活性。由于本实验合成的化合物数量有限,更深入的构效关系探讨有待于进一步的研究。

参考文献 (19)

目录

/

返回文章
返回