-
脓毒症是机体对感染的免疫反应失调而引发危及生命的多器官功能障碍[1],是感染致死的首要原因。据统计,全球每年有4 700万~5 000万脓毒症病例,脓毒症相关死亡人数至少为1 100万[2],约占全年总死亡人数的1/5。脓毒症的病理生理学过程包含宿主全身过度炎症反应和免疫抑制的复杂相互作用,其中,免疫抑制会导致院内感染和体内病毒重激活,甚至出院后长期持久的免疫失能状态,脓毒症患者在免疫麻痹期的累积病死率约为总病死率的90%[3]。脓毒症免疫麻痹主要表现为细胞因子分泌失调、抗原提呈细胞功能减弱、T细胞亚群稳态失衡[4],最终造成机会性感染的易感性增加。然而,临床上对于脓毒症的治疗手段十分有限,阻断TNF-α[5-6]、TLR4[7-8]等控制炎症级联反应的免疫抑制疗法在临床试验中也相继失败;幸运的是,纠正脓毒症免疫麻痹的免疫激活疗法异军突起,为脓毒症治疗带来了曙光,且许多疗法已被临床试验证实有效。本文对基于免疫麻痹纠正的脓毒症免疫疗法研究进展进行综述。
Research progress of immunotherapies on correction of immunoparalysis in sepsis
-
摘要: 免疫麻痹是导致脓毒症中晚期患者死亡的主要原因,纠正免疫麻痹状态是脓毒症治疗的重要方向。在脓毒症的病理过程中,多种因素会导致细胞因子分泌失调,抗原提呈细胞功能减弱,淋巴细胞凋亡和耗竭,最终导致免疫麻痹、二次感染甚至患者死亡。对处于免疫麻痹状态的脓毒症患者,GM-CSF、IFN-γ、IL-7和IL-15等细胞因子,PD-1/PD-L1抗体、CTLA-4抗体、TIM-3抗体和LAG-3抗体等免疫检查点相关疗法,胸腺肽α1、免疫球蛋白等免疫活性物质都可能有利于纠正患者的免疫麻痹状态。本文对免疫治疗纠正脓毒症免疫麻痹的研究进展做一综述。Abstract: Immunoparalysis is the main cause of death in patients with intermediate and terminal sepsis. The correction of immunoparalysis is an important direction of sepsis treatment. In the pathological process of sepsis, a variety of factors contribute to the imbalanced secretion of cytokines, weakened function of antigen-presenting cells, apoptosis and depletion of lymphocytes, and ultimately lead to immunoparalysis, secondary infection, and even patient deaths. Cytokines such as GM-CSF, IFN-γ, IL-7, and IL-15, immune checkpoint-related therapies such as PD-1/PD-L1 antibodies, CTLA-4 antibodies, TIM-3 antibodies, and LAG-3 antibodies, and immunoreactive substances such as thymosin α1 and immunoglobulin might be beneficial to correct the immune paralysis of patients. the progress of immunotherapy to correct immune paralysis in sepsis were reviewed in this article.
