留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

黄精多糖对糖尿病小鼠降糖作用及肠道影响的研究

任群利 张信群 王苗 李小兰 姚燕子 冉应会 王倩

郭芷君, 丁绪银, 李竺蔓, 马云鹏, 王燕, 于雪梅, 张闽, 徐峰. 糖尿病共病抑郁患者尿液挥发性有机化合物分析[J]. 药学实践与服务, 2022, 40(6): 540-545. doi: 10.12206/j.issn.2097-2024.202206045
引用本文: 任群利, 张信群, 王苗, 李小兰, 姚燕子, 冉应会, 王倩. 黄精多糖对糖尿病小鼠降糖作用及肠道影响的研究[J]. 药学实践与服务, 2022, 40(6): 510-514. doi: 10.12206/j.issn.2097-2024.202206057
GUO Zhijun, DING Xuyin, LI Zhuman, MA Yunpeng, WANG Yan, YU Xuemei, ZHANG Min, XU Feng. Analysis of volatile organic compounds in urine of diabetic patients comorbid with depression[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(6): 540-545. doi: 10.12206/j.issn.2097-2024.202206045
Citation: REN Qunli, ZHANG Xinqun, WANG Miao, LI Xiaolan, YAO Yanzi, RAN Yinghui, WANG Qian. Study on hypoglycemic effect and intestinal effect of Polygonatum sibiricum polysaccharides in diabetic mice[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(6): 510-514. doi: 10.12206/j.issn.2097-2024.202206057

黄精多糖对糖尿病小鼠降糖作用及肠道影响的研究

doi: 10.12206/j.issn.2097-2024.202206057
基金项目: 遵义医学院硕士启动基金项目(F-904);贵州省高层次创新型人才(CJ-990);遵义市科技局计划项目(遵市科合HZ字(2020)60号、遵市科合HZ字(2020)55号);遵义医学院优秀青年人才项目(17zy-002);贵州省科技计划项目(黔科合平台人才[2018]5772-067、黔科合平台人才[2018]5772-062)
详细信息
    作者简介:

    任群利,硕士,研究方向:微生物资源与药物开发利用,Email: 1121681907@qq.com

    通讯作者: 王 倩,副教授,研究方向:遗传学,Email: qianwang07@126.com
  • 中图分类号: R285

Study on hypoglycemic effect and intestinal effect of Polygonatum sibiricum polysaccharides in diabetic mice

  • 摘要:   目的  研究黄精多糖对2型糖尿病小鼠降血糖作用及其对肠道菌群和小肠病理结构的影响。  方法  雄性小鼠50只,除10只正常饲养外,其余以高脂高糖饲料喂养6周,腹腔注射链脲佐菌素制备2型糖尿病小鼠模型,建模成功后随机分为4组:模型组、黄精多糖高、中、低(500、250、125 mg/kg)组,模型组小鼠给予生理盐水。记录各组小鼠体重和血糖值变化。4周后,收集粪便,进行16S rRNA高通量测序,HE染色观察小肠组织病理结构变化。  结果  小鼠在糖尿病状态下体重下降,给予黄精多糖高、中、低剂量后小鼠体重分别增加14.24%、11.97%和8.78%,血糖值分别降低26.6%、22.3%和13.3%。此外,小肠病理组织学排列错乱和肿胀现象有所改善。模型组和黄精多糖组之间的肠道微生物存在显著差异,模型组中疣微菌门显著增多,而健康组和黄精多糖灌胃组中厚壁菌门和拟杆菌门的微生物丰度更高。  结论  黄精多糖对糖尿病小鼠具有显著的降血糖作用,且对其肠道具有一定保护作用,其机制可能通过增加有益菌丰富度,提高小鼠免疫功能来实现的,且呈一定剂量效应关系,其免疫功能有待进一步研究。
  • 随着全球经济的高速发展和科技的不断进步,核工业在军事、医疗等领域得到全面发展,但伴随而来的是对从业人员和附近居民造成严重的辐射危害。

    辐射是指能量以电磁波或粒子的形式向外传播的现象,可分为电离辐射和非电离辐射。拥有足够高能量而使原子电离的辐射为电离辐射,它包括X射线、α射线、β射线、γ射线等,具有潜在的致癌性。非电离辐射能量较低,不会电离物质而会使物质内粒子运动,包括红外线、紫外线和微波等[1]

    辐射可引起全身性的放射病,几乎所有系统、器官均可发生病理性改变,其中以神经系统、消化系统和造血器官的改变最为明显,会诱发心血管疾病、糖尿病甚至癌突变。辐射对机体的损伤可分为急性和慢性放射性损伤。短时间内接受高剂量的照射,可引起机体的急性损伤,常见于核事故和放射治疗患者。剂量低于1 Gy时少数会出现轻微症状,剂量在1~10 Gy时,会出现造血型急性放射病;剂量超过10 Gy,会出现高致死率[2]。而长期接受超剂量的全身或局部照射,可引起慢性放射病,如皮肤损伤、造血障碍、白细胞减少、生育功能受损等。此外,辐射还能直接导致视力下降、视网膜脱落,诱发孕妇流产、不育、畸胎、儿童发育不足等[3]

    抗辐射药物是指在辐射前或后给予药物预防或治疗,可减轻或修复辐射损伤的药物。现有的抗辐射化学合成药物主要包括细胞因子、含硫化合物和激素类药物[5],因其毒副作用较大而应用受限,近年来天然产物因其毒副作用小、多成分多靶点的独特优势受到广泛的关注。目前认为抗辐射天然产物的作用机制主要有以下4个方面。

    辐射损伤可破坏DNA分子的结构与功能,导致DNA碱基破坏、DNA分子间交联、DNA双链或单链断裂、糖基破坏等。此外,辐射还可导致细胞周期改变以及DNA合成抑制,直接影响细胞增殖。抗辐射天然产物可通过减轻或抑制辐射致细胞周期的缩短,避免或修复DNA损伤而起辐射防护作用。

