留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究

苏晓薇 张华林 张宁 杨犇 许维恒 张俊平

苏晓薇, 张华林, 张宁, 杨犇, 许维恒, 张俊平. 基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究[J]. 药学实践与服务, 2021, 39(6): 515-519, 537. doi: 10.12206/j.issn.1006-0111.202105137
引用本文: 苏晓薇, 张华林, 张宁, 杨犇, 许维恒, 张俊平. 基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究[J]. 药学实践与服务, 2021, 39(6): 515-519, 537. doi: 10.12206/j.issn.1006-0111.202105137
ZHANG Lianqing, LUO Yan, YANG Ti, YAO Jiachen, LI Wenyan. Mining and research on the adverse event signal of exenatide microspheres based on FAERS database[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
Citation: SU Xiaowei, ZHANG Hualin, ZHANG Ning, YANG Ben, XU Weiheng, ZHANG Junping. Screening small molecular inhibitors of STAT3 based on surface plasmon resonance technology[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(6): 515-519, 537. doi: 10.12206/j.issn.1006-0111.202105137

基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究

doi: 10.12206/j.issn.1006-0111.202105137
基金项目: 国家自然科学基金-面上项目(81770604)
详细信息
    作者简介:

    苏晓薇,硕士研究生,研究方向:中药药理与毒理,Email: 1451749304@qq.com

    通讯作者: 张俊平,博士生导师,研究方向:中药药理与毒理,Email:jpzhang08@163.com
  • 中图分类号: R96

Screening small molecular inhibitors of STAT3 based on surface plasmon resonance technology

  • 摘要:   目的   基于表面等离子体共振(SPR)技术,筛选能与信号转导和转录激活因子3(STAT3)特异性结合并抑制其活性的小分子化合物。  方法   使用基于SPR技术的Biacore T200生物分子互作分析系统,在最优pH富集条件下将纯化蛋白STAT3偶联到SPR系统的CM5芯片上,从50个中药单体中筛选出能够与STAT3结合且响应值较高的化合物,并对其结合特异性进行确认,然后运用生物学相关实验确证筛选所得化合物对STAT3的抑制作用,最后采用分子对接技术拟合化合物与STAT3的结合模式,明确其可能的作用位点。  结果   初步筛选获得10多个高响应的候选分子,通过动力学测定发现其中仅有1个分子芹黄素显示特异性结合。Western-blot实验结果表明,芹黄素能够剂量依赖地抑制STAT3的磷酸化;双荧光素酶报告基因结果显示,芹黄素能够剂量依赖地抑制IL-6诱导的STAT3的转录活性。分子对接结果表明,芹黄素与STAT3蛋白的SH2结构域结合,与关键残基Glu638、Gln644、Gly656、Lys658形成氢键相互作用,与Tyr657残基形成π-π相互作用。  结论   基于SPR技术筛选,发现芹黄素是STAT3的抑制剂。
  • 隐丹参酮(CTS)是中药丹参的有效成分之一,国内外研究证明CTS具有抗肿瘤、抗炎、神经保护、心血管保护、抗纤维化和调节代谢紊乱等药理特性,具有广阔的临床应用前景。抗肿瘤作用是近年来隐丹参酮药理活性研究的热点问题之一[1]。隐丹参酮对肺癌、肝胆癌、胃癌、食管癌、乳腺癌、前列腺癌、胰腺癌、结直肠癌、骨肉瘤癌、黑色素瘤、横纹肌瘤、食管鳞状癌等多种恶性肿瘤表现出一定的抑制活性,其抗肿瘤机理包括抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,调节免疫以及抑制包括STAT3在内的多种信号通路[2-4]。由于CTS中等强度的药理活性和选择性,近年来研究人员对CTS进行了大量结构修饰,期望获得靶点明确且药理活性更强的CTS衍生物,从而开发并应用于临床治疗。本文就隐丹参酮及其衍生物在抗肿瘤方面的作用及其机制进行综述。

    癌细胞的主要特点是具有无限的增殖能力。研究表明,CTS可以抑制多种肿瘤细胞增殖,包括胰腺癌细胞BxPC-3、慢性髓性白血病细胞K562/ADR、胶质瘤细胞U87、人卵巢癌细胞Hey、前列腺癌细胞DU145、乳腺癌细胞MCF7、食管鳞状细胞癌ESCC等[5]

    细胞凋亡又称细胞程序性死亡,对于维持组织稳态和消除不需要或受损细胞起重要作用。研究发现,CTS可以诱导多种肿瘤细胞凋亡,包括骨髓瘤细胞U266、人结肠癌细胞系SW620 Ad300和HCT116、人胃癌细胞MKN-45、肝癌细胞Hepa1-6、非小细胞肺癌细胞A549 和H460 、黑色素瘤细胞A375、横纹肌肉瘤细胞Rh30等[6]