-
Key words:
- immunotherapy /
- sepsis /
- immunoparalysis /
- cytokines /
- immune checkpoint /
- immunoreactive substances
-
[1] SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3)[J]. JAMA,2016,315(8):801-810. doi: 10.1001/jama.2016.0287 [2] RUDD K E, JOHNSON S C, AGESA K M, et al. Global, regional, and national Sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet,2020,395(10219):200-211. doi: 10.1016/S0140-6736(19)32989-7 [3] VENET F, MONNERET G. Advances in the understanding and treatment of Sepsis-induced immunosuppression[J]. Nat Rev Nephrol,2018,14(2):121-137. doi: 10.1038/nrneph.2017.165 [4] 张文钊, 王志斌. 脓毒症免疫抑制相关效应T细胞亚群稳态失衡的研究进展[J]. 中华危重病急救医学, 2022(1):95-99. doi: 10.3760/cma.j.cn121430-20210610-00858 [5] FISHER C J Jr, AGOSTI J M, OPAL S M, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group[J]. N Engl J Med,1996,334(26):1697-1702. doi: 10.1056/NEJM199606273342603 [6] ABRAHAM E, GLAUSER M P, BUTLER T, et al. p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe Sepsis and septic shock. A randomized controlled multicenter trial. Ro 45-2081 Study Group[J]. JAMA,1997,277(19):1531-1538. doi: 10.1001/jama.1997.03540430043031 [7] OPAL S M, LATERRE P F, FRANCOIS B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe Sepsis: the ACCESS randomized trial[J]. JAMA,2013,309(11):1154-1162. doi: 10.1001/jama.2013.2194 [8] RICE T W, WHEELER A P, BERNARD G R, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe Sepsis[J]. Crit Care Med,2010,38(8):1685-1694. doi: 10.1097/CCM.0b013e3181e7c5c9 [9] BURGESS A W, METCALF D. The nature and action of granulocyte-macrophage colony stimulating factors[J]. Blood,1980,56(6):947-958. doi: 10.1182/blood.V56.6.947.947 [10] MATHIAS B, SZPILA B E, MOORE F A, et al. A review of GM-CSF therapy in Sepsis[J]. Medicine,2015,94(50):e2044. doi: 10.1097/MD.0000000000002044 [11] HAMILTON J A. GM-CSF in inflammation[J]. J Exp Med,2020,217(1):e20190945. doi: 10.1084/jem.20190945 [12] FRYDRYCH L M, BIAN G W, FATTAHI F, et al. GM-CSF administration improves defects in innate immunity and Sepsis survival in obese diabetic mice[J]. J Immunol,2019,202(3):931-942. doi: 10.4049/jimmunol.1800713 [13] LI Y M, ZHAI P, ZHENG Y W, et al. Csf2 attenuated Sepsis-induced acute kidney injury by promoting alternative macrophage transition[J]. Front Immunol,2020,11:1415. doi: 10.3389/fimmu.2020.01415 [14] PRESNEILL J J, HARRIS T, STEWART A G, et al. A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe Sepsis with respiratory dysfunction[J]. Am J Respir Crit Care Med,2002,166(2):138-143. doi: 10.1164/rccm.2009005 [15] DROSSOU-AGAKIDOU V, KANAKOUDI-TSAKALIDOU F, SARAFIDIS K, et al. In vivo effect of rhGM-CSF And rhG-CSF on monocyte HLA-DR expression of septic neonates[J]. Cytokine,2002,18(5):260-265. doi: 10.1006/cyto.2002.1037 [16] MEISEL C, SCHEFOLD J C, PSCHOWSKI R, et al. Granulocyte-macrophage colony-stimulating factor to reverse Sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial[J]. Am J Respir Crit Care Med,2009,180(7):640-648. doi: 10.1164/rccm.200903-0363OC [17] HALL M W, KNATZ N L, VETTERLY C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome[J]. Intensive Care Med,2011,37(3):525-532. doi: 10.1007/s00134-010-2088-x [18] LEENTJENS J, KOX M, KOCH R M, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study[J]. Am J Respir Crit Care Med,2012,186(9):838-845. doi: 10.1164/rccm.201204-0645OC [19] TEMESGEN Z, ASSI M, SHWETA F N U, et al. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: a case-cohort study[J]. Mayo Clin Proc,2020,95(11):2382-2394. doi: 10.1016/j.mayocp.2020.08.038 [20] DE LUCA G, CAVALLI G, CAMPOCHIARO C, et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study[J]. Lancet Rheumatol,2020,2(8):e465-e473. doi: 10.1016/S2665-9913(20)30170-3 [21] BOEHM U, KLAMP T, GROOT M, et al. Cellular responses to interferon-gamma[J]. Annu Rev Immunol,1997,15:749-795. doi: 10.1146/annurev.immunol.15.1.749 [22] DÖCKE W D, RANDOW F, SYRBE U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment[J]. Nat Med,1997,3(6):678-681. doi: 10.1038/nm0697-678 [23] DELSING C E, GRESNIGT M S, LEENTJENS J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series[J]. BMC Infect Dis,2014,14:166. doi: 10.1186/1471-2334-14-166 [24] WARD J D, CORNABY C, SCHMITZ J L. Indeterminate QuantiFERON gold plus results reveal deficient interferon gamma responses in severely ill COVID-19 patients[J]. J Clin Microbiol,2021,59(10):e0081121. doi: 10.1128/JCM.00811-21 [25] DICKEL S, GRIMM C, AMSCHLER K, et al. Case report: interferon-γ restores monocytic human leukocyte antigen receptor (mHLA-DR) in severe COVID-19 with acquired immunosuppression syndrome[J]. Front Immunol,2021,12:645124. doi: 10.3389/fimmu.2021.645124 [26] KIM E Y, NER-GAON H, VARON J, et al. Post-Sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN-γ in NK cells[J]. J Clin Invest,2020,130(6):3238-3252. doi: 10.1172/JCI128075 [27] BARATA J T, DURUM S K, SEDDON B. Flip the coin: IL-7 and IL-7R in health and disease[J]. Nat Immunol,2019,20(12):1584-1593. doi: 10.1038/s41590-019-0479-x [28] DELWARDE B, PERONNET E, VENET F, et al. Low interleukin-7 receptor messenger RNA expression is independently associated with day 28 mortality in septic shock patients[J]. Crit Care Med,2018,46(11):1739-1746. doi: 10.1097/CCM.0000000000003281 [29] UNSINGER J, MCGLYNN M, KASTEN K R, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in Sepsis[J]. J Immunol,2010,184(7):3768-3779. doi: 10.4049/jimmunol.0903151 [30] UNSINGER J, BURNHAM C A D, MCDONOUGH J, et al. Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal Sepsis[J]. J Infect Dis,2012,206(4):606-616. doi: 10.1093/infdis/jis383 [31] SHINDO Y, FUCHS A G, DAVIS C G, et al. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia[J]. J Leukoc Biol,2017,101(2):543-554. doi: 10.1189/jlb.4A1215-581R [32] KASTEN K R, PRAKASH P S, UNSINGER J, et al. Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through gamma delta T-cell IL-17 production in a murine model of Sepsis[J]. Infect Immun,2010,78(11):4714-4722. doi: 10.1128/IAI.00456-10 [33] THAMPY L K, REMY K E, WALTON A H, et al. Restoration of T Cell function in multi-drug resistant bacterial Sepsis after interleukin-7, anti-PD-L1, and OX-40 administration[J]. PLoS One,2018,13(6):e0199497. doi: 10.1371/journal.pone.0199497 [34] VENET F, FORAY A P, VILLARS-MÉCHIN A, et al. IL-7 restores lymphocyte functions in septic patients[J]. J Immunol,2012,189(10):5073-5081. doi: 10.4049/jimmunol.1202062 [35] VENET F, DEMARET J, BLAISE B J, et al. IL-7 restores T lymphocyte immunometabolic failure in septic shock patients through mTOR activation[J]. J Immunol,2017,199(5):1606-1615. doi: 10.4049/jimmunol.1700127 [36] FRANCOIS B, JEANNET R, DAIX T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial[J]. JCI Insight,2018,3(5):e98960. doi: 10.1172/jci.insight.98960 [37] ADAMO S, CHEVRIER S, CERVIA C, et al. Profound dysregulation of T cell