留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重要提示

《药学实践与服务》杂志不接收生物战剂、毒剂相关内容的稿件。对于涉军信息类论文如需投稿,请务必投稿前电话或邮箱咨询。联系电话:021-81871323,邮箱:yxsjzzs@163.com。敬请谅解,谢谢配合!

《药学实践与服务》编辑部

免责声明

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校稿时微信绑定的邮件是通过yxsjzzs@163.com发送的,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开!

胡椒的化学成分及其生物活性研究

高兴 赵凤平 王文涛 田巍 郑灿辉 陈新

高兴, 赵凤平, 王文涛, 田巍, 郑灿辉, 陈新. 胡椒的化学成分及其生物活性研究[J]. 药学实践与服务, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
引用本文: 高兴, 赵凤平, 王文涛, 田巍, 郑灿辉, 陈新. 胡椒的化学成分及其生物活性研究[J]. 药学实践与服务, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
GAO Xing, ZHAO Fengping, WANG Wentao, TIAN Wei, ZHENG Canhui, CHEN Xin. Research on the chemical compositions and their biological activities of Piper nigrum L.[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
Citation: GAO Xing, ZHAO Fengping, WANG Wentao, TIAN Wei, ZHENG Canhui, CHEN Xin. Research on the chemical compositions and their biological activities of Piper nigrum L.[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065

胡椒的化学成分及其生物活性研究

doi: 10.12206/j.issn.2097-2024.202308065
基金项目: 国家自然科学基金(82173670)
详细信息

Research on the chemical compositions and their biological activities of Piper nigrum L.

  • 摘要: 胡椒是属于胡椒科胡椒属的一种常绿攀援藤本植物,被称为“香料之王”,既能用于食品也能用于医药。胡椒中主要活性物质有以酰胺类化合物为主的生物碱和胡椒精油,以及酚类化合物。该文对胡椒中的化学成分,尤其是酰胺类生物碱及其生物活性进行归纳总结。研究表明,胡椒作为药食同源的一种植物,具有广泛的生物活性,值得进一步研究和深度利用。
  • 图  1  胡椒中酰胺类化合物的结构式