    高侵袭性和转移是癌细胞恶性特征,转移是癌症死亡的主要原因。因此,抑制癌细胞转移能有效降低癌症死亡率。研究发现,CTS能够抑制卵巢癌细胞A2780的迁移和侵袭[7]。此外,CTS还可以抑制食管癌细胞EC109、膀胱癌细胞T24、人舌鳞癌细胞CAL27、小鼠结肠癌细胞CT26等多种肿瘤细胞的迁移和侵袭[5]

    隐丹参酮不仅能够直接抑制多种肿瘤细胞的生长,还可以诱导机体产生抗肿瘤免疫反应,从而间接发挥抗肿瘤效应。研究发现,隐丹参酮能够通过增加CD4+T细胞的细胞毒作用,抑制人非小细胞肺癌H446细胞和乳腺癌MCF7细胞的生长[8]。此外,隐丹参酮还可以通过诱导小鼠树突状细胞成熟,促进抗原提呈功能,进而诱导T细胞活化增殖,抑制Lewis肺癌细胞的增殖[9]。肿瘤相关巨噬细胞 (TAM) 是肿瘤组织中浸润的巨噬细胞,具有异质性,可分为M1和M2表型。M2表型的TAM能够促进肿瘤生长和转移,相反,M1表型则具有肿瘤抑制和促炎特性。研究发现,隐丹参酮和PD-L1联合治疗能够诱导巨噬细胞向M1极化,从而抑制小鼠肝癌Hepa1-6移植瘤的生长[10]

    耐药是导致肿瘤复发和治疗失败的主要原因。研究表明,CTS能够逆转慢性骨髓性白血病细胞K562对伊马替尼的耐药性[11],改善A549细胞对顺铂的耐药性[12]。此外,CTS还可以逆转P-糖蛋白(p-gp)过表达的结肠癌细胞SW620 Ad300对多柔比星和伊立替康的多重耐药[13]

    除了具有以上活性之外,CTS还可以与其他不同抗癌药物或细胞因子协同发挥抗肿瘤作用。例如,CTS和紫杉醇的联合用药比单独用药更能有效诱导舌鳞状细胞癌CAL27和SCC-9细胞的凋亡[14]。新近研究发现,CTS与小剂量的抗PD-L1抗体合用对小鼠Lewis 肺癌的生长抑制作用明显优于CTS单独应用[9]

    自噬,即Ⅱ型程序性细胞死亡,作为凋亡之外的另一种可以杀死细胞的途径,是一种抑制癌细胞生长的新方法。研究显示,CTS可通过诱导结肠癌SW620 Ad300细胞和A549细胞自噬促进细胞死亡[15-16]

    CTS抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,以及调节免疫等作用的机制十分广泛,涉及靶点STAT3、酪氨酸蛋白磷酸酶SHP2、DNA拓扑异构酶和信号通路磷酸酰肌醇3-激酶(PI3K)/丝氨酸/苏氨酸激酶Akt等。

    STAT3由Janus激酶(JAKs)激活,参与肿瘤增殖、凋亡、血管生成及免疫逃逸等。STAT3在大多数恶性肿瘤中被组成性激活,异常的STAT3信号传导是肿瘤恶性进展的重要过程。当705位酪氨酸残基磷酸化后,STAT3被激活,单体STAT3通过其SH2结构域形成二聚体,并从细胞质转移到细胞核中,调节其靶基因的表达,例如,上调cyclin D1、survivin、Mcl-1、MYC、BCL-XL表达,下调 p53表达,促进肿瘤细胞增殖和存活;上调MMP2/9、Twist1、Vimentin表达,促进肿瘤转移;上调TGF-β、IL-6/10、PD-1、PD-L1、VEGF表达,下调CD80/86、MHCII、TNF、IL-12、CCL5、CXCL10等表达,抑制肿瘤微环境免疫功能[17]。研究发现,CTS能够直接与STAT3的SH2结构域结合,特异性抑制STAT3 Tyr705的磷酸化,抑制STAT3二聚化[18-19],相比之下,姜黄素还能抑制Jak2的表达[20]。在人胰腺癌BxPC-3细胞中,CTS能够抑制BxPC-3细胞的STAT3信号通路进而抑制细胞增殖,诱导细胞凋亡,达到抗肿瘤的作用[21]。另外,CTS作为p-STAT3抑制剂,能够有效阻断IL-6介导的STAT3活化,抑制肿瘤增殖,逆转BCR-ABL激酶非依赖性耐药途径[11]。此外,CTS和紫杉醇联合治疗能够有效地抑制舌鳞状癌TSCC细胞增殖和迁移,其作用机制同样与抑制STAT3信号通路相关[14]。沉默信息转录调控因子3(SIRT3)是一种蛋白质去乙酰化酶,参与癌症、心血管、神经系统等疾病的发展过程。研究发现CTS能够通过抑制STAT3/SIRT3 信号通路抑制人卵巢癌A2780 细胞增殖[22]。 上述研究表明,抑制STAT3信号通路对于CTS抗肿瘤至关重要,且CTS是一种特异性的STAT3抑制剂。