homeostasis and function in patients with severe COVID-19[J]. Allergy,2021,76(9):2866-2881. doi: 10.1111/all.14866 [38] REMY K E, MAZER M, STRIKER D A, et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections[J]. JCI Insight,2020,5(17):e140329. doi: 10.1172/jci.insight.140329 [39] LATERRE P F, FRANÇOIS B, COLLIENNE C, et al. Association of interleukin 7 immunotherapy with lymphocyte counts among patients with severe coronavirus disease 2019 (COVID-19)[J]. JAMA Netw Open,2020,3(7):e2016485. doi: 10.1001/jamanetworkopen.2020.16485 [40] KANDIKATTU H K, VENKATESHAIAH S U, KUMAR S, et al. IL-15 immunotherapy is a viable strategy for COVID-19[J]. Cytokine Growth Factor Rev,2020,54:24-31. doi: 10.1016/j.cytogfr.2020.06.008 [41] INOUE S, UNSINGER J, DAVIS C G, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in Sepsis[J]. J Immunol,2010,184(3):1401-1409. doi: 10.4049/jimmunol.0902307 [42] SAITO M, INOUE S, YAMASHITA K, et al. IL-15 improves aging-induced persistent T cell exhaustion in mouse models of repeated Sepsis[J]. Shock,2020,53(2):228-235. doi: 10.1097/SHK.0000000000001352 [43] ZHAO X Y, QI H, ZHOU J M, et al. Treatment with recombinant interleukin-15 (IL-15) increases the number of T cells and natural killer (NK) cells and levels of interferon-γ (IFN-γ) in a rat model of Sepsis[J]. Med Sci Monit,2019,25:4450-4456. doi: 10.12659/MSM.914026 [44] ORINSKA Z, MAURER M, MIRGHOMIZADEH F, et al. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities[J]. Nat Med,2007,13(8):927-934. doi: 10.1038/nm1615 [45] GUO Y, LUAN L M, PATIL N K, et al. IL-15 enables septic shock by maintaining NK cell integrity and function[J]. J Immunol,2017,198(3):1320-1333. doi: 10.4049/jimmunol.1601486 [46] BRAHMAMDAM P, INOUE S, UNSINGER J, et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during Sepsis[J]. J Leukoc Biol,2010,88(2):233-240. doi: 10.1189/jlb.0110037 [47] CHANG K C, BURNHAM C A, COMPTON S M, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal Sepsis[J]. Crit Care,2013,17(3):R85. doi: 10.1186/cc12711 [48] CHANG K, SVABEK C, VAZQUEZ-GUILLAMET C, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with Sepsis[J]. Crit Care,2014,18(1):R3. doi: 10.1186/cc13176 [49] ZHANG Y, ZHOU Y, LOU J S, et al. PD-L1 blockade improves survival in experimental Sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction[J]. Crit Care,2010,14(6):R220. doi: 10.1186/cc9354 [50] WANG J F, WANG Y P, XIE J, et al. Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of Sepsis[J]. Blood,2021,138(9):806-810. doi: 10.1182/blood.2020009417 [51] TRIANTAFYLLOU E, GUDD C L, MAWHIN M A, et al. PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury[J]. J Clin Invest,2021,131(4):e140196. doi: 10.1172/JCI140196 [52] BOOMER J S, SHUHERK-SHAFFER J, HOTCHKISS R S, et al. A prospective analysis of lymphocyte phenotype and function over the course of acute Sepsis[J]. Crit Care,2012,16(3):R112. doi: 10.1186/cc11404 [53] INOUE S, BO L L, BIAN J J, et al. Dose-dependent effect of anti-CTLA-4 on survival in Sepsis[J]. Shock,2011,36(1):38-44. doi: 10.1097/SHK.0b013e3182168cce [54] MEWES C, ALEXANDER T, BÜTTNER B, et al. TIM-3 genetic variants are associated with altered clinical outcome and susceptibility to gram-positive infections in patients with Sepsis[J]. Int J Mol Sci,2020,21(21):8318. doi: 10.3390/ijms21218318 [55] HUANG S Y, LIU D, SUN J H, et al. Tim-3 regulates Sepsis-induced immunosuppression by inhibiting the NF-κB signaling pathway