    人体产生的80%自由基是由水分子组成的。辐射可引起水分子生成强活性的氧化自由基,主要包括·OH、${\rm{O}}^-_2 $、H2O2、·NO等,其中,·OH氧化性最强,可导致组织细胞产生脂质过氧化物[6]。人体由于自由基的产生造成的破坏主要有3个方面:破坏细胞膜;使血清抗蛋白酶失去活性;损伤基因导致细胞变异,如自由基和生物大分子的结合,导致DNA主链断裂或碱基破坏,通过氧化性降解使得多糖链断裂,形成脱氢自由基,破坏细胞膜上的多糖结构[7]。现代研究表明,大多数抗辐射天然产物具有清除多种自由基作用,能降低氧化酶活性,抑制细胞过氧化物的产生。

    辐射主要损伤骨髓、胸腺和脾脏等免疫器官以及淋巴细胞等。崔玉芳等[8]发现辐射对免疫系统的损伤主要表现为两个特点——早期损伤严重和后期恢复缓慢。在辐射早期脾脏T、B淋巴细胞数量迅速减少,丝裂原反应明显降低,而在受照射1年后,小鼠的免疫组织和外周血淋巴细胞凋亡率与正常水平相比仍较高,小鼠T淋巴细胞免疫功能仍未恢复。促进淋巴细胞增殖,抑制胸腺和脾脏细胞凋亡等是抗辐射损伤的有效途径。

    造血组织是辐射的敏感组织,机体受到辐射后,造血细胞会出现功能低下甚至死亡现象,其中,造血干细胞、粒系祖细胞、红系祖细胞是辐射攻击的主要靶细胞,外周血细胞的数量随着照射剂量的增加而减少,其形态和功能也会随之发生改变[1]。因此,改善造血微环境,促进白细胞增殖,修复骨髓造血功能等有助于保护造血系统,修复辐射损伤。

    天然多糖包括植物多糖、动物多糖和微生物多糖。它们是一类具有免疫调节、抗肿瘤、抗辐射、抗炎、抗疲劳、抗衰老作用的生物大分子[9]。关于多糖的抗辐射作用的机制尚不清楚,一般认为与多糖的抗氧化,对造血系统的保护,引起免疫系统的效应增强以及诱导产生某些细胞因子等作用有关。

    3.1.1   植物多糖

    研究表明,大多数植物多糖有较为显著的抗辐射作用,能提高辐射诱导损伤的防护能力,改善辐射诱导的氧化损伤。其辅助保护辐射损伤的作用机制复杂,一般推测与其修复DNA损伤、消除自由基、增强免疫功能等有关[10]。张乃珣等[11]研究发现,酸性黑木耳多糖(AAP)和红松球果多酚的联合使用可以有效地清除体内自由基,降低自由基对体内DNA造成的损伤,显著提高对60Co γ射线诱导氧化损伤的防护能力。此外,白海娜等[12]发现原花青素与黑木耳多糖(AAP-4)同样有协同防护辐射诱导氧化损伤的作用。徐俊杰等[13]研究山药多糖对低强度连续微波辐射致小鼠免疫系统功能损伤的保护作用,发现正常动物组与辐射损伤组相比,不同剂量(200、400、800 mg/kg)的山药多糖可提高巨噬细胞的吞噬指数、T淋巴细胞的增殖刺激指数和血清IgG水平,并降低血清IL-4水平。表明山药多糖能明显改善低强度连续微波辐射对小鼠免疫系统的损害。胡淼等[14]报道,预先给药黑大蒜多糖(150~600 mg/kg)可减轻X射线辐射对小鼠免疫器官和全血白细胞、血小板的影响,提高脾脏的代偿性造血增殖能力,提高抗氧化酶水平,具有较好的辐射防护作用。Zhang等[15]发现大黄多糖(RTP)通过调控Nrf2及其下游蛋白HO-1,显著降低细胞凋亡和炎症因子,从而显著改善辐射诱导的肠道损伤。

    3.1.2   动物多糖

    国内外学者从动物体内提取出不同种类的多糖,尤其是海洋动物,如虾蟹动物的甲壳质、河蚌多糖、鲍鱼多糖等,具有抗肿瘤、抗病毒、抗氧化、抗辐射等生物活性[16]

    3.1.3   微生物多糖

    研究发现微生物中,尤其生活在高压、高辐射环境中的藻类,其多糖有着较为特殊的结构与生理特性,大多有较好的抗辐射效果。Kim等[17]在探讨低分子量岩藻多糖(LMF)对中波紫外线诱导的光老化的保护作用时发现,持续15周的中高剂量(2.0、1.0 mg/cm2)LMF治疗可对受到中波紫外线照射的小鼠光老化起到明显的保护作用,可抑制皱纹形成,皮肤水肿以及中性粒细胞在光老化病灶上的聚集。杨凯业等[18]报道称铁皮石斛多糖、褐藻多糖、灵芝多糖、竹荪多糖在50 mg/L的质量浓度下的复合作用可抑制紫外线辐射诱导的皮肤细胞光老化作用。

    植物多酚是广泛存在于植物体内的一类次生代谢产物,包括黄酮类、花色苷类和酚酸类。研究表明,多酚类化合物含有多个酚羟基,具有显著的清除自由基能力,能减轻自由基对机体的伤害,从而起到辐射防护作用[19]

