留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用

王亚妮 吴迪 饶志 李茂星 葸瑞 任俊

王亚妮, 吴迪, 饶志, 李茂星, 葸瑞, 任俊. 异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用[J]. 药学实践与服务, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
引用本文: 王亚妮, 吴迪, 饶志, 李茂星, 葸瑞, 任俊. 异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用[J]. 药学实践与服务, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
WANG Yani, WU Di, RAO Zhi, LI Maoxing, XI Rui, REN Jun. Interaction between cyclosporine A and voriconazole in patients with allogeneic hematopoietic stem cell transplantation[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
Citation: WANG Yani, WU Di, RAO Zhi, LI Maoxing, XI Rui, REN Jun. Interaction between cyclosporine A and voriconazole in patients with allogeneic hematopoietic stem cell transplantation[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056

异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用

doi: 10.12206/j.issn.1006-0111.202111056
基金项目: 甘肃省自然科学基金(20JR10RA005)
详细信息
    作者简介:

    王亚妮,硕士研究生,主管药师,研究方向:临床药学,Email:wangyani9196@163.com

    通讯作者: 任 俊,硕士,副主任药师,研究方向:临床药学,Email:819149226@qq.com
  • 中图分类号: R969.4

Interaction between cyclosporine A and voriconazole in patients with allogeneic hematopoietic stem cell transplantation

  • 摘要:   目的   分析异基因造血干细胞移植(Allo-HSCT)患者,静脉滴注伏立康唑(VRZ)与环孢素A(CsA)后的药物相互作用(DDI),为临床精准药物治疗提供依据。  方法  进行一项患者自身对照研究,根据纳入排除标准,收集2019年1月—12月在某院进行Allo-HSCT的患者,采用LC-MS/MS法测定术前CsA给药后3~5 d的血药浓度2次,测定术后VRZ给药5~7 d后,CsA和VRZ同一时间的血药浓度2次,分别求其给药前后CsA、VRZ血药浓度的平均值。使用SPSS 20.0对VRZ给药前后CsA标准化血药浓度(C/D)的差异及VRZ血药浓度对CsA的C/D变化进行统计分析。  结果  共纳入Allo-HSCT患者15例,用Wilcoxon符号秩和检验比较给药VRZ前后,CsA的C/D中位数变化,有显著性差异(P<0.001)。对VRZ血药浓度与CsA的C/D比值增幅进行Spearman相关性分析两者无显著相关性(ρ=−0.273,P=0.32)。  结论  CsA与VRZ之间存在明显的药物相互作用(DDI),VRZ使CsA血药浓度显著升高,但VRZ与CsA之间的DDI程度大小与VRZ血药浓度无关,可能与患者个体差异有关。
  • 肝脏是人体内重要的实质器官,在新陈代谢、排毒和天然免疫中发挥关键作用[1-2]。酒精、药物、病毒等是肝损伤的暴露因素,在这些损伤因素的作用下,肝细胞易发生坏死进而导致肝损伤。肝损伤过程中会引发炎症,持续的肝脏炎症将导致肝纤维化,肝纤维化的持续发展将转变为肝硬化,甚至发展为肝癌。信号转导和转录激活因子3(signal transduction and transcriptional activator 3,STAT3)是体内重要的转录因子,在细胞生长、增殖和分化等生物过程中发挥关键作用。研究发现,STAT3的激活与肝损伤、炎症、肝再生、肝纤维化甚至肝癌密切相关。本文综述了STAT3在不同肝病中的研究进展,并讨论了STAT3抑制剂在治疗肝病中的潜在应用前景。

    肝脏由实质细胞和非实质细胞组成。实质细胞即肝实质细胞,又称肝细胞;非实质细胞包括枯否细胞(Kupffer cell,KC)、肝星状细胞(hepatic stellate cell,HSC)、肝窦内皮细胞(hepatic sinusoidal endothelial cell,HSEC)和其他免疫细胞(B细胞、T细胞、自然杀伤细胞、树突状细胞)等。

    肝细胞的增殖和生长主要受STAT3调控,白细胞介素-6(IL-6)及其家族成员(包括白血病抑制因子、睫状神经营养因子、抑癌蛋白M、心肌营养素1和IL-11、IL-22等细胞因子均可激活STAT3[3]。STAT3被激活时其705位酪氨酸残基(Tyr-705)发生磷酸化,磷酸化的STAT3形成二聚体,并易位到细胞核中激活多种靶基因的转录,促进肝细胞存活和肝脏再生[4]。此外,肝细胞生长因子(HGF)和表皮生长因子(EGF)也可少量激活肝细胞中的STAT3信号[5-6]

