-
嘧啶类化疗药物在肿瘤治疗中的地位越来越重要,其代表药物5-氟尿嘧啶及其口服前药卡培他滨更受到了广泛关注,体内二氢尿嘧啶脱氢酶(DPD)是此类药物代谢的限速酶之一[1],前瞻性评价DPD的总体活性有利于提高药物疗效及减少患者的毒副反应,对临床具有重要意义。内源性物质尿嘧啶(U)是体内DPD的天然底物,在此酶的催化下生成二氢尿嘧啶(UH2),并最终通过尿液排出体外。测定血浆中U和UH2的含量,并通过(UH2)/(U)比值计算,可从代谢物的角度评价DPD的活性[2]。临床上常用评价DPD酶活性的方法是测定患者的基因表型,DPD的编码基因DPYD序列中包含了多达7 600个多态位点,使得DPD酶的活性在人群中是高度可变的[3]。不同的突变位点及不同位点的组合给临床检测带来了极大的困难。到目前为止,也只有DPYD*2A的多态性被用于临床实践,用来筛选出5-氟尿嘧啶代谢严重不良的患者,避免严重的毒副反应[4]。单一应用基因的多态性来评价DPD酶的活性在临床上存在一定的困难,基因的多态性并不能直接同下游的酶的活性联系起来,两者并没有完全对等的关系。基因需通过转录、翻译和蛋白的修饰之后才能发挥作用。基因多态联合下游代谢物的含量测定更能准确的评价DPD酶的活性[5]。目前常应用液相色谱-串联质谱联用法对人血浆或干燥唾液中U和UH2浓度进行检测[6-11],但所报道的方法均有一些复杂或难以重现。本研究成功的建立了一种灵敏、高效、准确、重现性好,且能同时测定人血浆中U和UH2浓度的UHPLC-MS/MS方法,为体内DPD总体活性提供更客观有效的评价途径。
-
1290-6460A超高效液相色谱-串联质谱仪,包含G4220A二元泵、G4226A自动进样器、G1316C柱温箱、MassHunter数据处理工作站(美国Agilent);调速涡旋混合器(美国Labnet);SK7200H超声仪(上海科导超声仪器有限公司);BSA124S-CW分析天平(德国赛多利斯);5810R型低温高速离心机、移液器(德国Eppendorf公司)。
-
尿嘧啶、二氢尿嘧啶和氯尿嘧啶(内标)对照品(纯度>99%,大连美仑生物有限公司);乙酸铵(美国赛默飞世尔科技);甲醇、乙腈、乙酸乙酯、异丙醇(色谱纯,德国默克公司);屈臣氏蒸馏水(广州屈臣氏食品饮料有限公司);牛血清白蛋白(BSA)(上海博光生物科技有限公司);生理盐水(长征医院药学部自制)。
-
色谱柱为Agilent poroshell 120 SB-Aq-柱(2.1 mm×100 mm,2.7 μm),流动相为5 mmol/L乙酸铵水溶液(A)和乙腈(B),流速为0.3 ml/min,梯度洗脱:0~0.3 min,100% A;0.3~1.0 min,100%~10% A;1.0~2.5 min,10% A;柱温为30 ℃,洗脱时间2.5 min,进样量5 μl。
-
采用ESI离子源,多重反应监测(MRM)进行一/二级质谱分析,用于定量分析的检测离子为:U[M+H]+ m/z 113.0→40.1,检测模式为正离子模式;UH2[M+H]+ m/z 115.0→55.1,检测模式为正离子模式;氯尿嘧啶(IS)[M-H]- m/z 145.0→42.1,检测模式为负离子模式。雾化温度为300 ℃,雾化气压力为40 psi,干燥气流速为10 L/min,鞘气温度300 ℃,鞘气流速12 L/min,解离电压为4 000 V。
-
选取8名血浆样品指标正常的成年人,于当日清晨8时空腹状态下静脉采血3 ml, EDTA-3K管抗凝,离心后分离上层血浆, 于−80 ℃冰箱冻存。
-
取100 μl样本,加10 μg/ml氯尿嘧啶(IS)10 μl,加乙酸乙酯3 ml,涡旋5 min,1710×g离心10 min,取上层有机相2.7 ml,45 ℃氮气挥干仪挥干,用10%甲醇溶液100 μl复溶,涡旋1 min,取上清液进样分析。
-
用含有3 %牛血清白蛋白作为空白基质代替血浆配置标准曲线样品。取100 μg/ml的尿嘧啶和二氢尿嘧啶各100 μl,加800 μl水,制成10 μg/ml标准混合液,置于−20 ℃备用。取10 μg/ml标准混合液适量,用3 %牛血清白蛋白稀释制成10、20、50、100、200、500、1000、1500 ng/ml系列浓度样品, 然后按照上述“1.6”项下样品的处理方法配制。