    含Src同源2结构域蛋白酪氨酸磷酸酶(SHP2)由基因PTPN11编码,PTPN11突变引起SHP2催化活性异常增加。研究发现,肺癌、结肠癌、黑色素瘤、神经母细胞瘤、肝癌和急性髓性白血病等病人均发现有PTPN11突变[23]。SHP2是一种非受体蛋白酪氨酸磷酸酶,参与Ras-Erk、PI3K-Akt、Jak-Stat和NF-κB多条信号通路传导,调控细胞的增殖、迁移和凋亡等过程[24]。研究证明,CTS能与SHP2直接结合,是一个混合型蛋白酪氨酸磷酸酶抑制剂,抑制SHP2 的IC50为22.50μmol/L,抑制SHP1的IC50为39.50μmol/L。用SHP2 siRNA敲减Hela细胞中SHP2后,CTS抑制Hela细胞生长的敏感性降低,提示SHP2是CTS的一个靶点,但是,CTS仍然可以进一步抑制SHP2敲减细胞生长,说明CTS还有其它作用靶点[25]。此外,有研究发现,CTS能够上调胶质瘤细胞 U87 SHP2蛋白酪氨酸磷酸酶活性,抑制STAT3 Tyr705的磷酸化,从而在体内外表现出抑制恶性胶质瘤活性[26]

    DNA拓扑异构酶 (topos),包括DNA拓扑异构酶1(topo1)和DNA拓扑异构酶2(topo2),其中topo2因其在有丝分裂中的关键作用被认为是抗癌治疗的重要靶点[27]。研究表明,CTS能够显著降低前列腺癌PC3细胞中topo 2a的mRNA、蛋白和酶活性水平,并且在裸鼠异种移植模型中表现出良好的抗肿瘤作用[28]

    活性氧与肿瘤的发展密切相关,其过度产生可诱导多种生物学效应,包括抑制细胞增殖、诱导细胞凋亡和自噬等[29]。研究发现,CTS能够促进胃癌MKN-28 细胞ROS的累积,通过调控MAPK和AKT信号通路诱导G2/M周期阻滞[30];通过ROS-线粒体途径,上调cleaved caspases-3、促凋亡蛋白Bax和下调抗凋亡蛋白Bcl-2,从而诱导黑色素瘤细胞凋亡[31];诱导横纹肌肉瘤Rh30细胞ROS产生,激活JNK/p-38,抑制Erk1/2,导致细胞凋亡[32];刺激SW620 Ad300细胞中的ROS产生,诱导p38 MAPK激活,导致NF-κB从细胞质转移到细胞核中,最终导致自噬发生[15];刺激HepG2和MCF-7细胞产生ROS,激活内质网(ER)应激,增强不同抗癌药物或细胞因子(Fas/Apo-1、TNF-α、顺铂、依托泊苷或5-FU)诱导的细胞凋亡[33]

    雄激素受体(AR)和雌激素受体(ER)分别是治疗前列腺癌PCa和乳腺癌的主要靶点。研究发现CTS可以通过抑制AR二聚化有效抑制AR活性,从而抑制AR+ PCa细胞的生长[34];在异种移植动物模型中,CTS可以有效抑制人前列腺癌CWR22Rv1细胞的生长和AR靶基因的表达[35]。此外,CTS还能够抑制乳腺癌细胞的生长,通过竞争性地结合ERα抑制E2诱导的ER转录活性和ER靶基因的表达[36];同时,CTS可以有效地抑制体内异种移植瘤模型中ER信号,发挥抗肿瘤作用[37]

    磷酸肌醇3-激酶(PI3K)/蛋白质丝氨酸苏氨酸激酶(Akt)信号通路参与肿瘤的发生、生长、存活和转移。有研究发现CTS可抑制PI3K/AKT信号通路,增加caspase-3、caspase-9、PARP和Bax的表达,降低Bcl-2、survivin、细胞凋亡抑制蛋白的表达,诱导非小细胞肺癌细胞的凋亡[38-39]。酪氨酸激酶胰岛素生长因子1受体(IGF-1R)在肿瘤细胞的生长、分化和进展中起关键的作用。研究表明,CTS能够通过下调IGF-1R/PI3K/Akt信号通路抑制人肺癌细胞的增殖[40]。此外,有文献报导CTS可以通过调节PI3K/Akt/mTOR信号,抑制结肠癌CT26细胞的侵袭[41]。在裸鼠异种移植实验中,CTS能够显著抑制小鼠体内异种移植物的生长,其作用机制与抑制PI3K/AKT/NF-κB信号通路有关[42]。以上研究表明PI3K/AKT信号通路可能是CTS抗肿瘤的有效信号通路之一。