    KC是肝常驻巨噬细胞,占肝脏中单核巨噬细胞的80%至90%。KC不仅是促炎细胞因子IL-6的主要来源,也是抗炎细胞因子IL-10的主要来源,而且KC还可以响应IL-6和IL-10的刺激 [7-8]。IL-6和IL-10能够激活巨噬细胞内STAT3,发挥截然相反的功能。IL-10激活细胞内STAT3可抑制脂多糖(LPS)诱导的炎症应答,而IL-6激活STAT3则促进巨噬细胞炎症应答。因此,KC广泛参与肝脏炎症反应,在不同病理条件下发挥不同作用[9-10]

    HSC位于窦周隙内(内皮细胞和肝细胞之间的小区域),储存并供应身体所需75%的维生素A[11]。在肝纤维化病理过程中,STAT3在肝星状细胞的增殖和激活中起关键作用[12]。IL-6可激活HSC中的STAT3,促进其存活和增殖,当HSC激活后,会产生大量胶原,促进肝纤维化形成[13]

    HSEC位于肝窦腔与肝细胞之间,它能够维持肝星状细胞的静息状态,从而抑制肝内血管收缩和肝纤维化的发展[14]。通过内皮间质转化(EndMT),HSEC能够转化为活化的肌成纤维细胞并促进肝纤维化发生,而抑制STAT3能够减轻肝窦内皮细胞中的EndMT,并改善胆管结扎(BDL)诱导的小鼠肝纤维化,表明HSEC内STAT3信号在肝纤维化中同样发挥重要作用[15]

    大量研究表明,在许多啮齿类动物模型中,IL-6、IL-6家族细胞因子以及IL-22对肝损伤均具有保护作用。IL-22肝脏过表达转基因小鼠可完全抵御T细胞免疫性肝炎对肝细胞的损伤。破坏IL-6/gp130、OSM、IL-22基因或肝细胞内STAT3,能够增加绝大多数动物模型肝损伤的易感性[3]。这些研究表明STAT3在肝细胞损伤保护方面具有积极作用。与肝细胞保护作用相比,STAT3在肝脏炎症中发挥着更为复杂的作用。在肝脏损伤模型中,与野生型(WT)小鼠相比,肝细胞特异性STAT3敲除的小鼠可减轻由四氯化碳、酒精诱导的肝脏炎症,促进伴刀豆蛋白(ConA)诱导的免疫性肝炎和LPS引起的肝炎。这些研究表明,肝细胞内STAT3根据不同模型可表现出抗炎和促炎的不同作用,其中STAT3激活引起的促炎作用可能是由急性期蛋白和趋化因子所介导[16-17],抗炎作用可能是通过防止肝细胞损伤而减少肝坏死引起的炎症或抑制γ干扰素(IFN-γ)活化的STAT1,进而抑制肝内促炎信号。

    除此之外,多种肝损伤模型的研究表明,髓系细胞(包括KC和巨噬细胞)内STAT3在肝损伤模型中表现为抗炎作用[18-20]。但是,髓系细胞STAT3在肝细胞损伤中的作用却并不明确,如髓系细胞中STAT3的特异性缺失,能够增强小鼠对ConA诱导的T细胞免疫性肝炎和酒精诱导的肝损伤的敏感性,却减轻CCl4引起的肝细胞损伤。在髓系细胞中,STAT3的激活不仅能够抑制促炎细胞因子,如肿瘤坏死因子-α(TNF-α)和IFN-γ的表达,而且还会抑制肝保护因子,如IL-6、IL-22的产生 [21]。因此,STAT3对肝细胞损伤的影响主要由肝脏损伤期间产生的促炎因子和肝保护因子之间的平衡所决定。

    肝脏在组织损伤后具有很强的肝再生能力。肝脏再生由多种细胞因子、生长因子、激素及其下游信号通路调节[22-23]。研究认为,IL-6及其下游信号分子STAT3在促进肝再生过程中发挥关键作用;而抗炎细胞因子IL-10亦能够激活免疫细胞中的STAT3,在抑制炎症反应的同时抑制肝脏再生[15-16,24-25]

