-
相对于传统纳米载体而言,由红细胞、血小板、干细胞、巨噬细胞、肿瘤细胞以及细菌等构成的新型内源性载体具有生物相容性好、靶向性高的显著优势[1]。但是,该类细胞载体由于自身理化性质导致其无法在特定组织内渗透和摄取。近年来,随着纳米技术与生物技术的交叉融合,研究者从仿生角度出发,通过物理挤出、共孵育和微流体等技术工艺将各类型天然细胞膜与纳米载体内核相结合,制备出体内循环时间长、生物相容性好、胞内细胞器靶向性能高的新型仿生纳米药物载体[2]。本文综述了细胞膜修饰技术的基本原理及几种最为常用的细胞膜修饰纳米载体的特点及应用。
Progress in preparation and application of biomimetic nano carriers for cell membrane
-
摘要: 由有机或无机纳米材料制备的药物载体系统广泛用于药物靶向递送和疾病的诊断治疗研究。但其存在靶向性差、体内循环时间短、生物相容性欠佳亟需提高等问题。仿生纳米药物系统是以不同种类的细胞膜修饰纳米载体,利用内源性的细胞膜提高载体的体内生物相容性、实现更精准的靶向、甚至由细胞自身的免疫原性产生免疫治疗作用。对细胞膜仿生纳米载体技术的原理、方法及其靶向机制和治疗作用作一综述,为新型给药系统研究提供思路。Abstract: Nanocarriers prepared from organic or inorganic materials are widely used in drug targeting system and diagnosis and treatment of disease. However, there are some problems, such as poor targeting, short circulation time in vivo and improvement in the biocompatibility. Biomimetic nanocarriers has carried out research on the issues, which based on different kinds of cell membrane for the nanocarriers modification, endogenous biofilm improving the biocompatibility of carriers in vivo, more accurate targeting, and even producing immunotherapeutic effect. The principle, method, targeting mechanism and therapeutic effect of biomimetic nano carrier technology of cell membrane have been reviewed in this paper, which provide a new direction for the research of new drug delivery system.
-
Key words:
- cell membrane /
- biomimetic nanocarriers /
- drug delivery system /
- biomaterials
-
[1] WANG C, YE Y, SUN W, et al. Red blood cells for glucose-responsive insulin delivery[J]. Adv Mater,2017,29(18):2017May;29(18). [2] KROLL A V, FANG R H, ZHANG L F. Biointerfacing and applications of cell membrane-coated nanoparticles[J]. Bioconjug Chem,2017,28(1):23-32. doi: 10.1021/acs.bioconjchem.6b00569 [3] ZHAI Y H, SU J H, RAN W, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy[J]. Theranostics,2017,7(10):2575-2592. doi: 10.7150/thno.20118 [4] WEI X L, GAO J, FANG R H, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia[J]. Biomaterials,2016,111:116-123. doi: 10.1016/j.biomaterials.2016.10.003 [5] KANG T, ZHU Q Q, WEI D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis[J]. ACS Nano,2017,11(2):1397-1411. doi: 10.1021/acsnano.6b06477 [6] YANG R, XU J, XU L G, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination[J]. ACS Nano,2018,12(6):5121-5129. doi: 10.1021/acsnano.7b09041 [7] RAO L, HE Z B, MENG Q F, et al. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles[J]. J Biomed Mater Res A,2017,105(2):521-530. doi: 10.1002/jbm.a.35927 [8] VIJAYAN V, UTHAMAN S, PARK I K. Cell membrane coated nanoparticles: an emerging biomimetic nanoplatform for targeted bioimaging and therapy[J]. Adv Exp Med Biol,2018,1064:45-59. [9] MATHIYAZHAKAN M, WIRAJA C, XU C J. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery[J]. Nanomicro Lett,2018,10(1):10. [10] GAO C Y, LIN Z H, JURADO-SÁNCHEZ B, et al. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small,2016,12(30):4056-4062. doi: 10.1002/smll.201600624 [11] CHEN W, OUYANG J, YI X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy[J]. Adv Mater,2018,30(3):2018Jan;30(3). [12] LIU T, SHI C Z, DUAN L Q, et al. A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis[J]. J Mater Chem B,2018,6(29):4756-4764. doi: 10.1039/C8TB01398E [13] HE W P, FRUEH J, WU Z W, et al. Leucocyte membrane-coated Janus microcapsules for enhanced photothermal cancer treatment[J]. Langmuir,2016,32(15):3637-3644. doi: 10.1021/acs.langmuir.5b04762 [14] RAO L, CAI B, BU L L, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano,2017,11(4):3496-3505. doi: 10.1021/acsnano.7b00133 [15] FAN Z Y, LI P Y, DENG J J, et al. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs[J]. Nano Res,2018,11(10):5573-5583. doi: 10.1007/s12274-018-2084-y [16] LI J H, AI Y W, WANG L H, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles[J]. Biomaterials,2016,76:52-65. doi: 10.1016/j.biomaterials.2015.10.046 [17] WANG Y, ZHANG K, QIN X, et al. Biomimetic nanotherapies: red blood cell based core-shell structured nano complexes for atherosclerosis management[J]. Adv Sci (Weinh),2019,6(12):1900172. doi: 10.1002/advs.201900172 [18] HAN X, WANG C, LIU Z. Red blood cells as smart delivery systems[J]. Bioconjug Chem,2018,29(4):852-860. doi: 10.1021/acs.bioconjchem.7b00758 [19] HU C M J, FANG R H, LUK B T, et al. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach[J]. Nanoscale,2013,5(7):2664-2668. doi: 10.1039/c3nr00015j [20] FANG R H, HU C M J, CHEN K N H, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles[J]. Nanoscale,2013,5(19):8884-8888. doi: 10.1039/c3nr03064d [21] HU C M J, FANG R H, COPP J, et al. A biomimetic nanosponge that absorbs pore-forming toxins[J]. Nat Nanotechnol,2013,8(5):336-340. doi: 10.1038/nnano.2013.54 [22] HU C M J, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature,2015,526(7571):118-121. doi: 10.1038/nature15373 [23] WEI X, YING M, DEHAINI D, et al. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018. 12(1): 109-116. [24] DE ÁVILA B E F, ANGSANTIKUL P, RAMÍREZ-HERRERA D E, et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins[J]. Sci Robot,2018,3(18):eaat0485. doi: 10.1126/scirobotics.aat0485 [25] QIAN B Z, POLLARD J W. Macrophage diversity enhances tumor progression and metastasis[J]. Cell,2010,141(1):39-51. doi: 10.1016/j.cell.2010.03.014 [26] CHRISTIE C, MADSEN S J, PENG Q, et al. Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors[J]. Ther Deliv,2015,6(3):371-384. doi: 10.4155/tde.14.121 [27] XUAN M J, SHAO J X, DAI L R, et al. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy[J]. Adv Healthc Mater,2015,4(11):1645-1652. doi: 10.1002/adhm.201500129 [28] XUAN M J, SHAO J X, DAI L R, et al. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy[J]. ACS Appl Mater Interfaces,2016,8(15):9610-9618. doi: 10.1021/acsami.6b00853 [29] ZHANG Y, CAI K M, LI C, et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy[J]. Nano Lett,2018,18(3):1908-1915. doi: 10.1021/acs.nanolett.7b05263 [30] LIM K, HYUN Y M, LAMBERT-EMO K, et al. Neutrophil trails guide influenza-specific CD8 + T cells in the airways[J]. Science,2015,349(6252):1055. doi: 10.1126/science.aad0867 [31] GAO J, CHU D F, WANG Z J. Cell membrane-formed nanovesicles for disease-targeted delivery[J]. J Control Release,2016,224:208-216. doi: 10.1016/j.jconrel.2016.01.024 [32] ZHANG Q Z, DEHAINI D, ZHANG Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J]. Nat Nanotechnol,2018,13(12):1182-1190. doi: 10.1038/s41565-018-0254-4 [33] WEI X L, ZHANG G, RAN D N, et al. T-cell-mimicking nanoparticles can neutralize HIV infectivity[J]. Adv Mater,2018,30(45):e1802233. doi: 10.1002/adma.201802233 [34] TOLEDANO FURMAN N E, LUPU-HABER Y, BRONSHTEIN T, et al. Reconstructed stem cell nanoghosts: a natural tumor targeting platform[J]. Nano Lett,2013,13(7):3248-3255. doi: 10.1021/nl401376w [35] CAO B R, YANG M Y, ZHU Y, et al. Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy[J]. Adv Mater,2014,26(27):4627-4631. doi: 10.1002/adma.201401550 [36] ANDERSON J M, RODRIGUEZ A, CHANG D T. Foreign body reaction to biomaterials[J]. Semin Immunol,2008,20(2):86-100. doi: 10.1016/j.smim.2007.11.004 [37] RAO L, BU L L, CAI B, et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging[J]. Adv Mater,2016,28(18):3460-3466. doi: 10.1002/adma.201506086 [38] CHEN Z, ZHAO P F, LUO Z Y, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano,2016,10(11):10049-10057. doi: 10.1021/acsnano.6b04695 [39] SUN H P, SU J H, MENG Q S, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors[J]. Adv Mater,2016,28(43):9581-9588. doi: 10.1002/adma.201602173 [40] HOSSEINIDOUST Z, MOSTAGHACI B, YASA O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery[J]. Adv Drug Deliv Rev, 2016, 106(Pt A): 27-44. [41] POETSCH A, WOLTERS D. Bacterial membrane proteomics[J]. Proteomics,2008,8(19):4100-4122. doi: 10.1002/pmic.200800273 [42] GAO W W, FANG R H, THAMPHIWATANA S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles[J]. Nano Lett,2015,15(2):1403-1409. doi: 10.1021/nl504798g [43] ZHANG A N, WU W, ZHANG C, et al. A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity[J]. J Mater Chem B,2019,7(7):1087-1095. doi: 10.1039/C8TB03094D
计量
- 文章访问数: 7041
- HTML全文浏览量: 12937
- PDF下载量: 232
- 被引次数: 0