    CTS虽然具有广谱的抗肿瘤活性,但是其药理作用中等,疏水性强且难吸收,口服生物利用度只有2.1%,这些缺点严重阻碍了其开发和应用[43]。近年来,针对CTS存在的问题,人们尝试对CTS进行结构改造,期望获得生物活性高、水溶性好的化合物。刘航[44]等基于CTS是一种STAT3抑制剂,通过对CTS及其骨架类似物进行修饰,设计合成了CTS衍生物62个,其中新化合物46个,通过报告基因法检测发现有27个新化合物对STAT3转录抑制效果优于CTS,IC50最低0.5976 μmol/L。Wang等基于STAT3的药物设计策略,设计合成了一种亲和力和抑制活性更强的新型CTS衍生物LYW-6,该化合物与STAT3结合解离常数Kd约为6.6μmol/L,能够显著抑制STAT3磷酸化、二聚化、核转位以及转录活性。在细胞水平上,LYW-6能选择性抑制高STAT3活性的结肠癌细胞增殖、迁移,促进凋亡,体内可抑制结肠癌的生长和转移,是一个具有开发前景的抗肿瘤活性化合物[45]。为了改善CTS的水溶性,Xu等合成了几种CTS的钠盐衍生物,结果发现这些衍生物比CTS更易溶解,同时保留了CTS的生物活性,其中钠盐衍生物PTS33可以有效地抑制二氢睾酮DHT诱导AR反式激活和PCa细胞生长[46]

    CTS具有广谱的抗肿瘤活性,该活性与抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,逆转耐药性,诱导自噬等作用相关。除直接作用于肿瘤细胞外,CTS还可以通过增强CD4+T细胞的细胞毒作用、诱导DC细胞成熟和促使巨噬细胞M1型极化,间接杀伤肿瘤细胞。分子机制研究表明,CTS可直接结合STAT3和SHP2,有效调节JAK/STAT3、NF-κB、PI3K/AKT和IGF-1R等信号通路发挥抗肿瘤作用。隐丹参酮特异性抑制STAT3信号通路,而不抑制STAT家族中的其他蛋白,是其一大特点。因为尽管其他天然产物也有抗肿瘤作用,但不是特异性STAT3抑制剂,例如姜黄素,是一种STAT抑制剂,但在治疗24 h后降低了STAT3的表达。虽然CTS表现出良好的药理活性,但水溶性差和生物利用度低等问题限制了其广泛应用。因此,基于靶点STAT3,以CTS作为先导化合物,设计并合成一系列CTS衍生物,有望开发出新型STAT3抑制剂用于癌症治疗。

  • 图  1  不同pH条件下STAT3芯片富集情况

    图  2  Biacore系统STAT3蛋白偶联情况

    注:a段表示流动相基线水平稳定;b段表示EDC/NHS活化CM5芯片表面的过程;c段为流动相清洗活化试剂;d段为STAT3蛋白固定到芯片表面的过程;e段代表流动相清洗未结合到芯片表面而残留的STAT3蛋白;f段代表乙醇胺封闭芯片表面多余羧基过程;g段为流动相清洗剩余乙醇胺的过程。