    肝切除术(PHx)是一种广泛用于研究肝脏再生的模型。在PHx后,肝细胞会快速增殖从而恢复肝脏的质量和功能。免疫细胞通过与肝细胞的直接相互作用或通过释放炎性细胞因子间接控制肝脏再生[26]。PHx后,肝脏中LPS水平升高,LPS刺激KC产生炎症细胞因子,如TNF-α和IL-6等,激活STAT3,随后肝脏开始再生[27-28]。据文献报道,Ⅰ型TNF受体(TNFR-1)缺失的小鼠会导致PHx后死亡率增加,并伴有肝细胞增殖减少[29]。同样在IL-6缺失的小鼠模型中,PHx后无STAT3激活,小鼠死亡率增加,肝细胞DNA合成减少,AP-1、Myc和cyclin D表达被抑制,在给予单次剂量的IL-6治疗后,恢复了STAT3结合及肝细胞的增殖,有效阻止了肝损伤[30]。在PHx后,IL-22也能发挥促进肝再生的作用,IL-22能够刺激肝细胞STAT3激活,增加多种促有丝分裂蛋白的表达,如细胞周期蛋白D1(Cyclin D1)[31]。以上研究表明,在PHx或组织损伤后,肝细胞STAT3的激活会促进肝细胞增殖。与肝细胞中激活STAT3和促进肝再生的细胞因子相比,免疫细胞中的抗炎因子IL-10也可激活STAT3,但负调节肝再生。在PHx后,IL-10在肝脏中的表达下调,随着STAT3的激活,IL-10的破坏会增加肝脏炎症和肝再生反应[28]

    其他细胞,如髓系细胞STAT3激活可通过抑制炎症反应来抑制肝再生。相比之下,其他免疫细胞和肝窦内皮细胞STAT3的激活在肝再生中的作用仍然需要进一步探索。

    肝纤维化是各种病因所致慢性肝损伤的瘢痕修复反应,其主要特征是细胞外基质的过度沉积,导致肝脏结构改变和肝功能丧失。肝星状细胞活化是肝纤维化发展中的核心事件,活化的肝星状细胞被认为是胶原纤维产生的最重要细胞[32-34]。此外,很多研究表明,成纤维细胞、骨髓内皮祖细胞和肝细胞也可以通过产生胶原促进纤维发生,而免疫细胞则可以通过细胞因子的产生调节纤维发生,如巨噬细胞释放的TGF-β通过刺激肝星状细胞活化促进纤维化,而免疫细胞1型T辅助细胞释放的IFN-γ通过诱导肝星状细胞凋亡和细胞周期阻滞抑制纤维化。

    IL-6是激活肝脏中STAT3的最重要细胞因子之一,关于IL-6在各种肝纤维化动物模型中的作用仍有争议。有研究显示,与WT小鼠相比,IL-6 敲除小鼠肝损伤和纤维化更为严重,但炎症较少[35]。肝细胞特异性IL-6Ra 敲除小鼠具有更多的脂肪变性和肝损伤,而骨髓特异性IL-6Ra敲除小鼠的肝脏浸润性巨噬细胞和中性粒细胞数量较少,肝纤维化也较严重[36]。由于IL-6受体在所有类型的肝脏细胞中表达,因此,IL-6可能通过靶向不同类型的肝脏细胞来加重和改善肝纤维化。一些动物模型研究表明,肝细胞STAT3在预防肝纤维化中起保护作用,主要是因为STAT3的肝保护和增殖功能[37]。肝细胞gp130/STAT3缺失会加重肝损伤,并通过增加TNF-α表达来加重炎症反应,这种慢性肝损伤会促进肝星状细胞活化和纤维化的发生。

    有关IL-6下游信号分子STAT3在肝纤维化中的作用已有很多研究报道。在CCl4诱导的肝纤维化模型中,愈肝龙可降低血清中炎症细胞因子TNF-α、IL-6的含量,抑制JAK/STAT3信号通路,同时降低了肝星状细胞活化标志物α-平滑肌激动蛋白(α-SMA)的表达[38]。 Su等[39]用STAT3的抑制剂索拉非尼和其衍生物SC-1治疗肝纤维化,索拉非尼和其衍生物SC-1能下调HSC和肝组织中的STAT3磷酸化水平,降低了α-SMA的表达。因此,通过抑制HSCs中STAT3的激活可改善肝纤维化,STAT3可能成为治疗肝纤维化中一种有前景的药物作用靶点。

    癌细胞和肿瘤微环境中异常活化的IL-6/STAT3信号被认为是癌症发生、发展的重要因素[40-41]。肝细胞癌(HCC)是成人中最常见的原发性恶性肿瘤,也是全球癌症死亡的第四大原因,目前尚无有效治疗方法[42]。HCC由病毒性肝炎、酒精性和非酒精性肝炎引起,多年慢性肝炎会发展为肝硬化最终进展成肝细胞癌[43]。肝细胞中的多种细胞因子(如IL-6、IL-6家族细胞因子等)在体内外均可促进HCC生长。据临床研究报道,HCC患者血清IL-6浓度显著升高,男性患者IL-6水平是女性的3~5倍[44]。由二乙基亚硝胺(DEN)诱导的HCC小鼠模型中也发现了类似的性别差异,与雌性小鼠相比,雄性小鼠血清中IL-6的浓度较高[45]。除此之外,IL-22激活肝细胞中的STAT3,也能够促进HCC的发生。在HepG2细胞中,过表达IL-22会组成性地激活STAT3,上调多种抗凋亡蛋白(如Bcl-2、Bcl-xl和Mcl-1)和有丝分裂原蛋白(如c-myc、Cyclin D1、Rb2和CDK4)的表达,促进肝癌细胞增殖。