    Lekmine[20]等评价用阿尔及利亚南部特有植物Astragalus gombiformis Pomel地上部分制备的丁醇提取物的药理活性,采用防晒系数(SPF)等评价Astragalus gombiformis Pomel的光保护作用和抗氧化能力,结果表明提取物(SPF=37.78±0.85,SPF值>30的皮肤保护产品被认为是有效的紫外线辐射过滤器)具有良好的紫外线吸收能力,推测主要与其中的黄酮类和酚酸类化合物(主要为水飞蓟素、迷迭香酸、槲皮苷和山柰酚)的紫外吸收能力和抗氧化防御能力有关,具有潜在的辐射防护能力。

    3.2.1   黄酮类化合物

    黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物,其基本母核为2-苯基色原酮。黄酮类化合物是一类从中草药中提取的天然产物,被认为是一种有效的抗氧化剂,可以调控炎症介质的调节酶或转录因子,通过与DNA的相互作用影响氧化应激,增强基因组稳定,具有神经保护和辐射保护作用[21]

    金银花素(5,7-二羟基黄酮)是从蜂胶、蜂蜜和几种植物中提取的一种黄酮类化合物。Mansour等[22]发现给药金银花素(50 mg/kg)可提高受5 Gy红外线照射雄性Wister大鼠大脑中丙二醛(MDA)水平和半胱氨酸蛋白酶-3(caspase-3)活性,这提示金银花素具有辐射致脑损伤的神经保护作用。Kale等[23]通过组织病理评估,显示槲皮素可显著减少辐射诱导的神经元变性和炎症浸润,揭示了槲皮素对辐射致脑损伤的神经保护作用。

    Li等[24]证实芹菜素(4′,5,7-三羟基黄酮)能够一定程度上修复UVB诱导的人表皮角质形成细胞(HEKs)的毛细血管扩张性共济失调的异常突变,从而抑制HEKs细胞凋亡和坏死,表明芹菜素对中波紫外线损伤的HEKs具有新型的保护作用。Prasad等[25]报道水飞蓟宾(silibinin)可以防止中波紫外线诱导的胸腺嘧啶二聚体的形成,通过增加抑癌基因p53水平进而促进DNA修复和(或)启动受损细胞的凋亡。

    曲克芦丁(TRX)是一种黄酮类化合物,广泛存在于茶叶、咖啡、谷类食品、各种水果和蔬菜中,具有抗辐射作用,Panat[26]对其清除自由基的能力和抗细胞凋亡活性进行了系统的研究。TRX能清除超氧物、NO和其他模型稳定的自由基,从而保护受辐照的细胞。

    有些英国科学家研究发现,每天喝两杯绿茶、吃一个橘子,就可以帮助“电脑族”们抵御计算机辐射[27]。而儿茶素类化合物作为茶叶中的主要功能成分,具有显著的抗辐射作用。茶树中儿茶素类化合物主要包括,儿茶素、表儿茶素、没食子儿茶素、表没食子儿茶素、儿茶素没食子酸酯、表儿茶素没食子酸酯、没食子儿茶素没食子酸酯及表没食子儿茶素没食子酸酯8种单体。其中,表没食子儿茶素没食子酸酯生理活性较为突出,具有抗氧化性和抗细胞凋亡活性,可预防不同刺激对组织的损伤。Korystova等[28]研究发现在对辐射诱导的大鼠主动脉损伤的预防作用中,发现红茶比绿茶更加有效,即使浓度低于1 g/100 ml的红茶也能够有效预防红外线对主动脉造成的损伤。红茶中的儿茶素含量明显低于绿茶,但两种茶中的黄酮醇含量几乎相等。儿茶素、表没食子儿茶素和表没食子儿茶素没食子酸酯可增加大鼠主动脉的氧化应激,而黄酮醇可降低辐射诱导的氧化应激。因此,红茶药效的提高是由于儿茶素含量的降低使黄酮醇的正向调节作用更大程度地得到发挥所致。

    3.2.2   酚酸类化合物

    酚酸类化合物系指具有多羟基的芳香羧酸类化合物,主要以糖、酯以及有机酸的形式存在于植物中,现代研究表明酚酸类化合物能够清除体内多种自由基,具有良好的抗氧化活性和潜在的辐射防护作用。

    Milton等[29]报道,鱼腥草细胞培养物的甲醇提取物因细胞产生酚类次生代谢物而具有潜在的光保护作用,结果显示鱼腥草细胞的甲醇提取物(310~2500 g/ml)能够显著提高受紫外线照射的3T3-Swiss白化成纤维细胞活力。提取物的LC-MS化学分析表明,其总酚和总酚酸含量(主要为没食子酸和毛蕊花苷)较高,具有特征的紫外吸收峰(第一和第二波段的峰值分别为294和330 nm),能够抵消紫外线对皮肤的有害影响。

    Abozaid等[30]报道肉桂酸纳米颗粒可作为一种辐射诱导胰腺炎的氧化还原信号通路的调节剂,首先用I-精氨酸和γ射线诱导大鼠患急性胰腺炎,口服肉桂酸纳米颗粒(CA-NPs)后,急性胰腺炎的严重程度及血清淀粉酶和脂肪酶水平均降低。同时,胰腺组织的MDA水平显著降低,谷胱甘肽的消耗显著恢复,caspase-3水平降低,可明显改善胰腺组织损伤或凋亡。因此,肉桂酸纳米颗粒对辐射诱导的急性胰腺炎具有较好的治疗潜力。Liu等[31]研究发现姜黄素(Cur)对长波紫外线辐射诱导的人皮肤成纤维细胞(HDFs)光老化具有一定的保护作用。Zhang等[32]发现白藜芦醇通过激活Sirtuin1 (Sirt1,组蛋白去乙酰化酶家族成员之一,可减轻炎症损伤)减轻辐射诱导的小鼠肠道损伤。周瑞芳等[33]研究表明,丹酚酸B可减轻γ射线辐射诱导的造血系统损伤和骨髓细胞的DNA及蛋白质的减少,恢复小鼠免疫系统的辐射损伤,具有显著的抗γ射线辐射作用。