    图  3  50种中药单体在Biacore系统中与STAT3蛋白结合响应的情况

    图  4  特异性结合动力学曲线

    A.不同浓度芹黄素与STAT3蛋白结合的传感器图;B.不同浓度芹黄素与STAT3蛋白结合的拟合曲线

    图  5  Western-blot 检测芹黄素抑制STAT3磷酸化效果

    图  6  双荧光素酶报告基因检测芹黄素抑制STAT3活化的能力

    * P<0.05,与模型组比较;# P<0.05,与空白组比较

    图  7  芹菜素与STAT3蛋白(PDB: 6NUQ)的结合模式拟合图

    A.芹黄素结合于STAT3蛋白的SH2结构域;B.芹黄素与STAT3蛋白关键残基的作用简图

  • [1] AKIRA S, NISHIO Y, INOUE M, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway[J]. Cell,1994,77(1):63-71. doi:  10.1016/0092-8674(94)90235-6
    [2] YUAN Z L, GUAN Y J, WANG L, et al. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells[J]. Mol Cell Biol,2004,24(21):9390-9400. doi:  10.1128/MCB.24.21.9390-9400.2004
    [3] SRIVASTAVA J, DIGIOVANNI J. Non-canonical Stat3 signaling in cancer[J]. Mol Carcinog,2016,55(12):1889-1898. doi:  10.1002/mc.22438
    [4] TKACH M, ROSEMBLIT C, RIVAS M A, et al. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth[J]. Endocr Relat Cancer,2013,20(2):197-212. doi:  10.1530/ERC-12-0194
    [5] SILVA C M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis[J]. Oncogene,2004,23(48):8017-8023. doi:  10.1038/sj.onc.1208159
    [6] LIM C P, CAO X M. Structure, function, and regulation of STAT proteins[J]. Mol Biosyst,2006,2(11):536-550. doi:  10.1039/b606246f
    [7] 岳晓虹, 叶霁青, 孙丽萍. 信号转导与转录激活因子的生物学功能及相关疾病[J]. 中国药科大学学报, 2016, 47(4):404-411. doi:  10.11665/j.issn.1000-5048.20160404
    [8] XU L, QIU S, YANG L, et al. Aminocyanopyridines as anti-lung cancer agents by inhibiting the STAT3 pathway[J]. Mol Carcinog,2019,58(8):1512-1525. doi:  10.1002/mc.23038
    [9] PILIARIK M, VAISOCHEROVÁ H, HOMOLA J. Surface plasmon resonance biosensing[J]. Methods Mol Biol Clifton N J,2009,503:65-88.
    [10] 陈越, 季鸣, 陈晓光. STAT3与肿瘤关系的研究进展[J]. 药学学报, 2017, 52(9):1351-1358.
    [11] ZOU S, TONG Q, LIU B, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer,2020,19(1):145. doi:  10.1186/s12943-020-01258-7
    [12] CHAI E Z, SHANMUGAM M K, ARFUSO F, et al. Targeting transcription factor STAT3 for cancer prevention and therapy[J]. Pharmacol Ther,2016,162:86-97. doi:  10.1016/j.pharmthera.2015.10.004
    [13] SHUKLA S, GUPTA S. Apigenin: a promising molecule for cancer prevention[J]. Pharm Res,2010,27(6):962-978. doi:  10.1007/s11095-010-0089-7
    [14] IMRAN M, ASLAM GONDAL T, ATIF M, et al. Apigenin as an anticancer agent[J]. Phytother Res,2020,34(8):1812-1828. doi:  10.1002/ptr.6647
  • [1] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [2] 江冼芮, 段雅倩, 刘畅, 张成中.  淫羊藿中黄酮苷类化合物的群体感应抑制作用研究 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409060
    [3] 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平.  ANXA3基因及蛋白的研究进展 . 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
    [4] 姚小静, 计佩影, 陆峰, 施国荣, 傅翔.  表面增强拉曼光谱法快速测定尿液中曲马多的研究 . 药学实践与服务, 2025, 43(4): 185-189. doi: 10.12206/j.issn.2097-2024.202401072
    [5] 宋泽成, 马闪闪, 胡巧灵, 仲华, 王彦.  小檗碱与氟康唑合用抗氟康唑耐受白念珠菌的研究 . 药学实践与服务, 2025, 43(2): 87-91. doi: 10.12206/j.issn.2097-2024.202409047
    [6] 张强, 李静, 刘越, 储晓琴.  基于网络药理学与分子对接技术研究制痂酊治疗Ⅱ度烧伤的作用机制 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202307014
    [7] 吴海韵, 杨甜, 张弛, 梁文仪, 苏娟.  气相色谱-离子迁移谱技术在中药研究中的应用进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202409007
    [8] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [9] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [10] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [11] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [12] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [13] 张成中, 朱雪艳, 卜其涛, 王宏瑞, 黄宝康.  基于网络药理学与分子对接预测鸡骨草特征图谱研究 . 药学实践与服务, 2024, 42(8): 350-358. doi: 10.12206/j.issn.2097-2024.202303048
    [14] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [15] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [16] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [17] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [18] 王晓飞, 张颖, 顾佳钰, 胡馨儿, 张海, 曹岩.  表面等离子共振传感器的识别元件在医药领域中的研究应用进展 . 药学实践与服务, 2024, 42(): 1-9. doi: 10.12206/j.issn.2097-2024.202309014
    [19] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [20] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
  • 加载中
图(7)
计量
  • 文章访问数:  4191
  • HTML全文浏览量:  1914
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-10-25
  • 网络出版日期:  2021-12-27
  • 刊出日期:  2021-11-25

基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究

doi: 10.12206/j.issn.1006-0111.202105137
    基金项目:  国家自然科学基金-面上项目(81770604)
    作者简介:

    苏晓薇,硕士研究生,研究方向:中药药理与毒理,Email: 1451749304@qq.com

    通讯作者: 张俊平,博士生导师,研究方向:中药药理与毒理,Email:jpzhang08@163.com
  • 中图分类号: R96

摘要:   目的   基于表面等离子体共振(SPR)技术,筛选能与信号转导和转录激活因子3(STAT3)特异性结合并抑制其活性的小分子化合物。  方法   使用基于SPR技术的Biacore T200生物分子互作分析系统,在最优pH富集条件下将纯化蛋白STAT3偶联到SPR系统的CM5芯片上,从50个中药单体中筛选出能够与STAT3结合且响应值较高的化合物,并对其结合特异性进行确认,然后运用生物学相关实验确证筛选所得化合物对STAT3的抑制作用,最后采用分子对接技术拟合化合物与STAT3的结合模式,明确其可能的作用位点。  结果   初步筛选获得10多个高响应的候选分子,通过动力学测定发现其中仅有1个分子芹黄素显示特异性结合。Western-blot实验结果表明,芹黄素能够剂量依赖地抑制STAT3的磷酸化;双荧光素酶报告基因结果显示,芹黄素能够剂量依赖地抑制IL-6诱导的STAT3的转录活性。分子对接结果表明,芹黄素与STAT3蛋白的SH2结构域结合,与关键残基Glu638、Gln644、Gly656、Lys658形成氢键相互作用,与Tyr657残基形成π-π相互作用。  结论   基于SPR技术筛选,发现芹黄素是STAT3的抑制剂。

English Abstract

苏晓薇, 张华林, 张宁, 杨犇, 许维恒, 张俊平. 基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究[J]. 药学实践与服务, 2021, 39(6): 515-519, 537. doi: 10.12206/j.issn.1006-0111.202105137
引用本文: 苏晓薇, 张华林, 张宁, 杨犇, 许维恒, 张俊平. 基于表面等离子体共振技术筛选STAT3小分子抑制剂的研究[J]. 药学实践与服务, 2021, 39(6): 515-519, 537. doi: 10.12206/j.issn.1006-0111.202105137
ZHANG Lianqing, LUO Yan, YANG Ti, YAO Jiachen, LI Wenyan. Mining and research on the adverse event signal of exenatide microspheres based on FAERS database[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
Citation: SU Xiaowei, ZHANG Hualin, ZHANG Ning, YANG Ben, XU Weiheng, ZHANG Junping. Screening small molecular inhibitors of STAT3 based on surface plasmon resonance technology[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(6): 515-519, 537. doi: 10.12206/j.issn.1006-0111.202105137
  • STAT3是一种重要的转录因子,参与众多细胞因子和生长因子受体的信号转导,在细胞生长和细胞凋亡等多种细胞过程中发挥着关键作用[1-2]。STAT3的活化可以通过刺激白介素-6受体(IL-6R)、Janus酪氨酸激酶、BCR-ABL和SRC家族激酶等来启动[3]。STAT3经磷酸化活化后形成同源和异源二聚体,并易位至细胞核,发挥转录激活因子的作用[4-6]。目前,越来越多的证据显示,多种恶性肿瘤存在STAT3的过度激活,包括前列腺癌、肺癌、乳腺癌、皮肤癌和宫颈癌等,抑制STAT3的磷酸化成为一种很有前景的治疗策略。此外,STAT3还与肝损伤、纤维化、风湿性关节炎、心肌缺血等疾病有关[7]。尽管一些STAT3抑制剂正在进行临床试验,但迄今为止尚未批准STAT3抑制剂用于癌症的治疗。因此,仍然迫切需要发现潜在的STAT3抑制剂[8]

    SPR是一种光学生物传感技术,该技术利用光学测量的折射率变化,分析样品与固定在SPR传感器上的分子的结合情况。因其无需标记样品,具有高灵敏度,能实时检测生物分子间的相互作用而被广泛运用于医疗检测、药物筛选、环境监测和食品检测等领域[9]

    本课题采用SPR技术从中药单体中筛选能与STAT3特异性结合的小分子化合物,通过蛋白免疫印迹技术和双荧光素酶报告基因考察小分子对STAT3的抑制作用,采用分子对接技术拟合化合物与STAT3的结合模式,明确其可能的作用位点,从而为STAT3抑制剂的发现提供理论指导和实践经验。

    • DMSO(美国Sigma公司);EDC/NHS(GE公司);胰酶(美国Gibco公司);DMEM培养基(美国Corning公司);胎牛血清(美国Gibco公司);细胞裂解液、PMSF、30%丙烯酰胺溶液、1.5 mol/L Tris(pH=8.8)、1.0 mol/L Tris(pH=6.8)、10%SDS、TEMED、BCA试剂盒、双荧光素酶报告基因检测试剂盒(上海碧云天生物技术有限公司);硝酸纤维素膜(德国Sartorius Stedim公司);转染试剂(美国Life Technology公司)

    • Biacore T2000(GE医疗生命科学公司);电子天平(上海天平仪器厂);电泳仪(美国Bio-Rad公司);制冰机(德国Eppendorf公司);−80℃低温冰箱(美国Thermo公司);CO2细胞培养箱(美国Thermo公司);离心管(美国Corning公司);低温高速台式离心机(美国Thermo公司);移液枪(德国Eppendorf公司);超纯水仪(美国Millipore公司);多功能酶标仪(美国Thermo公司)。