    一些证据表明STAT3作为肝细胞中IL-6、IL-22的主要下游信号分子,在肝癌的发展中发挥重要作用。第一,在人肝肿瘤组织和肝癌细胞中均能够检测到组成性激活的STAT3。在体外使用STAT3的化学抑制剂或siRNA可诱导肝癌细胞凋亡和细胞周期阻滞,在体内能抑制肝癌细胞的生长,减少肝癌细胞迁移或侵袭[46-47]。第二,p-STAT3表达水平与HCC的组织学分级和肿瘤内微血管密度呈正相关[48]。第三,肝脏细胞因子信号传导抑制因子3(SOCS3)的缺失或甲基化沉默,会导致肝脏内STAT3活化增强,加快DEN诱导肝肿瘤的发生,SOCS3过表达则可抑制HCC细胞生长[49]。有文献报道,索拉非尼、乐伐替尼、瑞戈非尼可有效抑制STAT3信号,明显提高肝癌患者生存率,是晚期肝细胞癌的标准治疗方法[50-51]。Jung等[52]评估了STAT3小分子抑制剂(C188-9)在肝细胞癌中的预防和治疗潜力,发现C188-9可减少炎症反应,抑制肝细胞癌肿瘤生长。综上所述,STAT3的激活在肝肿瘤发生中扮演着重要角色,阻断STAT3可能是预防和治疗肝癌的有效手段。

    STAT3广泛表达于机体不同类型的细胞和组织中,参与细胞生长、分化、凋亡等多种生理功能的调控,与炎症、纤维化、癌症等疾病的发生密切相关。STAT3的过度激活会促进多种疾病的发生,而抑制STAT3活化能够改善疾病的发病程度。目前,STAT3抑制剂已成为研究的热点,直接作用于STAT3的小分子抑制剂C188-9,能够减少TGF-β诱导的成纤维细胞和肝星状细胞活化,改善肝、肾等纤维化程度,抑制肿瘤细胞生长等;靶向STAT3的寡核苷酸类抑制剂AZD9150可用于治疗高度难治性淋巴瘤和非小细胞肺癌;间接作用于STAT3的JAK2抑制剂鲁索替尼,已被批准用于治疗骨髓纤维化和红细胞增多症;多激酶(包括STAT3)抑制剂索拉非尼,是美国 FDA 批准用于治疗不可切除的肝细胞癌和晚期肾细胞癌的抗癌药物,这些抑制剂的成功应用标志着STAT3抑制剂在临床治疗方面的广阔前景。除此之外,一些可抑制STAT3磷酸化的中药单体也越来越多的应用在不同的疾病研究中,例如黄酮类(淫羊藿)、萜类(青蒿)、醌类(丹参)、酚酸类(姜黄素)、碱类(苦参)和多糖类(南瓜)等。因此,STAT3是一个重要的药物作用靶点,通过研究STAT3在疾病中的作用,能够为STAT3抑制剂应用于疾病治疗提供理论依据。

    在肝病方面,STAT3在不同病因和疾病阶段以及不同细胞中扮演的角色不同。在肝再生阶段,IL-6、IL-22激活STAT3有助于增加有丝分裂蛋白的表达,促进肝细胞增殖,使肝脏恢复正常形态;在肝脏炎症反应过程中,STAT3对肝脏损伤的影响是由促炎因子和肝保护因子之间的平衡来决定的;在肝纤维化过程中,STAT3在肝星状细胞增殖和活化中起关键作用,过表达STAT3会加重肝纤维化进程,而采用STAT3抑制剂可改善纤维化程度;癌症阶段,使用STAT3抑制剂可以诱导肝癌细胞凋亡和细胞周期阻滞,抑制体内肝癌细胞的生长,减少肝癌细胞迁移或侵袭。

    因此,应用STAT3激活剂或抑制剂进行肝病治疗需要根据病因、病程等进行综合评估,在肝病不同进程阶段所采取的治疗方案不同,对于肝脏再生可利用STAT3激动剂进行调节,对于肝癌可利用STAT3抑制剂进行干预,而对于肝损伤、炎症和肝纤维化而言,需要根据不同病因靶向肝内不同细胞进行针对性治疗。