in CD4 T cells[J]. Mol Ther,2022,30(3):1227-1238. doi: 10.1016/j.ymthe.2021.12.013 [56] WEI Z P, LI P F, YAO Y, et al. Alpha-lactose reverses liver injury via blockade of Tim-3-mediated CD8 apoptosis in Sepsis[J]. Clin Immunol,2018,192:78-84. doi: 10.1016/j.clim.2018.04.010 [57] YAO Y, DENG H, LI P F, et al. Α-lactose improves the survival of septic mice by blockade of TIM-3 signaling to prevent NKT cell apoptosis and attenuate cytokine storm[J]. Shock,2017,47(3):337-345. doi: 10.1097/SHK.0000000000000717 [58] XIA Q, WEI L, ZHANG Y T, et al. Immune checkpoint receptors tim-3 and PD-1 regulate monocyte and T lymphocyte function in septic patients[J]. Mediators Inflamm,2018,2018:1632902. [59] LOU J S, WANG J F, FEI M M, et al. Targeting lymphocyte activation gene 3 to reverse T-lymphocyte dysfunction and improve survival in murine polymicrobial Sepsis[J]. J Infect Dis,2020,222(6):1051-1061. doi: 10.1093/infdis/jiaa191 [60] SHERWOOD E R, HOTCHKISS R S. BTLA as a biomarker and mediator of Sepsis-induced immunosuppression[J]. Crit Care,2013,17(6):1022. doi: 10.1186/cc13143 [61] SHUBIN N J, MONAGHAN S F, HEFFERNAN D S, et al. B and T lymphocyte attenuator expression on CD4+ T-cells associates with Sepsis and subsequent infections in ICU patients[J]. Crit Care,2013,17(6):R276. doi: 10.1186/cc13131 [62] WANG W D, YANG X R, GUO M F, et al. Up-regulation of BTLA expression in myeloid dendritic cells associated with the treatment outcome of neonatal Sepsis[J]. Mol Immunol,2021,134:129-140. doi: 10.1016/j.molimm.2021.03.007 [63] SHUBIN N J, CHUNG C S, HEFFERNAN D S, et al. BTLA expression contributes to septic morbidity and mortality by inducing innate inflammatory cell dysfunction[J]. J Leukoc Biol,2012,92(3):593-603. doi: 10.1189/jlb.1211641 [64] SHAO R, LI C S, FANG Y Y, et al. Low B and T lymphocyte attenuator expression on CD4+ T cells in the early stage of Sepsis is associated with the severity and mortality of septic patients: a prospective cohort study[J]. Crit Care,2015,19(1):308. doi: 10.1186/s13054-015-1024-4 [65] KOBAYASHI Y, IWATA A, SUZUKI K, et al. B and T lymphocyte attenuator inhibits LPS-induced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells[J]. Proc Natl Acad Sci USA,2013,110(13):5121-5126. doi: 10.1073/pnas.1222093110 [66] SUN Y N, DING R Y, CHANG Y K, et al. Immune checkpoint molecule TIGIT manipulates T cell dysfunction in septic patients[J]. Int Immunopharmacol, 2021, 101(Pt B): 108205. [67] MENG Y, ZHAO Z Z, ZHU W Z, et al. CD155 blockade improves survival in experimental Sepsis by reversing dendritic cell dysfunction[J]. Biochem Biophys Res Commun,2017,490(2):283-289. doi: 10.1016/j.bbrc.2017.06.037 [68] ZHANG W X, ANYALEBECHI J C, RAMONELL K M, et al. TIGIT modulates Sepsis-induced immune dysregulation in mice with preexisting malignancy[J]. JCI Insight,2021,6(11):e139823. doi: 10.1172/jci.insight.139823 [69] UNSINGER J, WALTON A H, BLOOD T, et al. Frontline Science: OX40 agonistic antibody reverses immune suppression and improves survival in Sepsis[J]. J Leukoc Biol,2021,109(4):697-708. doi: 10.1002/JLB.5HI0720-043R [70] WAN J, SHAN Y, SHAN H W, et al. Thymosin-alpha1 promotes the apoptosis of regulatory T cells and survival rate in septic mice[J]. Front Biosci (Landmark Ed),2011,16(8):3004-3013. [71] Zhang Y, Xia D, Li L, et al. Thymosin α1 alleviates lung injury in Sepsis rats via Notch signaling pathway[J]. Panminerva Med,2020:2020Feb18. [72] XIANG X S, LI N, ZHAO Y