    3.2.3   花色苷

    花色苷是花青素和糖以糖苷键结合而成的一种化合物,广泛存在于植物的花、果实、茎、叶和根器官的细胞液中,起到保护植物抗氧化的作用。其抗氧化和消除自由基能力可防护不同射线辐射,能够发挥独特的生理效应。

    Fernandes等[34]发现花色苷家族成员(矢车菊色苷、锦葵色苷及其衍生色素)具有促进皮肤维持健康的活性,研究表明大部分化合物能够抑制金黄色葡萄球菌和铜绿假单孢菌菌株的生长繁殖,减少HEKs和HDF活性氧的产生,抑制皮肤降解酶的活性且无细胞毒性作用,具有一定的紫外线过滤作用。

    Targhi等[35]研究黑桑花色苷对大鼠肝组织和骨髓细胞的辐射防护作用,以 60Co γ射线远距放射(3 Gy和6 Gy)建立大鼠辐射损伤模型,随后腹腔注射200 mg/kg的黑桑花色苷,结果显示黑桑花色苷可降低大鼠肝脏MDA和SOD的水平,降低γ射线照射对大鼠骨髓细胞和肝脏的遗传毒性和细胞毒性,有潜在的辐射保护作用。

    皂苷(saponin)类化合物是苷元为三萜或螺旋甾烷类化合物的一类糖苷,存在于人参、桔梗、刺五加等许多中草药中,在增强免疫、抗肿瘤、抗炎等方面具有显著的生物活性。研究表明人参皂苷的抗辐射机制与清除自由基、抗氧化活性,与其对心血管系统、免疫系统的保护作用以及对细胞凋亡的抑制作用有关[36]

    Wen[37]等研究黄芪甲苷对中波紫外线诱导的大鼠真皮成纤维细胞早衰的抗光老化作用,结果显示黄芪甲苷不仅能通过激活细胞外调解蛋白激酶ERK和丝裂原活化蛋白激酶p38信号抑制中波紫外线诱导的胶原-I的降解,还通过激活细胞自噬增加胶原-I的积累,从而保护中波紫外线诱导的光老化细胞,表明黄芪甲苷在抗光老化治疗中的潜在优势。

    Wang等[38]分析柴胡皂苷-d (SSd)对肝癌细胞自噬活性和放射敏感性的影响,SSd通过抑制mTOR磷酸化促进肝癌细胞自噬,增加辐射诱导的肝癌细胞凋亡并且抑制肝癌细胞的增殖,为肝癌的放射增敏治疗提供了一种可能的途径。

    Kim等[39]研究知母皂苷A-III(TA-III)对中波紫外线诱导的HEKs和HDF侵袭效应的保护作用时发现,TA-III在非细胞毒性剂量下(50 nmol/L)以剂量依赖的方式抑制中波紫外线诱导的环氧合酶-2(COX-2)、基质金属蛋白酶-9(MMP-9)转录和蛋白表达水平,降低中波紫外线诱导的原代皮肤细胞的侵袭,组织肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)和COX-2在HEKs中的过度表达,表明其具有光保护剂的开发潜力。

    除了上述多糖类、多酚类以及皂苷类化合物,天然产物中的许多其他化合物同样具有良好的辐射防护作用,包括维生素类、蛋白类、无机成分、稀有元素等。

    Rostami等[40]研究发现预先摄入硒和维生素E能够对X射线辐射引起的遗传损害起到一定的防护作用。段一凡等[41]报道茶叶籽不饱和脂肪酸对中波紫外线诱导的HEKs损伤具有保护作用。Jaisin等[42]研究发现胡椒碱(10~40 µmol/L)预处理可抑制中波紫外线诱导的炎症信号通路,减弱HEKs的细胞毒性并且抑制其凋亡。这提示胡椒碱的抗炎作用能保护HEKs免受中波紫外线辐射的损伤,可作为一种紫外线辐射诱导皮肤炎症的有效治疗手段。

    近年来,国内外越来越重视辐射损伤的防护,抗辐射药物的寻找也变得十分紧迫。而与传统的化学合成药物相比,天然来源的药物具有活性高、选择性强、毒副作用小等优点,作为抗辐射药物有着广阔的开发前景。但是抗辐射天然产物的筛选方法耗时耗力,因此建立高通量、高专属性的抗辐射天然产物筛选方法意义重大。此外,对已有的天然产物进行结构改造,以期获得抗辐射活性更高或毒副作用更小的衍生物以及提高抗辐射天然产物的提取纯化效率等皆是未来抗辐射天然产物研究的重点和难点。

  • 图  1  小鼠体重变化情况($ \overline{x}\pm s $, n=10)

    图  2  造模前后小鼠体重变化($ \bar x \pm s $, n=10)

    a.正常组;b.模型组;c.黄精多糖低剂量组;d.黄精多糖中剂量组;e.黄精多糖高剂量组

    图  3  给药后各组小鼠体重变化($ \overline{x}\pm s $, n=10)

    a.正常组;b.模型组;c.黄精多糖低剂量组;d.黄精多糖中剂量组;e.黄精多糖高剂量组

    图  4  小肠组织HE染色切片(×100)

    A.正常组;B.模型组;C.黄精多糖低剂量组;D.黄精多糖中剂量组;E.黄精多糖高剂量组

    图  5  肠道微生物影响

    C.糖尿病组;H.健康组;CA1.黄精多糖低剂量组;CA2.黄精多糖中剂量组;CA3.黄精多糖高剂量组注:线性判别分析评分(LDA SCORE)的阈值,默认设置为4

    表  1  黄精多糖对糖尿病小鼠空腹血糖的影响($ \overline{x}\pm s $, n=10)