    图  2  胡椒主要化学成分的生物活性

    表  1  胡椒中酰胺类化合物

    化合物名称化合物名称
    1胡椒碱[5]35N-5-(4-羟基苯)-2E,4E-戊二烯酰基吡咯烷[4]
    2胡椒新碱[6]36N-反式阿魏酰基酪胺[7]
    3胡椒亭碱[5]37N-反式阿魏酰-3-甲氧基酪胺[7]
    4胡椒油碱A[7]381-[(2E,4E,13Z)十八烷三烯酰基]哌啶[10]
    5荜茇壬二烯哌啶[5]391-[(2E,4E,13Z)十八烷三烯酰基]吡咯[10]
    6荜茇壬三烯哌啶[5]401-[(2E,4E,12Z)十八烷三烯酰基]哌啶[10]
    7胡椒油碱B[5]411-[(2E,4E,12Z)十八烷三烯酰基]吡咯[10]
    8N-哌啶-11-(3,4亚甲二氧基苯基)-2E,
    10E-十一碳二烯酰胺[7]
    421-[(2E,4E)葵二烯酰基]吡咯[13]
    9N-哌啶-13-(3,4亚甲二氧基苯基)-2E,4E,
    12E-十三碳三烯酰胺[5]
    431-[(2E,4E)十二烷二烯酰基]吡咯[4]
    10N-哌啶-13-(3,4亚甲二氧基苯基)-2E,
    12E-十三碳二烯酰胺[7]
    441-[(2E,4E,12Z)十四烷三烯酰基]哌啶[9]
    111-[(2E,4E,10E)-11-(3,4-亚甲基二氧苯基)-2,
    4,10-十一碳三烯酰基]吡咯烷[8]
    451-(十四烷基-2E-烯酰基)哌啶[9]
    12(2E,4E,10E)-N-11-(3,4-亚甲基二氧苯基癸
    三烯酰基)哌啶[9]
    461-[(2E,4E)十四烷二烯酰基]哌啶[9]
    13胡椒林碱[5]471-[(2E,4E,10E)十六烷三烯酰基]哌啶[9]
    14胡椒内酰胺-C5:1(2E)[4]481-[(2E,4E)十六烷二烯酰基]哌啶[9]
    15胡椒内酰胺-C7:3(2E,4E,6E)[7]491-[(2E,4E)十八烷二烯酰基]哌啶[9]
    16胡椒内酰胺-C7:2(2E,6E)[4]501-[(2E,4E,14E)二十烷三烯酰基]哌啶[9]
    17胡椒内酰胺-C7:1(6E)[4]511-[(2E,4E)二十烷二烯酰基]哌啶[9]
    18胡椒内酰胺-C9:3(2E,4E,8E)[5]52N-异丁基-2E,4E,13Z三烯十八酰胺[10]
    19胡椒内酰胺-C9:2(2E,8E)[4]53N-异丁基-2E,4E,15Z三烯二十酰胺[10]
    20胡椒内酰胺-C9:1(8E)[7]54N-异丁基-2E,4E,14Z三烯二十酰胺[10]
    21胡椒内酰胺-C13:3(2E,4E,12E)[10]55墙草碱[6]
    22胡椒内酰胺-C10:1(9E)[11]56N-异丁基-2E,4E-二烯十二酰胺[5]
    23荜茇明宁碱[12]57N-异丁基-2E,4E-二烯十六酰胺[4]
    24二氢荜茇明宁碱[6]58N-异丁基-2E,4E,10Z-三烯十六酰胺[7]
    25N-异丁基-9-(3,4-亚甲二氧基苯基)-2E,4E,
    8E-壬三烯酰胺[5]
    59N-异丁基-2E,4E-二烯十八酰胺[10]
    26N-异丁基-11-(3,4-亚甲二氧基苯基)2E,4E,
    10E-十一碳三烯酰胺[7]
    60N-异丁基-2E,4E,12Z-三烯十八酰胺[5]
    27N-异丁基-11-(3,4-亚甲二氧基苯基)-2E,
    4E-十一碳二烯酰胺[13]
    61N-异丁基-2E,4E,10E-三烯二十二酰胺[4]
    28(2E,4E)-9-(1,3-苯并二恶茂-5-基)-N-
    (2-甲基丙基)壬-2,4-二酰胺[14]
    62N-异丁基-2E,4E,8E-三烯十四酰胺[9]
    29几内亚胡椒酰胺[5]63N-异丁基-2E,4E-二烯十四酰胺[9]
    30N-异丁基15-(3,4-亚甲二氧基苯基)2E,4E,
    14E-十一碳三烯酰胺[7]
    64N-异丁基-2E,4E,8E-二烯二十酰胺[9]
    31N-反式阿魏酰基哌啶[4]65哌啶环丁酰胺A[16]
    32阿魏波因[4]66哌啶环丁酰胺B[16]
    33去氢阿魏波因[4]67哌啶环丁酰胺D[17]
    341-桂皮酰基哌啶[15]68Chabamide[11]
    下载: 导出CSV
  • [1] 严永清. 中药辞海. 第二卷 [M]. 中药辞海. 第二卷, 1996.
    [2] 郑维全, 杨建峰, 鱼欢, 等. 我国胡椒产业现状与创新发展探析[J]. 热带农业科学, 2017, 37(12):102-8.
    [3] TAKOOREE H, AUMEERUDDY M Z, RENGASAMY K R R, et al. A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications[J]. Crit Rev Food Sci Nutr, 2019, 59(sup1):S210-S43. doi:  10.1080/10408398.2019.1565489
    [4] 于岚, 郝正一, 胡晓璐, 等. 胡椒的化学成分与药理作用研究进展[J]. 中国实验方剂学杂志, 2020, 26(6):9.
    [5] YUN Y S, SACHIETAKAHASHI, SHIGERUTAKAHASHI, YUJIINOUE, HIDESHI. Piperine-like alkamides from Piper nigrum induce BDNF promoter and promote neurite outgrowth in Neuro-2a cells[J]. J Nat Med-Tokyo, 2018, 72(1):238-45. doi:  10.1007/s11418-017-1140-3
    [6] LIU H L, LUO R, CHEN X Q, et al. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC-ESI-MS(n) and UFLC-ESI-MS/MS and their application to Piper nigrum L[J]. Food Chem, 2015, 177(jun.15):191-6.
    [7] TU Y, ZHONG Y, DU H, et al. Anticholinesterases and antioxidant alkamides from Piper nigrum fruits[J]. Nat. Prod. Res, 2016, 30(17):1945-9. doi:  10.1080/14786419.2015.1089243
    [8] PEI H, XUE L, TANG M, et al. Alkaloids from Black Pepper (Piper nigrum L.) Exhibit Anti-Inflammatory Activity in Murine Macrophages by Inhibiting Activation of NF-κB Pathway[J]. J. Agric. Food. Chem, 2020, 68(8):2406-17. doi:  10.1021/acs.jafc.9b07754
    [9] SUN C, PEI S, PAN Y, et al. Rapid structural determination of amides in Piper longum by high-performance liquid chromatography combined with ion trap mass spectrometry[J]. Rapid Commun. Mass Spectrom, 2007, 21(9):1497-503. doi:  10.1002/rcm.2986
    [10] R. B L, CORINNA D, MADELINE B, et al. The Effect of Pungent and Tingling Compounds from Piper nigrum L. on Background K+ Currents [J]. Front. Pharmacol, 2017, 8: 408.
    [11] NGO Q M T, TRAN P T, TRAN M H, et al. Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO1 Pathway[J]. Phytother. Res, 2017, 31(4):663-70. doi:  10.1002/ptr.5780
    [12] SRIWIRIYAJAN S, SUKPONDMA Y, SRISAWAT T, et al. (−)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer[J]. BIOMED PHARMACOTHER, 2017, 92:732-43.
    [13] NICOLUSSI S, VIVEROS-PAREDES J M, GACHET M S, et al. Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice[J]. Pharmacol. Res, 2014, 80:52-65. doi:  10.1016/j.phrs.2013.12.010
    [14] YU L, HU X, XU R, et al. Amide alkaloids characterization and neuroprotective properties of Piper nigrum L.: A comparative study with fruits, pericarp, stalks and leaves[J]. Food Chem, 2022, 368:130832. doi:  10.1016/j.foodchem.2021.130832