  • 图  1  CsA血药浓度分布

    A.联用伏立康唑前;B.联用伏立康唑后

    图  2  伏立康唑给药前后环孢素A的浓度/剂量(C/D)比值

    图  3  伏立康唑血药浓度与CsA的C/D比值增幅的关系

  • [1] 王海涛, 张抗怀, 刘娜, 等. 临床药师对ICU潜在药物相互作用的鉴别和药学干预[J]. 中国医院药学杂志, 2018, 38(16):1747-1749.
    [2] 方欢, 曾宏辉, 方忠宏, 等. 临床常见和重要的药物与药物间相互作用[J]. 中国医院用药评价与分析, 2013, 13(3):283-286.
    [3] MORIYAMA B, OBENG A O, BARBARINO J, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelin-es for CYP2C19 and voriconazole therapy[J]. Clin Pharmacol Ther,2017,102(1):45-51. doi:  10.1002/cpt.583
    [4] 王亚妮. 异基因造血干细胞移植患者环孢素A和伏立康唑的治疗药物监测[J]. 宁夏:宁夏医科大学, 2020. doi:  10.27258/d.cnki.gnxyc.2020.000051
    [5] ULLMANN A J, AGUADO J M, ARIKAN-AKDAGLI S, et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline[J]. Clin Microbiol Infect, 2018, 24(Suppl 1): e1-e38.
    [6] CHEN K, ZHANG X L, KE X Y, et al. Individualized medication of voriconazole: a practice guideline of the division of therapeutic drug monitoring, Chinese pharmacological society[J]. Ther Drug Monit,2018,40(6):663-674. doi:  10.1097/FTD.0000000000000561
    [7] DOLTON M J, MCLACHLAN A J. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity[J]. Int J Antimicrob Agents,2014,44(3):183-193. doi:  10.1016/j.ijantimicag.2014.05.019
    [8] MELLINGHOFF S C, PANSE J, ALAKEL N, et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO)[J]. Ann Hematol,2018,97(2):197-207. doi:  10.1007/s00277-017-3196-2
    [9] 孙鲁宁, 吴春勇, 赵舜波, 等. 药物对人肝CYP450酶诱导和抑制作用体外评价体系的建立与验证[J]. 药学学报, 2017, 52(12):1924-1932.
    [10] 吴劲东, 仇锦春, 张永. 环孢素联用伏立康唑致再生障碍性贫血患儿血压持续升高的药学监护[J]. 医药导报, 2017, 36(12):1419-1421.
    [11] ROMERO A J, POGAMP P L, NILSSON L G, et al. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients[J]. Clin Pharmacol Ther,2002,71(4):226-234. doi:  10.1067/mcp.2002.121911
    [12] MASOUMI H T, HADJIBABAIE M, VAEZI M, et al. Evaluation of the interaction of intravenous and oral voriconazole with oral cyclosporine in Iranian HSCT patients[J]. J Res Pharm Pract,2017,6(2):77-82. doi:  10.4103/jrpp.JRPP_16_163
  • [1] 张俊丽, 李媛媛, 尹静, 杨鸿源, 白耀武.  咪达唑仑调节PINK1/PARKIN信号通路对缺血性脑卒中大鼠神经元损伤的影响 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405024
    [2] 张强, 李静, 刘越, 储晓琴.  基于网络药理学与分子对接技术研究制痂酊治疗Ⅱ度烧伤的作用机制 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202307014
    [3] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [4] 李锐, 张倩倩, 王瑞冬, 高小峰.  国家集中带量采购政策下样本医院良性前列腺增生治疗药物使用情况分析 . 药学实践与服务, 2025, 43(1): 41-46. doi: 10.12206/j.issn.2097-2024.202408031
    [5] 詹济华, 颜滢.  低蛋白血症对头孢哌酮血药浓度的影响 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202309040
    [6] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
    [7] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 457-460, 502. doi: 10.12206/j.issn.2097-2024.202405059
    [8] 杨凤艳, 张月, 陈恩贤, 缪雪蓉, 魏凯.  瑞马唑仑临床应用研究进展 . 药学实践与服务, 2024, 42(9): 365-374. doi: 10.12206/j.issn.2097-2024.202405026
    [9] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [10] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [11] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [12] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [13] 何亚伦, 祁智, 常杰.  消胀通便膏在晚期肝癌患者阿片类药物相关性便秘中的应用研究 . 药学实践与服务, 2024, 42(12): 520-523. doi: 10.12206/j.issn.2097-2024.202309009
    [14] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [15] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [16] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [17] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [18] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [19] 石晓萍, 吕迁洲, 李晓宇, 许青.  泊沙康唑对比伏立康唑经验治疗或诊断驱动治疗免疫功能低下患者侵袭性霉菌病的成本-效果分析 . 药学实践与服务, 2024, 42(12): 512-519. doi: 10.12206/j.issn.2097-2024.202401050
    [20] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
  • 加载中
图(3)
计量
  • 文章访问数:  4703
  • HTML全文浏览量:  1762
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2022-03-16
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2022-05-25