    组别血糖含量
    建模前建模后7 d建模后14 d建模后21 d建模后28 d
    正常组5.67±0.335.95±0.245.95±0.215.97±0.225.99±0.24
    模型组5.6±0.4315.85±0.28**15.79±0.15**15.59±0.16**15.25±0.13**
    黄精多糖低剂量组5.76±0.3615.88±0.4015.45±0.1814.75±0.1113.77±0.11##
    黄精多糖中剂量组5.44±0.2515.86±0.2314.7±0.1113.69±0.1612.32±0.12##
    黄精多糖高剂量组5.57±0.2915.85±0.2113.81±0.1012.3±0.16##11.63±0.36##
    *P<0.05、**P<0.01,与正常对照组比较;#P<0.05、##P<0.01,与模型对照组比较
    下载: 导出CSV
  • [1] YU F, HAN W, ZHAN G F, et al. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice[J]. Aging,2019,11(22):10454-10467. doi:  10.18632/aging.102469
    [2] 董荣荣, 洪浩. 肠道相关抗糖尿病靶点及药物的研究进展[J]. 医药前沿, 2016, 6(15):14-15.
    [3] 刘静, 朱德锐. 肠道微生物与糖尿病关系的研究进展[J]. 青海医学院学报, 2016, 37(3):202-207. doi:  10.13452/j.cnki.jqmc.2016.03.012
    [4] 刘卓群, 吴露露. 肠道微生物与疾病的关系[J]. 世界最新医学信息文摘, 2016, 16(69):46-47,50.
    [5] 姜程曦, 张铁军, 陈常青, 等. 黄精的研究进展及其质量标志物的预测分析[J]. 中草药, 2017, 48(1):1-16. doi:  10.7501/j.issn.0253-2670.2017.01.001
    [6] 任群利, 刘建国, 胡欢, 等. 黄精多糖对糖尿病动物模型的保护机制研究进展[J]. 山西中医药大学学报, 2020, 21(6):465-468.
    [7] 王慧, 袁德培, 曾楚华, 等. 黄精的药理作用及临床应用研究进展[J]. 湖北民族学院学报(医学版), 2017, 34(2):58-60,64. doi:  10.13501/j.cnki.42-1590/r.2017.02.018
    [8] 任洪民, 邓亚羚, 张金莲, 等. 药用黄精炮制的历史沿革、化学成分及药理作用研究进展[J]. 中国中药杂志, 2020, 45(17):4163-4182. doi:  10.19540/j.cnki.cjcmm.20200522.601
    [9] 赵宏丽, 许燕, 赵红岩, 等. 黄精多糖对2型糖尿病大鼠SREBP-1c和SCD-1蛋白表达的影响[J]. 中药药理与临床, 2015, 31(1):106-109. doi:  10.13412/j.cnki.zyyl.2015.01.034
    [10] 陈刚, 谭明亮. 茶多酚对高尿酸血症小鼠尿酸产生与排泄的影响及机制研究[J]. 中国药理学通报, 2017, 33(2):218-222. doi:  10.3969/j.issn.1001-1978.2017.02.015
    [11] 王语聪, 谢智鑫, 张学艳, 等. 黄芪对2型糖尿病大鼠碱性磷酸酶与炎症反应的影响[J]. 食品工业科技, 2021, 42(13):351-357. doi:  10.13386/j.issn1002-0306.2020080311
    [12] ZHOU L, HU Y H, LI C Y, et al. Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway[J]. Neuropharmacology,2018,135:34-47. doi:  10.1016/j.neuropharm.2018.03.004
    [13] WANG Y, QIN S C, PEN G Q, et al. Original Research: potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model[J]. Exp Biol Med (Maywood),2017,242(1):92-101. doi:  10.1177/1535370216663866
    [14] 冯鑫. 黄精多糖的制备及其对老龄鼠肠道和肺的作用研究[D]. 四川农业大学, 2020.
    [15] XUE M, LIU Y, XU H, et al. Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats[J]. Biomed Pharmacother,2019,118:109393. doi:  10.1016/j.biopha.2019.109393
    [16] 谷巍, 孙明杰, 王丽荣, 等. 4味常见中药对免疫抑制小鼠免疫功能及肠道菌群的影响[J]. 中国畜牧兽医, 2019, 46(1):147-156. doi:  10.16431/j.cnki.1671-7236.2019.01.017
    [17] EJTAHED H S, HOSEINI-TAVASSOL Z, KHATAMI S, et al. Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults[J]. J Diabetes Metab Disord,2020,19(1):265-271. doi:  10.1007/s40200-020-00502-7
    [18] 卫钰成, 杨敏敏, 施琳, 等. 滇黄精水提物联合间歇性禁食通过调节肠道菌群改善高脂饮食诱导的小鼠肥胖及肝损伤[J]. 食品与发酵工业, 2022, 48(13):91-102. doi:  10.13995/j.cnki.11-1802/ts.029607
    [19] 张智, 包智影, 孙家佳, 等. 发酵黄精多糖对肥胖小鼠肠道菌群的影响[J]. 华南理工大学学报(自然科学版), 2021, 49(03):95-105+113.
  • [1] 曹金发, 钟玲, 何苗, 田泾.  炎症性肠病合并心房颤动患者的用药分析与监护 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202403004
    [2] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [3] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [4] 张淑秀, 袁伯川, 杜丽娜, 金义光.  多糖用于放射性核素清除的研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405060
    [5] 陈灿昕, 缪竹威, 缪朝玉.  血小板特异性Metrnl基因敲除小鼠模型的构建与验证 . 药学实践与服务, 2025, 43(3): 117-123. doi: 10.12206/j.issn.2097-2024.202409031
    [6] 关梦瑶, 夏天爽, 何旭辉, 史策, 蒋益萍, 辛海量.  黑蒜多糖抗便秘作用研究 . 药学实践与服务, 2025, 43(4): 190-194. doi: 10.12206/j.issn.2097-2024.202403059
    [7] 彭莹, 刘欣, 聂依文, 王歆荷, 年华, 朱建勇.  三种狼毒乙醇提取物对咪喹莫特诱导的银屑病小鼠防治作用研究 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202406029
    [8] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [9] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [10] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [11] 杨念, 张博乐, 张俊霞, 张振强.  一种中药组合物对ANIT诱导的小鼠胆汁淤积肝损伤的保护作用研究 . 药学实践与服务, 2024, 42(12): 508-511, 519. doi: 10.12206/j.issn.2097-2024.202305008
    [12] 王鹏, 陈顺, 赵逸, 高守红, 王志鹏.  卡培他滨致小鼠手足综合征模型的建立及评价 . 药学实践与服务, 2024, 42(9): 385-388, 398. doi: 10.12206/j.issn.2097-2024.202308045
    [13] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
    [14] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [15] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [16] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [17] 张修平, 田家盛, 王道鑫, 李佳鑫, 王品, 缪朝玉.  MT-1207对小鼠血糖、血脂和动脉粥样硬化的作用 . 药学实践与服务, 2024, 42(11): 487-494. doi: 10.12206/j.issn.2097-2024.202306011
    [18] 刘依秦, 王超群, 邱娇娜.  胆宁片预处理在糖尿病患者结肠镜检查前的应用效果分析 . 药学实践与服务, 2024, 42(9): 407-410. doi: 10.12206/j.issn.2097-2024.202407037
    [19] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
    [20] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  5614
  • HTML全文浏览量:  2146
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-09-22
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2022-11-25