    • HeLa细胞(购自上海碧云天生物科技有限公司,由本实验室冻存、培养);HeLa-STAT3-Luc细胞(由本实验室构建、培养、冻存)。

    • (1)STAT3预富集

      将STAT3纯化蛋白用去离子水溶解并配成1 g/L的蛋白母液,用4种不同pH的醋酸盐缓冲液(pH4.0、pH4.5、pH5.0、pH5.5)稀释蛋白母液至50 mg/L,进样,于Biacore预富集系统检测不同pH条件下蛋白STAT3的响应值,确定最佳蛋白偶联条件。

      (2) STAT3偶联

      在预富集实验中所得最佳pH条件下,将STAT3稀释至50 mg/L,通过EDC/NHS活化CM5芯片表面羧基,然后通过羧基氨基缩合反应将STAT3键合到CM5芯片上,乙醇胺封闭未结合的羧基,从而实现STAT3偶联到CM5芯片上的目的。

      (3)亲和力分子

      将中药小分子单体化合物用DMSO溶解,然后用PBS稀释成32 μmol/L (DMSO终浓度为5%)的样品后进样,流动相为5%DMSO的PBS溶液,通过Biacore系统分析其流过STAT3蛋白表面的响应值,筛选出对STAT3响应值较高(高于阳性对照或与其相当)的单体化合物作为候选化合物。

      (4)动力学分析

      将候选化合物浓度以二倍比进行梯度稀释,浓度范围为0.0625~64 μmol/L(DMSO终浓度均为5%),通过Biacore系统分析获得结合响应值,根据响应值与候选化合物浓度之间的量效关系绘制动力学曲线,根据曲线拟合情况判断候选化合物与STAT3的结合特异性,从而找到能与STAT3蛋白特异性结合的小分子单体。

    • HeLa细胞以5×105个/孔接种于6孔板,于37 ℃、5%CO2细胞培养箱中培养过夜。次日,加入不同浓度的化合物,作用24 h后,加入100 μl Western及IP细胞裂解液(含1 mmol/L PMSF),冰上裂解25 min,收集蛋白于1.5 ml离心管,12 000 r/min,4 ℃离心10 min,吸取上清液,使用BCA蛋白定量试剂盒进行总蛋白定量。蛋白样品中加入5×蛋白上样缓冲液,煮沸5 min,进行SDS-PAGE凝胶电泳。电泳结束后,在250 mA恒流电下将蛋白从凝胶转移到NC膜上,5%脱脂牛奶封闭,进行一抗(p-STAT3/STAT3)、二抗孵育,结束后在红外双色激光成像系统(Odyssey)上扫膜检测700和800通道激发的荧光信号,观察各泳道中蛋白表达情况。

    • HeLa-STAT3-Luc细胞计数后按1×105个/孔接种于24孔板,置于37 ℃、5%CO2细胞培养箱中培养24 h,加入不同浓度化合物孵育4 h,然后加入IL-6(100 ng/ml)和IL-6R(100 ng/ml)共同刺激24 h,弃上清液,每孔加入120 μl细胞裂解液,离心后取5 μl上清液转移至新的384孔板,每孔加入25 μl荧光素酶1液,使用多功能酶标仪检测荧光值,然后加入25 μl荧光素酶2液,再次测荧光值,定内参。

    • 分子对接以Protein Preparation Wizard模块处理蛋白,选择STAT3蛋白与小分子抑制剂的晶体复合物6NUQ,依次去水、加氢,以LigPrep模块处理配体,力场优化均采用OPLS2005模式,其余参数均使用默认;以Grid模块建立蛋白对接坐标,范德华力半径设置为1.0;采用精确对接模式(XP)的方法进行对接,对接结果用PyMol软件作图。

    • 数据以(x±s)表示,采用统计学软件SPSS19.0对数据进行单因素方差分析,进行组间差异比较。P<0.05认为差异具有统计学意义。

    • 为了研究STAT3蛋白的最佳偶联条件,采用不同pH的醋酸盐缓冲液稀释蛋白,进行预富集分析,结果显示STAT3在pH4.0的条件下响应值最高(图1)。因此,后续实验选择pH4.0的缓冲液进行偶联。

      图  1  不同pH条件下STAT3芯片富集情况

    • 取市售的STAT3蛋白用pH4.0醋酸盐缓冲液稀释至50 mg/L,通过Biacore系统的内置程序偶联到CM5芯片上,结果显示STAT3偶联量为8 000 RU,达到预计偶联水平(图2)。

      图  2  Biacore系统STAT3蛋白偶联情况

    • 为了筛选能够结合STAT3蛋白的小分子化合物,我们将50种中药单体统一稀释到32 μmol/L,利用Biacore系统检测结合情况,通过响应值观察小分子与STAT3蛋白的结合强度。结果发现,不同小分子化合物与STAT3蛋白的结合存在差异(图3),我们以阳性对照(C188-9)为标准,筛选响应值不低于阳性对照响应值的化合物,得到了梓醇(catalpol)、黄芩素(baicalein)、芹黄素(apigenin)、槲皮素(quercitrin)、人参皂苷(ginsenoside)、京尼平苷酸(geniposidic acid)、桑辛素(morusin)等10多种小分子作为候选化合物,接着进行动力学分析以确定它们与STAT3蛋白的结合特异性。