异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用

doi: 10.12206/j.issn.1006-0111.202111056
    基金项目:  甘肃省自然科学基金(20JR10RA005)
    作者简介:

    王亚妮,硕士研究生,主管药师,研究方向:临床药学,Email:wangyani9196@163.com

    通讯作者: 任 俊,硕士,副主任药师,研究方向:临床药学,Email:819149226@qq.com
  • 中图分类号: R969.4

摘要:   目的   分析异基因造血干细胞移植(Allo-HSCT)患者,静脉滴注伏立康唑(VRZ)与环孢素A(CsA)后的药物相互作用(DDI),为临床精准药物治疗提供依据。  方法  进行一项患者自身对照研究,根据纳入排除标准,收集2019年1月—12月在某院进行Allo-HSCT的患者,采用LC-MS/MS法测定术前CsA给药后3~5 d的血药浓度2次,测定术后VRZ给药5~7 d后,CsA和VRZ同一时间的血药浓度2次,分别求其给药前后CsA、VRZ血药浓度的平均值。使用SPSS 20.0对VRZ给药前后CsA标准化血药浓度(C/D)的差异及VRZ血药浓度对CsA的C/D变化进行统计分析。  结果  共纳入Allo-HSCT患者15例,用Wilcoxon符号秩和检验比较给药VRZ前后,CsA的C/D中位数变化,有显著性差异(P<0.001)。对VRZ血药浓度与CsA的C/D比值增幅进行Spearman相关性分析两者无显著相关性(ρ=−0.273,P=0.32)。  结论  CsA与VRZ之间存在明显的药物相互作用(DDI),VRZ使CsA血药浓度显著升高,但VRZ与CsA之间的DDI程度大小与VRZ血药浓度无关,可能与患者个体差异有关。

English Abstract

王亚妮, 吴迪, 饶志, 李茂星, 葸瑞, 任俊. 异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用[J]. 药学实践与服务, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
引用本文: 王亚妮, 吴迪, 饶志, 李茂星, 葸瑞, 任俊. 异基因造血干细胞移植患者体内环孢素A和伏立康唑的相互作用[J]. 药学实践与服务, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
WANG Yani, WU Di, RAO Zhi, LI Maoxing, XI Rui, REN Jun. Interaction between cyclosporine A and voriconazole in patients with allogeneic hematopoietic stem cell transplantation[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
Citation: WANG Yani, WU Di, RAO Zhi, LI Maoxing, XI Rui, REN Jun. Interaction between cyclosporine A and voriconazole in patients with allogeneic hematopoietic stem cell transplantation[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 277-280. doi: 10.12206/j.issn.1006-0111.202111056
  • 药物不良反应已成为一个公共卫生问题,其中约30%为药物相互作用(drug-drug interactions,DDIs)所导致[1]。DDI指的是2种以上的药物同时或先后使用时,其中一种药物受到另一种药物的影响而发生理化性质、药动学和药效学明显改变。有文献报道,药动学相互作用发生率最高,约占DDIs的40%[2]。已有研究表明,环孢素A(cyclosporineA,CsA)和伏立康唑(voriconazole,VRZ)之间存在着一定的DDI。VRZ体内呈非线性药动学,主要通过肝脏CYP2C19代谢,其次通过CYP2C9和CYP3A4代谢,CYP2C19呈现基因多态性,个体间的药物代谢和相互作用存在很大差异[3]。同时,CYP3A4是CsA的主要代谢酶,而VRZ对CYP3A4代谢酶具有抑制作用。因此,当CsA和VRZ两药联用时,CsA的代谢会受到抑制,血药浓度升高、体内药物蓄积,导致肝肾毒性等不良反应事件的发生。对于临床医生,如何充分认识和管理好DDI具有较大的挑战性。本研究将在Allo-HSCT患者中,通过自身前后对照研究,探讨VRZ血药浓度与CsA血药浓度的升高幅度是否有相关性,CsA与VRZ相互作用是否存在个体性差异,以指导临床对CsA和VRZ的合理使用。本研究已通过联勤保障部队第九四〇医院伦理委员会审批(2019KYLL039),并签署患者知情同意书。