黄精多糖对糖尿病小鼠降糖作用及肠道影响的研究

doi: 10.12206/j.issn.2097-2024.202206057
    基金项目:  遵义医学院硕士启动基金项目(F-904);贵州省高层次创新型人才(CJ-990);遵义市科技局计划项目(遵市科合HZ字(2020)60号、遵市科合HZ字(2020)55号);遵义医学院优秀青年人才项目(17zy-002);贵州省科技计划项目(黔科合平台人才[2018]5772-067、黔科合平台人才[2018]5772-062)
    作者简介:

    任群利,硕士,研究方向:微生物资源与药物开发利用,Email: 1121681907@qq.com

    通讯作者: 王 倩,副教授,研究方向:遗传学,Email: qianwang07@126.com
  • 中图分类号: R285

摘要:   目的  研究黄精多糖对2型糖尿病小鼠降血糖作用及其对肠道菌群和小肠病理结构的影响。  方法  雄性小鼠50只,除10只正常饲养外,其余以高脂高糖饲料喂养6周,腹腔注射链脲佐菌素制备2型糖尿病小鼠模型,建模成功后随机分为4组:模型组、黄精多糖高、中、低(500、250、125 mg/kg)组,模型组小鼠给予生理盐水。记录各组小鼠体重和血糖值变化。4周后,收集粪便,进行16S rRNA高通量测序,HE染色观察小肠组织病理结构变化。  结果  小鼠在糖尿病状态下体重下降,给予黄精多糖高、中、低剂量后小鼠体重分别增加14.24%、11.97%和8.78%,血糖值分别降低26.6%、22.3%和13.3%。此外,小肠病理组织学排列错乱和肿胀现象有所改善。模型组和黄精多糖组之间的肠道微生物存在显著差异,模型组中疣微菌门显著增多,而健康组和黄精多糖灌胃组中厚壁菌门和拟杆菌门的微生物丰度更高。  结论  黄精多糖对糖尿病小鼠具有显著的降血糖作用,且对其肠道具有一定保护作用,其机制可能通过增加有益菌丰富度,提高小鼠免疫功能来实现的,且呈一定剂量效应关系,其免疫功能有待进一步研究。

English Abstract

郭芷君, 丁绪银, 李竺蔓, 马云鹏, 王燕, 于雪梅, 张闽, 徐峰. 糖尿病共病抑郁患者尿液挥发性有机化合物分析[J]. 药学实践与服务, 2022, 40(6): 540-545. doi: 10.12206/j.issn.2097-2024.202206045
引用本文: 任群利, 张信群, 王苗, 李小兰, 姚燕子, 冉应会, 王倩. 黄精多糖对糖尿病小鼠降糖作用及肠道影响的研究[J]. 药学实践与服务, 2022, 40(6): 510-514. doi: 10.12206/j.issn.2097-2024.202206057
GUO Zhijun, DING Xuyin, LI Zhuman, MA Yunpeng, WANG Yan, YU Xuemei, ZHANG Min, XU Feng. Analysis of volatile organic compounds in urine of diabetic patients comorbid with depression[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(6): 540-545. doi: 10.12206/j.issn.2097-2024.202206045
Citation: REN Qunli, ZHANG Xinqun, WANG Miao, LI Xiaolan, YAO Yanzi, RAN Yinghui, WANG Qian. Study on hypoglycemic effect and intestinal effect of Polygonatum sibiricum polysaccharides in diabetic mice[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(6): 510-514. doi: 10.12206/j.issn.2097-2024.202206057
  • 糖尿病是一种由遗传和环境因素共同引起的糖代谢紊乱综合征,根据文献报告,全世界大约有4.35亿人被诊断患有糖尿病,预计到2040年这一数字将超过6.42亿[1]。糖尿病在我国患病率逐渐增高,居世界首位,严重影响人民生活健康,且与炎症密切相关。目前以肠组织为靶器官的研究相对较少,尤其是肠道免疫系统和肠道微生物的研究[2-4]。中药材黄精,是中国传统的大宗药材[5],在民间又是一种使用面非常广的药食同源植物,《中国药典》2015年版记载为滇黄精P. kingianum Coll. et Hemsl.、黄精P. sibiricum Red.或多花黄精P. cyrtonema Hua的干燥根茎[6];黄精在抗氧化和抗衰老、降血糖、调节免疫力、调血脂、抑制老年痴呆和改善记忆力、抗肿瘤、扩张血管、抗菌和抗病毒等方面显示出潜在的药用价值[7-8]。本研究以高脂高糖饲料喂养和一次性注射链脲菌素复制糖尿病模型,比较高、中、低剂量黄精多糖对小鼠降血糖以及对肠道组织结构的改善作用,旨在为中药治疗糖尿病提供理论依据,为黄精药材的开发应用奠定基础。