    [15] 王勇, 魏娜, 李洪福, 等. 海南黑胡椒超临界萃取物中化学成分的GC-MS分析[J]. 中国实验方剂学杂志, 2013, 19(12):121-3.
    [16] FUJIWARA Y, NAITHOU K, MIYAZAKI T, et al. Two new alkaloids, pipercyclobutanamides A and B, from Piper nigrum[J]. Tetrahedron Letters, 2001, 42(13):2497-9. doi:  10.1016/S0040-4039(01)00209-X
    [17] HUU D M N, DANG P H, HUYNH N V, et al. Pipercyclobutanamide D, a new member of the cyclobutanamide-type alkaloid, from the roots of Piper nigrum[J]. J. Asian Nat. Prod. Res, 2021, 23(9):906-12. doi:  10.1080/10286020.2020.1794858
    [18] 段梦雅, 王福清, 吴桂苹, 等. 4种胡椒精油风味特征分析[J]. 食品科学, 2022(008):043.
    [19] BUTT M S, PASHA I, SULTAN M T, et al. Black Pepper and Health Claims: A Comprehensive Treatise[J]. Crit. Rev. Food Sci. Nutr, 2013, 53(9):875-86. doi:  10.1080/10408398.2011.571799
    [20] AZIZ N S, SOFIAN-SENG N-S, MOHD RAZALI N S, et al. A review on conventional and biotechnological approaches in white pepper production[J]. JSFA, 2019, 99(6):2665-76. doi:  10.1002/jsfa.9481
    [21] 姜太玲, 沈绍斌, 张林辉, 等. 胡椒的化学成分 生理功能及应用研究进展[J]. 农产品加工:下, 2018(1):4.
    [22] CHUNG H Y, JUNG H J, KIM D H, et al. Anti-inflammatory and antioxidant activities of piperine on t-BHP-induced in Ac2F cells [J]. SDRPJ Food Sci Tech, 2019. 4(4
    [23] VIJAYAKUMAR R S, NALINI N. Piperine, an Active Principle from Piper Nigrum, Modulates Hormonal and Apolipoprotein Profiles in Hyperlipidemic Rats[J]. JBCPP, 2006, 17(2):71-86. doi:  10.1515/JBCPP.2006.17.2.71
    [24] BRAHMANAIDU P, NEMANI H, MERIGA B, et al. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats[J]. Chem. Biol. Interact, 2014, 221:42-51. doi:  10.1016/j.cbi.2014.07.008
    [25] REYNOSO MORENO I, NAJAR-GUERRERO I, ESCARENO N, et al. An Endocannabinoid Uptake Inhibitor from Black Pepper Exerts Pronounced Anti-Inflammatory Effects in Mice [J]. J. Agric. Food Chem, 2017: 9435.
    [26] RATHER R A, BHAGAT M. Cancer Chemoprevention and Piperine: Molecular Mechanisms and Therapeutic Opportunities [J]. FCDB, 2018, 6.
    [27] YAFFE P B, POWER COOMBS M R, DOUCETTE C D, et al. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress[J]. Mol Carcinog, 2015, 54(10):1070-85. doi:  10.1002/mc.22176
    [28] HAN S Z, LIU H X, YANG L Q, et al. Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB[J]. BIOMEDPHARMACOTHER, 2017, 96:1403-10.
    [29] GUNASEKARAN V, ELANGOVAN K, NIRANJALI DEVARAJ S. Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: An in vitro and in vivo study[J]. Food Chem. Toxicol, 2017, 105:106-18. doi:  10.1016/j.fct.2017.03.029
    [30] TURRINI E, SESTILI P, FIMOGNARI C. Overview of the anticancer potential of the “king of spices” piper nigrum and its main constituent piperine[J]. TOXINS, 2020, 12(12):747. doi:  10.3390/toxins12120747
    [31] MATSUDA H, NINOMIYA K, MORIKAWA T, et al. Protective effects of amide constituents from the fruit of Piper chaba on d-galactosamine/TNF-α-induced cell death in mouse hepatocytes[J]. Bioorg Med Chem Lett, 2008, 18(6):2038-42.
    [32] SABINA E P, SOURIYAN A D H, JACKLINE D, et al. Piperine, an active ingredient of black pepper attenuates acetaminophen–induced hepatotoxicity in mice[J]. ASIAN PAC J TROP MED, 2010, 3(12):971-6. doi:  10.1016/S1995-7645(11)60011-4
    [33] CHOI S, CHOI Y, CHOI Y, et al. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice[J]. Food Chem, 2013, 141(4):3627-35. doi:  10.1016/j.foodchem.2013.06.028
    [34] YOUNIS N. Protective mechanisms of piperine against acetaminophen-induced hepatotoxicity may be mediated through TGFBRAP1[J]. Eur. Rev. Med. Pharmacol. Sci, 2020, 24:10169-80.
    [35] SAMRA Y A, SAID H S, ELSHERBINY N M, et al. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome [J]. Life Sci, 2016: S0024320516303484.
    [36] BOORANASUBKAJORN S, HUABPRASERT S, WATTANARANGSAN J, et al. Vasculoprotective and vasodilatation effects of herbal formula (Sahatsatara) and piperine in spontaneously hypertensive rats[J]. PHYTOMEDICINE, 2017, 24:148-56. doi:  10.1016/j.phymed.2016.11.013
    [37] MAO Q-Q, HUANG Z, ZHONG X-M, et al. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice[J]. Behav. Brain Res, 2014, 261:140-5. doi:  10.1016/j.bbr.2013.12.020
    [38] LUCIAN, HRITCU, A J, et al. Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in beta-amyloid (1-42) rat model of Alzheimer's disease [J]. BEHAV BRAIN FUNCT, 2015, 11: 1-13