    • 患者来源:收集2019年1月—12月在某院造血干细胞移植中心进行Allo-HSCT的患者15例(男性9例,女性6例),平均年龄25.4岁,体重(54.6±12.49)kg,其中再生障碍性贫血8例,急性髓系白血病3例,急性淋巴细胞白血病4例。

      纳入标准:Allo-HSCT的患者,在术前已接受了CsA,初始剂量为2.5 mg/(kg·d),分2次,静脉滴注预防移植物抗宿主病(GVHD)。术后第2 天开始静脉滴注VRZ(200 mg,每日2次)预防侵袭性曲霉菌感染(IA)。

      排除标准:①肾功能或肝功能不正常;②正在使用其他药物与CsA或VRZ发生中度至重度DDI。

      给药方案:CsA(批号:H20150095,250 mg,诺华制药)初始剂量为2.5 mg/(kg·d),分2次,静脉滴注,待患者消化道耐受后,将静脉用药改为口服。VRZ(批号:H20181102,0.2 g,美国辉瑞)预防给药剂量为200 mg,每日2次,静脉滴注。本研究中CsA和VRZ均为静脉滴注,且在研究期间CsA给药剂量未做调整。

      血样采集和监测次数:于次日早晨空腹采静脉血2.0~3.0 ml,置抗凝管(EATA)中,摇匀、送检。采用HPLC-MS/MS方法监测谷浓度[4]。测定CsA给药后3~5 d(即给VRZ前1~3 d,CsA达稳态血药浓度)的血药浓度2次,术后测定VRZ 用药5~7 d时(VRZ达稳态血药浓度),CsA和VRZ同一时间的血药浓度2次。

      CsA标准化血药浓度[(dose adjusted blood concentration,C/D)(ng/ml)/(mg/kg)]作为反映药物剂量和浓度的参数。为了方便研究CsA血药浓度的变化,计算CsA的C/D比值。

    • 数据应用SPSS 20.0软件进行统计分析,不服从正态分布的计量数据以中位数(四分位间距),即MQ25,Q75)表示,计数及等级资料以构成比(%)表示。采用Wilcoxon符号秩和检验,比较使用VRZ前后CsA的C/D比值的差异。计算VRZ血药浓度和CsA的C/D值之间的Spearman秩相关系数,评估CsA的C/D比值升高与VRZ血药浓度的相关性,P<0.05表示具有显著性差异。

    • 本研究在2019年1月—12月期间共收集15例患者,CsA测定为60例/次,VRZ测定为30例/次。

      移植前,CsA测定30例/次,血药浓度中位数160.35(106.65,196.85)ng/ml,23例/次测定结果低于200 ng/ml,7例/次测定结果在200~400 ng/ml的范围内;移植后,加用VRZ后,测定30例/次,血药浓度中位数为308.75(212.80,360.37)ng/ml,22例/次测定结果在200~400 ng/ml,5例/次未达到200 ng/ml,3例/次超过400 ng/ml。两药联用后,CsA稳态血药浓度升高了92.54%。合用VRZ后,CsA测定结果在有效治疗范围内的例/次达73.30%(22/30),仅有26.67% (8/30) 例/次的测定结果不在有效治疗范围。而合用前仅有23.30% (7/30) 例/次的测定结果在有效治疗范围内。结果见图1

      图  1  CsA血药浓度分布

      VRZ的测定结果:移植后测定30例/次,血药浓度中位数1.74(0.48,3.70) μg/ml,1例/次测定结果低于0.5 μg/ml,占3.33%,6例/次测定结果在0.5~0.1 μg/ml,占20.00%,14例/次测定结果在1.0~2.0 μg/ml,占46.67%,9例/次测定结果在2.0~5.0 μg/ml,占30.00%。15例患者VRZ平均血药浓度变异系数(CV)为52.60%。

    • 15例患者在开始使用VRZ后CsA血药浓度均升高。使用VRZ前,CsA的C/D比值中位数为64.14(25.35,112.36)(ng·/ml)/(mg/kg),使用VRZ后,中位数为123.5(45.88,178.24)(ng/ml)/(mg/kg),进行配对设计非参数检验(Wilcoxon符号秩和检验),两者之间存在显著性差异(P<0.05),可用箱型图表示,见图2

      图  2  伏立康唑给药前后环孢素A的浓度/剂量(C/D)比值

    • 15例患者测定结果显示,VRZ血药浓度的中位数为1.74(0.48,3.70)μg/ml,CsA的C/D比值增幅中位数为82.61%(8.00%,190.00%),进行Spearman相关性分析得ρ=−0.273,P=0.32,即VRZ血药浓度与CsA的C/D比值升高无显著相关,见图3