    • ICR小鼠,雄性,体重18~22 g,购于重庆腾鑫生物技术有限责任公司,合格证号:SCXK(京)2019-0010,伦理编号:伦审〔2021〕2-077号,饲养于遵义医科大学动物中心。饲养环境为光照,通风良好,温度(23±2) ℃。试验开始前分笼饲养,适应环境7 d,整个试验过程自由进食和饮水。普通饲料(碳水化合物占65.08%,脂肪占11.85%,蛋白质占23.07%),高脂饲料的重量组成以 67%普通饲料为基料,添加10%猪油、20%蔗糖、2.5%胆固醇、0.5%胆酸钠,购自北京科奥协力饲料有限公司。

      黄精多糖(批号:TZR200714,陕西天之润生物科技有限公司);链脲佐菌素(Sigma公司);甲醛(批号:2018080201,成都科隆化学品有限公司);柠檬酸(批号:2020052090)、柠檬酸钠(批号:2019072051)购自天津市致远化学试剂有限公司。

    • ME104E/02 电子天平[梅特勒-托利多仪器(上海)有限公司];DW-86L386 立式超低温保存箱(青岛海尔特种电器有限公司);GA-3型血糖仪及配套试纸(三诺生物传感股份有限公司);Multifuge X1R 冷冻离心机[赛默飞世尔科技(中国)有限公司];DM400B 显微镜、PELORIS型脱水机、YB-9LF型包埋机、RM 2235切片机(德国莱卡公司);202-1AB型电热恒温干燥箱、DK-98-IIA 电热恒温水浴锅(天津市泰斯特仪器有限公司)。

    • 分别称取0.625、1.25、2.5 g黄精多糖溶于50ml 蒸馏水,配置成12.5、25、50 mg/ml的低、中和高剂量黄精多糖溶液,备用。

    • 称取柠檬酸2.1g加入双蒸水至100 ml中配成柠檬酸溶液,称取柠檬酸钠2.94 g加入100 ml双蒸水配成柠檬酸钠溶液,将柠檬酸溶液和柠檬酸钠溶液按1∶1.1的比例混合,用柠檬酸钠溶液调节pH至4.4,配制浓度1%的链脲佐菌素,现配现用。

    • 将小鼠饲养于小鼠笼中,温度(23±2) ℃,昼夜12 h条件下饲养。适应性喂养7 d,整个试验过程自由进食和饮水,之后开始建立2型糖尿病小鼠模型。除正常对照组外,其余小鼠均高糖高脂饲料喂养6周,一次性给予40 mg/kg 链脲佐菌素腹腔注射,继续喂养高糖高脂饲料;尾静脉取血检测小鼠血糖值,血糖值≥11.1mmol/L的小鼠则造模成功。将小鼠分为5组,每组10只,正常对照组:正常饲养;模型组:给予高脂高糖饲料并灌胃20ml/kg生理盐水;黄精多糖低、中、高剂量组:给予高脂高糖饲料并分别灌胃125、250、500 mg/kg[9]黄精多糖;每天早上九点灌胃,连续4周,每周测一次小鼠体重和血糖值,实验结束使用浓度为2%的戊巴比妥钠,以50 mg/kg腹腔注射麻醉后颈椎脱位法处死小鼠。

    • 小鼠禁食不禁水,每周称取体重,观察小鼠生长情况。

    • 每周进行小鼠尾静脉取血测血糖。

    • 实验结束前收集各组小鼠的粪便于冻存管,立即存放至液氮中,委托诺禾致源生物科技有限公司进行16S rRNA 基因高通量测序工作。

    • 依据文献所述方法[10-11],末次给药1 h后结束实验,解剖小鼠,取5 cm小肠用生理盐水轻轻冲洗,固定于10%甲醛溶液中,进行梯度酒精脱水、石蜡包埋、组织切片制备、HE染色及中性树胶封片,至光学显微镜下观察小肠组织各部分结构。

    • 数据分析采用SPSS 22.0 统计软件,计量资料以均数±标准差($ \bar x \pm s $)表示,多组比较用单因素方差分析,两两比较用 LSD-t 检验,P<0.05为差异有统计学意义,P<0.01为差异极显著。

    • 图1可知,正常组小鼠体重整个实验中一直呈增长趋势,但随着饲养时间增长,增长幅度变小;其余组小鼠在给予高脂高糖饲料一周后体质量下降,随后呈上升趋势分别增长26%、29%、32%和36%,而正常组增长率约为20%,第6周一次性注射STZ后,小鼠体重均急速下降,模型组小鼠体重下降5.31%,黄精多糖高、中、低剂量组分别下降7.85%、7.91%和6.18%,如图2;模型组给予生理盐水灌胃,继续添加高脂高糖饲料饲养,体重呈缓慢增长趋势,给药组分别以高、中、低剂量黄精多糖给予灌胃,继续喂养高脂高糖饲料,各组小鼠体重分别增加14.24%、11.97%、8.78%,如图3。由此可见,糖尿病影响小鼠体重变化,灌胃黄精多糖溶液后,各组小鼠体重均有恢复,且高剂量效果明显。

      图  1  小鼠体重变化情况($ \overline{x}\pm s $, n=10)