    [39] KHOM S, STROMMER B, SCHöFFMANN A, et al. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative[J]. Biochem. Pharmacol, 2013, 85(12):1827-36. doi:  10.1016/j.bcp.2013.04.017
    [40] MAO K, LEI D, ZHANG H, et al. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy[J]. Exp Ther Med, 2017, 13(2):695-700. doi:  10.3892/etm.2016.4001
    [41] SUBEDEE L, SURESH R N, JAYANTHI M K, et al. Preventive role of Indian black pepper in animal models of Alzheimer’s disease[J]. JCDR, 2015, 9(4):FF01.
    [42] CHONPATHOMPIKUNLERT P, WATTANATHORN J, MUCHIMAPURA S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease [J]. Food Chem Toxicol, 2010, 48: 798-802.
    [43] 赵贤武, 黄丽平, 邓敏贞, 等. 高良姜、胡椒和槟榔有效成分对岗田酸诱导p-tau细胞模型的作用研究[J]. 中医学报, 2017, 32(11):5.
    [44] 邹兰, 胡月英, 陈文学. 黑胡椒提取物对枯草芽孢杆菌生理代谢的影响[J]. 食品工业科技, 2015, 36(23):4.
    [45] 邹兰, 胡月英, 陈文学. 黑胡椒石油醚相提取物对大肠杆菌和金黄色葡萄球菌的抑菌机制研究[J]. 食品科技, 2018, 43(6):5.
    [46] FREIRE-DE-LIMA L, RIBEIRO T, ROCHA G, et al. The toxic effects of piperine against Trypanosoma cruzi: Ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms[J]. PARASITOL RES, 2008, 102:1059-67. doi:  10.1007/s00436-008-0876-9
    [47] CHOUHAN G, ISLAMUDDIN M, WANT M Y, et al. Leishmanicidal Activity of Piper nigrum Bioactive Fractions is Interceded via Apoptosis In Vitro and Substantiated by Th1 Immunostimulatory Potential In Vivo [J]. Front. Microbiol, 2015, 6: 1368.
    [48] SAMUEL M, OLIVER S V, COETZEE M, et al. The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide resistant and susceptible strains of Anopheles malaria vector mosquitoes[J]. PARASITE VECTOR, 2016, 9(1):238.
    [49] TAQVI S I H, SHAH A J, GILANI A H. Insight into the possible mechanism of antidiarrheal and antispasmodic activities of piperine [J]. Pharm. Biol, 2009, 47(8): 660-664.
    [50] SMILKOV K, ACKOVA D G, CVETKOVSKI A, et al. Piperine: Old Spice and New Nutraceutical?[J]. Curr Pharm Des, 2019, 25(15):1729-39. doi:  10.2174/1381612825666190701150803
    [51] CHATTERJEE S, NIAZ Z, GAUTAM S, et al. Antioxidant activity of some phenolic constituents from green pepper (Piper nigrum L.) and fresh nutmeg mace (Myristica fragrans)[J]. Food Chem, 2007, 101(2):515-23. doi:  10.1016/j.foodchem.2006.02.008
  • [1] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(8): 373-376, 409. doi: 10.12206/j.issn.2097-2024.202403014
    [2] 高洁, 林心兰, 王兆骞, 张青亭, 李静静, 张凤.  生物制剂治疗强直性脊柱炎的研究进展 . 药学实践与服务, 2025, 43(7): 320-324. doi: 10.12206/j.issn.2097-2024.202502005
    [3] 邱彦, 吴浩, 董雅芬, 陈业, 王建, 金辉.  新型二氢卟吩化合物的光动力性能及其抗肺癌作用研究 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202304011
    [4] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [5] 肖树文, 周鹤洋, 金永生, 乔丽名, 郑巍.  齐墩果酸和熊果酸衍生物的化学合成及体外抗丙肝病毒作用的研究 . 药学实践与服务, 2025, 43(10): 503-508. doi: 10.12206/j.issn.2097-2024.202502045
    [6] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(8): 400-403. doi: 10.12206/j.issn.2097-2024.202408053
    [7] 吴若南, 叶爽, 李墨晨轩, 缪震元, 罗川.  冬凌草甲素磺酰脲衍生物的设计与抗炎活性研究 . 药学实践与服务, 2025, 43(7): 335-338, 352. doi: 10.12206/j.issn.2097-2024.202401048
    [8] 江冼芮, 段雅倩, 刘畅, 张成中.  淫羊藿中黄酮苷类化合物的群体感应抑制作用研究 . 药学实践与服务, 2025, 43(4): 169-173. doi: 10.12206/j.issn.2097-2024.202409060
    [9] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 163-168, 194. doi: 10.12206/j.issn.2097-2024.202406035
    [10] 王文涛, 高兴, 赵凤平, 郑灿辉, 陈新.  异硒唑酮类化合物在疾病治疗中的作用和化学合成方法 . 药学实践与服务, 2025, 43(8): 367-372. doi: 10.12206/j.issn.2097-2024.202308064
    [11] 王新霞, 刘祉君, 吕磊, 张爽, 高守红.  鬼针草降压作用研究及展望 . 药学实践与服务, 2025, 43(9): 427-430. doi: 10.12206/j.issn.2097-2024.202408021
    [12] 卢熠菲, 宋佳, 沈红霞, 赵庆杰.  新型苦参碱衍生物的设计合成与体外抗炎活性研究 . 药学实践与服务, 2025, 43(): 1-8. doi: 10.12206/j.issn.2097-2024.202503005
    [13] 赵雪, 顾妍秋, 楚皓文, 吴彩胜, 李镐, 陈啸飞.  基于超高效液相色谱-四极杆飞行时间质谱的麻杏石甘汤化学成分分析 . 药学实践与服务, 2025, 43(11): 548-554, 571. doi: 10.12206/j.issn.2097-2024.202306028
    [14] 史生辉, 刘潇, 陈栋, 暨迪军, 马倩, 卢永昌.  二维液相色谱法分离藏药木藤蓼的化学成分 . 药学实践与服务, 2025, 43(9): 443-448. doi: 10.12206/j.issn.2097-2024.202412065
    [15] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [16] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [17] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [18] 段雅倩, 王旭, 唐高卿, 邵艳茹, 黄宝康.  莲子和莲子心生物碱成分及抗癌活性的比较分析 . 药学实践与服务, 2025, 43(9): 449-454. doi: 10.12206/j.issn.2097-2024.202407061
    [19] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [20] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  16408
  • HTML全文浏览量:  8793
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2024-01-11
  • 网络出版日期:  2025-07-15
  • 刊出日期:  2025-07-25