Z, et al. Combination therapy with thymosin alpha1 and dexamethasone helps mice survive Sepsis[J]. Inflammation,2014,37(2):402-416. doi: 10.1007/s10753-013-9753-5 [73] ZHANG D Q, ZHOU Y, CHENG Q H. Effects of combined thymosin and hydrocortisone on immune response in septic mice[J]. Int J Clin Exp Med,2015,8(8):12989-12994. [74] ZHANG Y, CHEN H, LI Y M, et al. Thymosin alpha1- and ulinastatin-based immunomodulatory strategy for Sepsis arising from intra-abdominal infection due to carbapenem-resistant bacteria[J]. J Infect Dis,2008,198(5):723-730. doi: 10.1086/590500 [75] HAN D, SHANG W L, WANG G Z, et al. Ulinastatin- and thymosin α1-based immunomodulatory strategy for Sepsis: a meta-analysis[J]. Int Immunopharmacol,2015,29(2):377-382. doi: 10.1016/j.intimp.2015.10.026 [76] CHEN J. Effects of thymosin-alpha1 on cell immunity function in patients with septic shock[J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2007,19(3):153-155. [77] WU J F, ZHOU L X, LIU J Y, et al. The efficacy of thymosin alpha 1 for severe Sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial[J]. Crit Care,2013,17(1):R8. doi: 10.1186/cc11932 [78] LIU Y P, PAN Y, HU Z H, et al. Thymosin alpha 1 reduces the mortality of severe coronavirus disease 2019 by restoration of lymphocytopenia and reversion of exhausted T cells[J]. Clin Infect Dis,2020,71(16):2150-2157. doi: 10.1093/cid/ciaa630 [79] WANG Z Y, CHEN J, ZHU C Y, et al. Thymosin alpha-1 has no beneficial effect on restoring CD4+ and CD8+ T lymphocyte counts in COVID-19 patients[J]. Front Immunol,2021,12:568789. doi: 10.3389/fimmu.2021.568789 [80] HUANG C L, FEI L, XU W, et al. Efficacy evaluation of thymosin alpha 1 in non-severe patients with COVID-19: a retrospective cohort study based on propensity score matching[J]. Front Med (Lausanne),2021,8:664776. [81] SUN Q, XIE J F, ZHENG R Q, et al. The effect of thymosin α1 on mortality of critical COVID-19 patients: a multicenter retrospective study[J]. Int Immunopharmacol,2021,90:107143. doi: 10.1016/j.intimp.2020.107143 [82] LIU J, SHEN Y F, WEN Z L, et al. Efficacy of thymosin alpha 1 in the treatment of COVID-19: a multicenter cohort study[J]. Front Immunol,2021,12:673693. doi: 10.3389/fimmu.2021.673693 [83] CUI J, WEI X X, LV H J, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in Sepsis or septic shock: a meta-analysis with trial sequential analysis[J]. Ann Intensive Care,2019,9(1):27. doi: 10.1186/s13613-019-0501-3 [84] DOMIZI R, ADRARIO E, DAMIANI E, et al. IgM-enriched immunoglobulins (Pentaglobin) may improve the microcirculation in Sepsis: a pilot randomized trial[J]. Ann Intensive Care,2019,9(1):135. doi: 10.1186/s13613-019-0609-5 [85] WAND S, KLAGES M, KIRBACH C, et al. IgM-enriched immunoglobulin attenuates systemic endotoxin activity in early severe Sepsis: a before-after cohort study[J]. PLoS One,2016,11(8):e0160907. doi: 10.1371/journal.pone.0160907 [86] OZCAN P E, SENTURK E, ORHUN G, et al. Effects of intravenous immunoglobulin therapy on behavior deficits and functions in Sepsis model[J]. Ann Intensive Care,2015,5(1):62. [87] GIAMARELLOS-BOURBOULIS E J, TZIOLOS N, ROUTSI C, et al. Improving outcomes of severe infections by multidrug-resistant pathogens with polyclonal IgM-enriched immunoglobulins[J]. Clin Microbiol Infect,2016,22(6):499-506. doi: 10.1016/j.cmi.2016.01.021 [88] 吴健锋, 栾樱译, 柯路. 脓毒症免疫抑制诊治专家共识[J]. 中华危重病急救医学, 2020(11):1281-1289.
计量
- 文章访问数: 6278
- HTML全文浏览量: 4070
- PDF下载量: 49
- 被引次数: 0