      图  3  伏立康唑血药浓度与CsA的C/D比值增幅的关系

    • 本研究结果表明,在Allo-HSCT患者中,CsA和VRZ两药联用后,CsA稳态血药浓度升高了92.54%,测定结果在有效治疗范围内达73.30%,比合用前的23.30%提高了214.59%。但是10.00%的测定结果超出治疗范围,容易发生肝肾毒性。

      EBMT-ELN工作组的标准化实践建议中[5],预防GVHD 的CsA静脉给药剂量为3 mg/(kg·d),分2次给药。在我们的移植中心,CsA给药剂量为2.5 mg/(kg·d),分2次给药,合用VRZ后,充分利用了DDI,使得大部分CsA血药浓度达到治疗范围。这样降低了过高浓度造成肝肾毒性发生的几率,体现了临床医生用药的合理性。

      VRZ的测定结果中,VRZ血药浓度个体变异系数CV为52.60%,充分说明伏立康唑的个体化差异大。VRZ个体化用药:中国药理学学会治疗性药物监测学部实践指南治疗剂量血药浓度要求为0.5~5.0 μg/ml[6],欧美指南和一些研究大多推荐1.0~5.5μg/ml[7]。关于预防用药的血药浓度范围国内没有明确的指南和共识。德国血液肿瘤学会感染性疾病工作组在《预防血液系统恶性肿瘤患者侵袭性真菌感染的推荐意见》中推荐VRZ用于预防真菌感染时浓度范围为1~2 μg/ml[8]。在本研究中,给予预防剂量VRZ,有46.76%的测定结果在1~2 μg/ml内,23.30%的测定结果<1 μg/ml,30.00%的测定结果>2 μg/ml,这表明德国血液肿瘤学会提出的预防剂量的血药浓度,有可能也适用于中国人群。

    • 细胞色素P450酶(CYP450)是微粒体混合功能氧化酶系中最重要的氧化酶,在体内几乎90%的药物由CYP450代谢。CYP450酶诱导和抑制所致的代谢性DDI能显著改变联用药物的药动学、药效学及毒副作用[9]。VRZ是一种广谱的三唑类抗真菌药物,用于预防和治疗器官移植患者中曲霉菌感染,它主要是通过肝脏CYP2C19、CYP2C9和CYP3A4进行代谢,有高度可变的药动学,影响治疗效果和安全性。在体内,VRZ也是代谢酶CYP3A4的强抑制剂。CsA经CYP3A4介导的生物转化而消除,两者联用会引起CsA的清除率明显下降,半衰期明显延长,最终导致CsA血药浓度上升[10]

      在之前的几项研究中,VRZ对CsA血药浓度的影响已进行了评估。在一项随机、双盲、安慰剂对照的交叉研究中,Romero等[11]对14例同时接受口服VRZ肾移植术后患者进行了研究,CsA合用VRZ后未调整CsA剂量时,CsA药时曲线下面积(AUC)是合用前的1.7倍;CsA血药峰浓度(cmax)是合用前的1.13倍。他们建议在开始VRZ治疗时,所有患者CsA的剂量减少50%,但是此研究未评估患者个体间差异。

      本研究结果证实静脉滴注VRZ与CsA合用后,两者血药浓度之间存在相互影响;VRZ与CsA之间的DDI程度大小存在很大的差异[C/D比值增幅中位数82.61(8.00%,190.00%)]。

      Dresser等 [12]对伊朗Allo-HSCT患者研究表明:CsA的C/D比值增幅与VRZ血药浓度呈显著相关性(ρ=0.482,P=0.046),但是亚组分析中口服VRZ(ρ=0.165,P=0.059),静脉(ρ=0.482,P=0.058),没有显著性差异。Kikuchi等[11]研究表明,口服CsA的C/D比值增幅与口服VRZ血药浓度不呈显著相关性。本研究同样表明静脉滴注CsA的C/D比值增幅与静脉滴注VRZ血药浓度不呈显著相关性(ρ=-0.273,P=0.32)。

      综上所述,在Allo-HSCT中,移植患者用药复杂,CsA与VRZ之间存在DDI,VRZ使CsA血药浓度显著升高,但VRZ血药浓度与CsA血药浓度升高幅度无显著相关,表明VRZ与CsA之间的DDI程度大小存在个体差异。同时,VRZ本身在体内代谢、清除受CYP2C19基因多态性、药物相互作用等因素影响,呈非线性药动学特点,个体间差异大,导致通过剂量估计给药后的血药浓度不准确。这就体现了监测CsA与VRZ两者血药浓度并做精细化药物剂量调整尤为重要。

参考文献 (12)

目录

/

返回文章
返回