胡椒的化学成分及其生物活性研究

doi: 10.12206/j.issn.2097-2024.202308065
    基金项目:  国家自然科学基金(82173670)
    作者简介:

    高 兴,硕士研究生,Email:1438591326@qq.com

    通讯作者: 郑灿辉,博士,副教授,研究方向:药物合理设计与合成,Email: canhuizheng@smmu.edu.cn陈 新,博士,教授,研究方向:生物与制药工程,Email:chenxin_0001@126.com

摘要: 胡椒是属于胡椒科胡椒属的一种常绿攀援藤本植物,被称为“香料之王”,既能用于食品也能用于医药。胡椒中主要活性物质有以酰胺类化合物为主的生物碱和胡椒精油,以及酚类化合物。该文对胡椒中的化学成分,尤其是酰胺类生物碱及其生物活性进行归纳总结。研究表明,胡椒作为药食同源的一种植物,具有广泛的生物活性,值得进一步研究和深度利用。

English Abstract

高兴, 赵凤平, 王文涛, 田巍, 郑灿辉, 陈新. 胡椒的化学成分及其生物活性研究[J]. 药学实践与服务, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
引用本文: 高兴, 赵凤平, 王文涛, 田巍, 郑灿辉, 陈新. 胡椒的化学成分及其生物活性研究[J]. 药学实践与服务, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
GAO Xing, ZHAO Fengping, WANG Wentao, TIAN Wei, ZHENG Canhui, CHEN Xin. Research on the chemical compositions and their biological activities of Piper nigrum L.[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
Citation: GAO Xing, ZHAO Fengping, WANG Wentao, TIAN Wei, ZHENG Canhui, CHEN Xin. Research on the chemical compositions and their biological activities of Piper nigrum L.[J]. Journal of Pharmaceutical Practice and Service, 2025, 43(7): 313-319. doi: 10.12206/j.issn.2097-2024.202308065
    • 胡椒(Piper nigrum L.)在植物分类上属于胡椒科(Piperaceae)胡椒属(Piper),是一种原产于印度的多年生常绿攀援藤本植物。胡椒在我国始载于唐代的《新修本草》,又名古月、黑川(黑胡椒)、白川(白胡椒)[1],其中,黑胡椒被誉为“香料之王”,是一种被全世界广泛使用的香料,可为菜肴增添独特的风味,并增强其他食材的味道,目前对胡椒的研究大部分是聚焦于黑胡椒。我国从1947年开始引种胡椒, 目前我国胡椒种植面积和产量在世界的排名分别是第6位和第5位[2]。但是我国胡椒加工产品多为初级产品, 导致胡椒产品附加值低, 限制了胡椒产业的发展。近年来, 国内外学者对胡椒的化学成分和生物活性进行了较多研究,为胡椒的开发利用提供理论参考[3, 4]。本文通过查阅近年文献,针对胡椒的化学成分和生物活性进行综述,为其进一步研究与开发提供参考。

    • 近年来的研究发现,胡椒的果实、根、茎、叶和花中含有多种成分,主要包括酰胺类生物碱、挥发性精油、酚类、有机酸、木脂素及微量元素等,其中,生物碱是其最主要的活性成分。

    • 生物碱类是胡椒中一类重要的活性成分,其中,以胡椒碱为代表的酰胺类化合物含量最高、活性最广,胡椒碱在胡椒中的含量大致为2%~7.4%。目前从胡椒中分离得到的酰胺类化合物见表1图1