      图  3  50种中药单体在Biacore系统中与STAT3蛋白结合响应的情况

    • 为了验证候选化合物与STAT3蛋白的结合是否为特异性结合,我们将候选化合物进行梯度稀释,通过Biacore系统分析获得结合响应值,绘制动力学结合曲线。对10多种化合物均进行动力学分析,发现只有芹黄素与STAT3的结合具有特异性。芹黄素与STAT3的结合响应值随着药物浓度的增大而升高,当浓度增大到一定值时响应值呈水平趋势不再变化,说明高浓度芹黄素同STAT3的结合存在饱和现象,即芹黄素与STAT3的结合为特异性结合(图4)。因此,选择芹黄素作为可能的STAT3抑制剂进行生物学验证。

      图  4  特异性结合动力学曲线

    • 动力学分析结果证实芹黄素可以特异性结合STAT3,为了确证芹黄素对STAT3磷酸化的抑制作用,我们利用IL-6诱导活化STAT3,通过Western-blot检测芹黄素对STAT3磷酸化的抑制作用。结果发现,IL-6可以显著刺激HeLa细胞STAT3的活化,而芹黄素能剂量依赖地抑制IL-6诱导的STAT3磷酸化,表明芹黄素可能是STAT3的抑制剂(图5)。

      图  5  Western-blot 检测芹黄素抑制STAT3磷酸化效果

    • 为了进一步确证芹黄素对STAT3的抑制作用,我们采用双荧光素酶报告基因系统研究芹黄素对STAT3转录活性的影响。结果显示,IL-6刺激可以显著促进STAT3的转录活性,10μmol/L、20 μmol/L芹黄素能够抑制IL-6诱导的STAT3转录活性的增加(图6)。以上结果表明芹黄素能够抑制STAT3的转录活性,进一步证实芹黄素是STAT3的小分子抑制剂。

      图  6  双荧光素酶报告基因检测芹黄素抑制STAT3活化的能力

    • 为了明确STAT3与芹黄素的相互作用情况,我们采用分子对接技术分析STAT3与芹黄素的结合位点。结果显示,芹黄素结合于STAT3蛋白的SH2结构域,占据了STAT3磷酸络氨酸的结合口袋。与关键残基Glu638、Gln644、Gly656、Lys658形成氢键相互作用,与Tyr657残基形成π-π相互作用(图7)。

      图  7  芹菜素与STAT3蛋白(PDB: 6NUQ)的结合模式拟合图

    • STAT3在肿瘤中的持续激活和过度表达与肿瘤细胞的多种恶性生物学特征密切相关。STAT3的活化受多种细胞因子、生长因子,生长因子受体,非受体蛋白酪氨酸激酶等多重信号分子的调控,目前已成为肿瘤治疗领域的研究热点之一[10]。 STAT3存在6个结构域,包括氨基末端结构域(NTD)、卷曲螺旋结构域(CCD)、DNA结合结构域(DBD)、接头结构域、Src同源结构域(SH2)和羧基末端反式激活(TAD)结构域。目前,对STAT3的直接抑制作用可以通过破坏SH2、DBD或NTD结构域来阻止功能性STAT3二聚体的形成。STAT3的直接抑制剂主要分为三类:肽,小分子抑制剂和寡核苷酸。间接抑制剂则通过靶向STAT3信号通路阻断上游信号通路(如IL-6和JAK通路)间接抑制STAT3[11-12]。目前,STAT3抑制剂的研发已成为肿瘤治疗领域的研究热点之一。

      芹黄素是一种天然黄酮类化合物,具有抗炎、抗氧化和抗癌作用 [13],其在多种癌症中(如乳腺癌、肺癌、肝癌、前列腺癌等)表现出对细胞的生长抑制与促凋亡作用。芹黄素不仅能够通过内源性与外源性凋亡途径促进细胞凋亡,也能通过降低基质金属蛋白酶-2,-9的表达抑制肿瘤细胞侵袭[14]。但是,芹黄素与STAT3的关系尚未研究,其对STAT3的抑制作用也没有报道。

      本研究利用表面等离子体共振技术,从50个中药单体中筛选出能与STAT3特异性结合的小分子化合物芹黄素,然后运用Western-blot、双荧光素酶报告基因实验证实了芹黄素对STAT3的抑制作用。采用分子对接技术分析STAT3与芹黄素的结合位点,结果揭示芹黄素主要通过结合STAT3的SH2结构域抑制其磷酸化。本研究为芹黄素抗癌作用提供了理论基础,同时,也为发现STAT3及其他药物靶点的小分子抑制剂提供了研究经验。

参考文献 (14)

目录

/

返回文章
返回