      图  2  造模前后小鼠体重变化($ \bar x \pm s $, n=10)

      图  3  给药后各组小鼠体重变化($ \overline{x}\pm s $, n=10)

    • 实验过程中,给予充足的饮水和饲料,正常对照组小鼠活动正常,精神状态良好,色泽光亮,粪便呈浅墨绿色;模型组小鼠给予高脂高糖饲料第一周食欲下降,体重减轻,注射STZ后体重下降,表现不活泼、精神状态不好,竖毛,尿液呈深黄色,粪便呈黄棕色。黄精多糖组小鼠灌胃相应剂量后精神、饮食活动改善,尿液颜色变淡等,说明黄精多糖可以改善糖尿病小鼠的不良症状。结果表明,可能是STZ与高脂高糖饮食联合,破坏胰腺组织β细胞,并致胰岛素分泌发生不足,进而使体内糖代谢絮乱,发生胰岛素抵抗 [11-12]

    • 表1所示,建模前血糖无显著差异(P>0.05),建模成功后的7 d和14 d时,与正常对照组相比,模型组小鼠血糖极显著升高(P<0.01);与模型组相比,黄精多糖各剂量组均无显著差异(P>0.05)。在21 d时,与正常对照组相比,模型组差异极显著(P<0.01) ;与模型组相比,黄精多糖低剂量和中剂量组无显著差异(P>0.05),高剂量组具有极显著性差异(P<0.01)。在28 d时,与正常对照组相比,模型组差异极显著(P<0.01);与模型组相比,黄精多糖各剂量组小鼠血糖值均降低,差异极显著(P<0.01)。

      表 1  黄精多糖对糖尿病小鼠空腹血糖的影响($ \overline{x}\pm s $, n=10)

      组别血糖含量
      建模前建模后7 d建模后14 d建模后21 d建模后28 d
      正常组5.67±0.335.95±0.245.95±0.215.97±0.225.99±0.24
      模型组5.6±0.4315.85±0.28**15.79±0.15**15.59±0.16**15.25±0.13**
      黄精多糖低剂量组5.76±0.3615.88±0.4015.45±0.1814.75±0.1113.77±0.11##
      黄精多糖中剂量组5.44±0.2515.86±0.2314.7±0.1113.69±0.1612.32±0.12##
      黄精多糖高剂量组5.57±0.2915.85±0.2113.81±0.1012.3±0.16##11.63±0.36##
      *P<0.05、**P<0.01,与正常对照组比较;#P<0.05、##P<0.01,与模型对照组比较
    • 小鼠小肠病理组织切片HE染色结果显示,正常组小鼠小肠绒毛较长,结构完整,排列整齐;模型组小鼠小肠绒毛明显缩短,小肠绒毛断裂不完整,排列不紧密,与正常组比较差异显著;黄精多糖各剂量组小鼠小肠呈明显恢复状态,绒毛增长,排列较整齐,效果随黄精多糖剂量升高而表现明显,见图4

      图  4  小肠组织HE染色切片(×100)

    • 生物信息学分析结果表明,肠道微生物组成丰富,如图5,健康组和黄精多糖灌胃组中厚壁菌门和拟杆菌门丰富,而这两种菌是人类肠道内的优势有益菌,对人体健康起着重要作用,而糖尿病模型组中疣微菌门增多,这种菌可能会损害子代的消化和代谢能力,糖尿病造成了肠道菌群的紊乱。由此可推测,黄精多糖可以调节小鼠肠道微生物组成,增加有益菌丰富度,从而保护肠道。

      图  5  肠道微生物影响

    • 糖尿病动物模型可通过高脂高糖饲料饲养和注射链脲佐菌素等多种方法制备,复制成功率高。本实验中发现,小鼠对高脂高糖饲料有一段过渡期,一开始饲喂高脂高糖饲料会影响小鼠食欲,导致体重下降,后体重迅速增长,小鼠肥胖,肥胖高脂的小鼠更容易患糖尿病。黄精多糖是中药材黄精的主要活性成分,已被证实具有治疗糖尿病的作用。黄精多糖可通过多种保护机制对糖尿病动物的各器官进行保护[13],但目前以肠组织为靶点的研究很少,且随着黄精属药用植物的广泛应用以及价格不断上涨,出现混用、滥用现象,黄精的临床规范应用受到一定程度的限制。黄精多糖可显著改善老龄鼠肠组织病理状态[14],本实验结果证实,黄精多糖可降低糖尿病小鼠血糖,恢复糖尿病小鼠代谢能力,改善其小肠绒毛排序结构,对肠道黏膜免疫功能可能存在一定作用,但目前未作进一步研究。肠道结构是肠道屏障功能的一部分,肠道微生物是影响代谢性疾病的关键因素,改变肠道微生物的群落结构,会引起代谢功能紊乱,肠道菌群与糖尿病存在密切关系,调节肠道菌群可以在一定程度上缓解患者症状,减轻黏膜炎症,有实验证明通过服用蜂胶、蒲公英、党参等,可调节小鼠肠道微生物,从而改善其肠道屏障功能[15-16]。肠道微生物区系组成的调节方法可能有助于糖尿病的治疗[17],本研究结果提示,糖尿病模型组中疣微菌门增多,可能会损害子代的消化和代谢能力,而健康组和黄精多糖灌胃组中厚壁菌门和拟杆菌门丰富,而这两种菌是人类肠道内的优势有益菌,且黄精多糖可调节肥胖小鼠的肠道菌群[18-19],这为进一步将肠道微生物和肠道免疫调控作为预防和治疗糖尿病的靶点提供理论基础,对临床治疗具有重要指导意义,为中药材黄精在糖尿病患者饮食辅助的治疗应用中提供重要的参考价值。

参考文献 (19)

目录

/

返回文章
返回