      表 1  胡椒中酰胺类化合物

      化合物名称化合物名称
      1胡椒碱[5]35N-5-(4-羟基苯)-2E,4E-戊二烯酰基吡咯烷[4]
      2胡椒新碱[6]36N-反式阿魏酰基酪胺[7]
      3胡椒亭碱[5]37N-反式阿魏酰-3-甲氧基酪胺[7]
      4胡椒油碱A[7]381-[(2E,4E,13Z)十八烷三烯酰基]哌啶[10]
      5荜茇壬二烯哌啶[5]391-[(2E,4E,13Z)十八烷三烯酰基]吡咯[10]
      6荜茇壬三烯哌啶[5]401-[(2E,4E,12Z)十八烷三烯酰基]哌啶[10]
      7胡椒油碱B[5]411-[(2E,4E,12Z)十八烷三烯酰基]吡咯[10]
      8N-哌啶-11-(3,4亚甲二氧基苯基)-2E,
      10E-十一碳二烯酰胺[7]
      421-[(2E,4E)葵二烯酰基]吡咯[13]
      9N-哌啶-13-(3,4亚甲二氧基苯基)-2E,4E,
      12E-十三碳三烯酰胺[5]
      431-[(2E,4E)十二烷二烯酰基]吡咯[4]
      10N-哌啶-13-(3,4亚甲二氧基苯基)-2E,
      12E-十三碳二烯酰胺[7]
      441-[(2E,4E,12Z)十四烷三烯酰基]哌啶[9]
      111-[(2E,4E,10E)-11-(3,4-亚甲基二氧苯基)-2,
      4,10-十一碳三烯酰基]吡咯烷[8]
      451-(十四烷基-2E-烯酰基)哌啶[9]
      12(2E,4E,10E)-N-11-(3,4-亚甲基二氧苯基癸
      三烯酰基)哌啶[9]
      461-[(2E,4E)十四烷二烯酰基]哌啶[9]
      13胡椒林碱[5]471-[(2E,4E,10E)十六烷三烯酰基]哌啶[9]
      14胡椒内酰胺-C5:1(2E)[4]481-[(2E,4E)十六烷二烯酰基]哌啶[9]
      15胡椒内酰胺-C7:3(2E,4E,6E)[7]491-[(2E,4E)十八烷二烯酰基]哌啶[9]
      16胡椒内酰胺-C7:2(2E,6E)[4]501-[(2E,4E,14E)二十烷三烯酰基]哌啶[9]
      17胡椒内酰胺-C7:1(6E)[4]511-[(2E,4E)二十烷二烯酰基]哌啶[9]
      18胡椒内酰胺-C9:3(2E,4E,8E)[5]52N-异丁基-2E,4E,13Z三烯十八酰胺[10]
      19胡椒内酰胺-C9:2(2E,8E)[4]53N-异丁基-2E,4E,15Z三烯二十酰胺[10]
      20胡椒内酰胺-C9:1(8E)[7]54N-异丁基-2E,4E,14Z三烯二十酰胺[10]
      21胡椒内酰胺-C13:3(2E,4E,12E)[10]55墙草碱[6]
      22胡椒内酰胺-C10:1(9E)[11]56N-异丁基-2E,4E-二烯十二酰胺[5]
      23荜茇明宁碱[12]57N-异丁基-2E,4E-二烯十六酰胺[4]
      24二氢荜茇明宁碱[6]58N-异丁基-2E,4E,10Z-三烯十六酰胺[7]
      25N-异丁基-9-(3,4-亚甲二氧基苯基)-2E,4E,
      8E-壬三烯酰胺[5]
      59N-异丁基-2E,4E-二烯十八酰胺[10]
      26N-异丁基-11-(3,4-亚甲二氧基苯基)2E,4E,
      10E-十一碳三烯酰胺[7]
      60N-异丁基-2E,4E,12Z-三烯十八酰胺[5]
      27N-异丁基-11-(3,4-亚甲二氧基苯基)-2E,
      4E-十一碳二烯酰胺[13]
      61N-异丁基-2E,4E,10E-三烯二十二酰胺[4]
      28(2E,4E)-9-(1,3-苯并二恶茂-5-基)-N-
      (2-甲基丙基)壬-2,4-二酰胺[14]
      62N-异丁基-2E,4E,8E-三烯十四酰胺[9]
      29几内亚胡椒酰胺[5]63N-异丁基-2E,4E-二烯十四酰胺[9]
      30N-异丁基15-(3,4-亚甲二氧基苯基)2E,4E,
      14E-十一碳三烯酰胺[7]
      64N-异丁基-2E,4E,8E-二烯二十酰胺[9]
      31N-反式阿魏酰基哌啶[4]65哌啶环丁酰胺A[16]
      32阿魏波因[4]66哌啶环丁酰胺B[16]
      33去氢阿魏波因[4]67哌啶环丁酰胺D[17]
      341-桂皮酰基哌啶[15]68Chabamide[11]

      图  1  胡椒中酰胺类化合物的结构式

    • 胡椒的价值很大一部分在于它的辛辣和风味,这归因于一种天然存在的生物碱,即胡椒碱,以及挥发性精油的作用。挥发油约占胡椒的0.4%~7%,是胡椒香气的主要来源。胡椒精油以单萜、倍半萜烯类化合物为主,目前,胡椒精油中已经发现了48种化合物[18-21]。其中,主要成分有β-石竹烯、3-蒈烯、D-柠檬烯、β-蒎烯、δ-榄香烯、β-月桂烯、E-β-石竹烯、柠檬烯、β-蒎烯、β-水芹烯、δ-3-蒈烯、桧烯、β-红没药烯、α-蒎烯、丁子香酚、萜品烯-4-醇、耳草蒈烷醇、β-桉叶醇、石竹烯氧化物等。

    • 胡椒的酚类成分是黄酮醇糖苷和酚酸糖苷的混合物,其中主要成分有异槲皮素、槲皮素、3-β-D-芸香苷异鼠李素、山奈酚-3-ο-β-半乳糖苷、山奈酚-3-阿拉伯糖苷和槲皮素-3-ο-β-D-芸香苷等[19]

    • 胡椒中主要的生物活性物质为胡椒碱、挥发性精油以及酚类化合物(图2),生物碱中尤其对胡椒碱的研究十分广泛,它们具有广泛的生物活性,胡椒中的化合物有助于改善各种疾病。

      图  2  胡椒主要化学成分的生物活性

    • 胡椒碱对叔丁基过氧化氢(t-BHP)诱导的Ac2F细胞氧化应激有预防作用。根据Chung等的研究表明,胡椒碱通过清除自由基和活性氧(ROS)来防止氧化损伤,并且发现通过胡椒碱预处理Donryu大鼠肝细胞(Ac2F细胞)可调节凝血酶和锰依赖性超氧化物歧化酶(MnSOD)的蛋白表达,这是降低线粒体氧化应激所必需的重要抗氧化酶,表明胡椒碱确有抗氧化作用[22]

    • 胡椒碱通过调节脂代谢相关酶,如卵磷脂-胆固醇酰基转移酶(LCAT)和脂蛋白脂酶(LPL),降低高脂血症大鼠血脂和脂蛋白水平,从而起到减肥作用[23]。根据Brahmanaidu等的研究,胡椒碱可改善高脂饮食(HFD)引起的生化指标水平升高,增强胰岛素和瘦素的敏感性,表明胡椒碱可以作为治疗肥胖的潜在药物[24]

    • 胡椒碱可以通过抑制细胞内反应性物种激活的NF-κB和丝裂原活化蛋白激酶(MAPK)来预防t-BHP诱导的Ac2F细胞炎症[22]。Pei等研究发现,胡椒碱在脂多糖刺激的原始264.7细胞中可以抑制白介素-6(IL-6)、IL-1β、肿瘤坏死因子-α(TNF-α)、前列腺素E2(PGE2)和诱导型一氧化氮合酶(iNOS)介导的NO释放,通过靶向IκB激酶 β(IKK-β)抑制NF-κB的活化和p65亚基的细胞核易位,这些结果表明胡椒碱可能是炎症治疗的有效药物[8]

      胡椒中的另一个化合物几内亚胡椒酰胺也具有较好的抗炎作用。Reynoso等构建了急性炎性疼痛和内毒素血症小鼠模型,通过几内亚胡椒酰胺治疗后,发现小鼠的炎性疼痛有所改善,同时抑制了水肿的形成,研究结果表明,几内亚胡椒酰胺能够抑制内毒素血症中促炎细胞因子的产生,并且其抗炎和急性镇痛作用呈现显著的剂量依赖性[25]

    • 胡椒碱可以通过影响凋亡信号的激活和抑制细胞周期的进程,抑制多种类型癌细胞的增殖和存活[26]。Yaffe等研究发现胡椒碱可以抑制HT-29结肠癌细胞的生长并诱导细胞凋亡,此研究表明胡椒碱具有显著的抗肿瘤活性,其分别通过调节细胞周期进程和表现出抗凋亡活性来抑制各种癌细胞的增殖和存活[27]。胡椒碱和丝裂霉素共同处理导致细胞增殖的剂量依赖性抑制,同时磷酸化信号转导和转录激活因子(p-STAT3)的减少与它们对p65的抑制有关[28]。还有研究确定了胡椒碱对Hep G2细胞具有剂量和时间依赖性细胞毒性,进一步研究表明胡椒碱的促氧化特性,通过抑制过氧化氢酶,驱动线粒体介导的 Hep G2细胞凋亡,同时,胡椒碱还可抑制酪氨酸激酶受体并减轻肝细胞癌的进展[29]

      墙草碱是从胡椒中分离出的另一种具有抗癌活性的生物活性化合物,对乳腺(MCF-7)和人早幼粒细胞白血病(HL60)细胞有细胞毒作用,其IC50值分别为1.8和13 μg/ml[30]。另外,Sriwiriyajan等发现荜茇明宁碱也具有强大的抗癌活性,他们利用流式细胞仪检测细胞周期和凋亡,发现荜茇明宁碱能诱导细胞G2/M期停滞和发生凋亡,且诱导的细胞凋亡只与外源性途径有关[12]

    • 胡椒碱能以剂量依赖的方式抑制肝损伤小鼠肝细胞的凋亡。根据Matsuda等的研究表明,胡椒碱保肝作用可能取决于肝细胞对TNF-α的敏感性降低[31]。Sabina等进行的另一项动物研究声称,胡椒碱通过增加抗氧化剂来减轻对乙酰氨基酚诱导的小鼠肝毒性TNF-α的表达和肝脏标志物酶活性的抑制,包括天冬氨酸转氨酶(AST)、丙氨酸转氨酶(ALT)和碱性磷酸酶(ALP)[32]。Choi等发现胡椒碱可以通过激活脂联素-腺苷5′-单磷酸活化蛋白激酶(AMPK)信号途径来减少HFD喂养小鼠的肝脂质积累[33]。Morsy等发现胡椒碱可通过增强肝转化生长因子-β 受体相关结合蛋白1(TGFBRAP1)的表达,改善小鼠对乙酰氨基酚导致的肝损伤[34]

    • 胡椒碱还能对降血糖有作用。Samra等研究发现,胡椒碱能够显著降低大鼠糖尿病模型中肾脏的TXNIP和NLRP3表达,而在大鼠糖尿病模型中,肾脏的TXNIP和NLRP3表达是显著增加的。同时高血糖会诱导NF-κB激活,导致IL-1β和TNF-α水平升高。在大鼠糖尿病模型中使用胡椒碱可以显著抑制NF-κB的活化,同时促使IL-1β和TNF-α水平降低。此外,大鼠糖尿病模型中的肌酐清除率显著降低,血糖、血清肌酐、血尿素氮、丙二醛、蛋白尿和肾脏重量与体重比增加,而胡椒碱对上述指标均有改善作用[35]

    • 胡椒碱可改善高血压。在Booranasubkajorn等的研究中,用胡椒碱治疗自发性高血压大鼠28 d,结果表明,胡椒碱部分恢复了内皮介导的主动脉血管舒张,并降低了N(G)硝基-L-精氨酸甲酯(L-NAME)给药引起的血压升高,表明胡椒碱对高血压和NO受损大鼠的血管有保护作用[36]

    • (1) 抗抑郁与抗焦虑

      胡椒中有多种生物碱对抑郁和焦虑有缓解作用。Mao等研究发现胡椒中的胡椒林碱和胡椒亭碱可以增加小鼠神经瘤母细胞Neuro-2a中脑源性神经营养因子(BDNF)的表达,并且胡椒林碱能促进维甲酸诱导的神经突生长,表明其对BDNF表达失调导致的抑郁症具有一定的治疗作用[37]。Hritcu等研究发现,胡椒碱通过减轻大鼠杏仁核氧化应激,改善β-淀粉样蛋白(1-42)诱导的焦虑和抑郁[38]。Khom等研究发现,胡椒碱的抗焦虑作用与成年小鼠大脑中GABA水平的增加有关[39]

      (2) 抗惊厥与抗癫痫

      用胡椒碱治疗能够降低大鼠诱发癫痫后的癫痫持续状态,并预防出现记忆障碍。Mao等研究发现,胡椒碱的抗惊厥作用降低了毛果芸香碱诱导的大鼠癫痫后的炎症和氧化应激。在匹罗卡品诱导的癫痫大鼠中,经胡椒碱治疗后,半胱天冬酶-3(caspase-3)的上调活性和Bax/Bcl-2的表达水平受到抑制[40]

      (3) 神经保护作用

      胡椒碱可以显著改善氯化铝诱导的阿尔茨海默症所导致的学习和记忆缺陷,这与抑制胆碱酯酶活性有关[41]。Chonpathompikunlert等研究了阿尔茨海默症模型中服用胡椒碱后的记忆性能和神经退行性病变,研究发现,在不同实验剂量下,胡椒碱均能改善认知功能,减少神经退化,这可能与脂质过氧化和乙酰胆碱酯酶的降低有关[42]。胡椒碱能显著减少岗田酸诱导磷酸化Tau(p-Tau)过度表达的PC12痴呆细胞模型中的p-Tau水平,减少细胞外乳酸脱氢酶(LDH)水平,缓解细胞损伤[43]

    • (1) 抗菌

      胡椒提取物可以抑制细菌生长。邹兰等对胡椒的不同溶剂萃取物进行了抑菌机制研究,结果表明采用胡椒提取物的石油醚萃取部位处理大肠埃希氏菌和金黄色葡萄球菌、乙酸乙酯萃取部位处理枯草芽孢杆菌后,胞外丙酮酸含量增高,转氨酶活性显著增强,推测其可能通过影响菌株的正常生理代谢过程中的能量供给和关键物质的合成导致菌体衰亡,从而抑制细菌生长[44-45]

      (2)抗寄生虫

      胡椒碱在抗寄生虫方面也有不错的效果。胡椒碱的抗寄生虫活性取决于它产生NO的能力,从而产生各种作用,如免疫调节效应和细胞周期检测(克氏锥虫的表向散光形式),并在生化和细胞内水平影响寄生虫的线粒体[46]。Chouhan等在针对利什曼病的研究中,发现胡椒碱可以增加Th1细胞因子(INF-γ、TNF-α和IL-2)的分泌,降低IL-4和IL-10,并增加IgG2a的产生和共刺激分子CD80和CD86的表达,同时,胡椒碱还能增加脾脏CD4+、CD8+T细胞的数量,这些发现均显示胡椒碱对利什曼病有治疗效果[47]

      (3)杀虫

      胡椒碱是一种潜在的杀虫剂和杀幼虫剂,因其具有神经毒素作用,能使昆虫瘫痪。胡椒碱作为杀虫剂的优点是对哺乳动物毒性低、在环境中不持久、且在阳光下可迅速降解。 Samuel等研究了胡椒碱对几个抗性和敏感品系的阿拉伯按蚊幼虫的杀灭效果,通过比较胡椒碱在对幼虫使用后24 h和48 h两个阶段的死亡率,发现胡椒碱对不同品系的幼虫均有明显毒性,说明胡椒碱具有作为杀幼虫剂的潜力[48]

    • 胡椒碱具有止泻和解痉活性。Taqvi等研究了胡椒碱的抗痉挛和止泻作用机制。其作用机制是通过高钾(80 mmol)引起的持续收缩而阻断钙通道,而胡椒碱对这种收缩有抑制作用,研究发现,当胡椒碱浓度为80.86 μmol时有钙通道阻断作用[49]

    • 众所周知,胡椒碱可以影响药物和营养素的生物利用度,增加其肠道吸收,调节其代谢和转运,是一种生物增强剂[50]。胡椒碱的生物增强作用主要有3个机制。首先,胡椒碱增加肠血管的血供;其次,增强药物通过肠道屏障的主动转运;最后,胡椒碱能够抑制药物转运体和药物代谢酶,从而可能影响作为这些酶底物的药物血药浓度[30]

    • 关于胡椒挥发性精油的生物活性研究比生物碱要少。有研究表明,其可以抑制96%微小牛蜱的产卵,并显示出剂量依赖性,从而推测其能降低微小牛蜱的繁殖力[4]。研究表明,胡椒精油具有一定的抗菌作用,经胡椒精油处理后的细菌,其转氨酶均发生泄漏,胞外的ALT和AST活性增强,细菌内的丙酮酸也出现不同程度的积累。这表明细菌的细胞壁和细胞膜被胡椒精油破坏,致使胞内物质外泄,同时由于丙酮酸代谢受阻,影响了菌体内多肽和蛋白质的合成,使细菌的能量代谢和物质代谢受到影响,致使细菌死亡。

    • 胡椒中酚类化合物3,4-二羟基苯基乙醇糖苷、3,4-二羟-6-(N-乙基氨基)苯甲酰胺和酚酸糖苷的EC50值分别为0.076、0.27和0.12 mg/ml,这些酚类化合物具有较高的自由基清除活性[51]。另外,木脂素也能作为生物利用度增强剂[30]

    • 胡椒不仅是一种调味品,也是一种作用广泛的药材。胡椒含有丰富的酰胺类生物碱,其中含量最多的是胡椒碱,这也是胡椒中最重要的生物活性物质之一。胡椒中的生物活性物质还有以胡椒精油为主的挥发性成分以及酚类化合物。这些物质带来了丰富的生物活性,例如:抗氧化、抗炎、保肝、降血糖、降血压、抗菌等。胡椒作为药食同源的传统中药,具有应用历史悠久和安全性好的特点,是开发药物和功能食品较好的潜在资源。为了促进我国胡椒产业的发展,需要进一步深入研究,阐明其发挥功效的物质基础及作用机制,为合理开发和利用胡椒资源提供科学依据。

参考文献 (51)

目录

    /

    返回文章
    返回