-
U和UH2的出峰时间以及峰型良好,代替血浆经过前处理后,对待测组分的测定没有干扰,内标对分析物的测定也没有干扰,且能很好分离,结果见图1。
-
U和UH2的线性范围是10.0~1 500.0 ng/ml,以空白BAS中U和UH2的浓度为横坐标(X),U和UH2与内标化合物氯尿嘧啶的峰面积比为纵坐标(Y),进行最小二乘法加权(权重系数为1/χ2),U和UH2的线性回归方程分别是Y=0.27X+0.0022、Y=0.58X+0.0380,r均>0.990,表明线性关系良好。
-
取定量下限、低、中、高标准添加血浆样本按照前处理方法进行处理,每个浓度样品平行制备5份进行分析,连续3 d重复操作,根据当天的标准曲线计算当天实测样本浓度,计算样本在低、中和高浓度下的日内、日间精密度和准确度,结果显示,精密度和准确度的偏差均在15%左右。准确度相对偏差在20%范围内时,最低定量下限精密度偏差不大于20%,结果见表1。
表 1 尿嘧啶和二氢尿嘧啶的精密度 (n=5)
分析物 标示浓度 (ng/ml) 日内 日间 测定浓度 (ng/ml) 精密度(CV%) 准确性(RE%) 测定浓度 (ng/ml) 精密度(CV%) 准确性(RE%) 尿嘧啶 10 10.2±0.38 3.74 2.58 10.12±0.78 7.70 1.18 20 20.63±1.21 5.87 3.15 19.97±1.35 6.74 −0.16 500 529.73±4.64 0.88 5.95 484.32±35.72 7.37 −3.12 1000 1093.33±25.10 2.30 9.33 1098.25±25.16 2.29 9.82 二氢尿嘧啶 10 10.32±0.71 6.86 3.18 10.28±0.65 6.37 2.77 20 19.98±2.19 10.95 −0.12 19.86±1.85 9.31 −0.72 500 517.51±10.69 2.07 3.50 515.66±10.36 2.01 3.13 1000 1079.83±17.91 1.66 7.98 1080.11±24.50 2.27 8.01 -
取低、高2个浓度的样本进行基质效应和提取回收率考察,结果显示,U、UH2及内标氯尿嘧啶的基质效应和提取回收率良好,结果均较稳定,结果见表2。
表 2 尿嘧啶和二氢尿嘧啶的基质效应和提取回收率
分析物 标识浓度(ng/ml) 基质效应 提取回收率 平均基质效应 CV(%) 平均回收率 CV(%) 尿嘧啶 1000 101.00 6.15 94.98 9.01 20 99.99 3.63 100.01 7.64 二氢尿嘧啶 1000 85.72 2.07 106.47 1.58 20 93.58 4.53 99.54 9.77 -
考察低、高2个浓度的血浆样品经历3次冷冻与解冻循环的稳定性、血浆样品在室温(25 ºC)放置6 h后经样品处理后稳定性和血浆样品经样品处理后室温放置24 h的稳定性,结果显示,3次冻融、6 h室温(25 ºC)条件下和24 h放置自动进样器中的稳定性均符合要求,结果见表3。
表 3 样品的稳定性(RE%)
分析物 冻融3次 室温放置6 h 置自动进样器24 h 低 高 低 高 低 高 尿嘧啶 100.71 98.34 93.49 106.60 108.20 107.99 二氢尿嘧啶 92.67 92.64 93.61 107.26 106.97 107.15 -
应用本研究所建立的方法,对8名健康成人的血浆样本测定分析,在样本实测过程中, 同时插入已知浓度的随行质控样本(QC样本), 随时监控样本测定的准确度。U和 UH2 浓度测定结果见图2。
-
U和UH2是人体内常见的两种物质,且同核酸的代谢密切相关,由于U和UH2均为人体内源性物质,故不能采用人源的基质进行方法学的开发及验证,通过查阅资料,选择了不含U和UH2的3%牛血清蛋白作为基质进行方法学的开发[12]。也有文献报道采用去除U和UH2的人源血浆基质进行方法学实验[9],但基质的来源较珍贵,不适合方法的普及,所以选用3%牛血清蛋白作为替代基质。
-
U因其特殊的化学性质,在大部分的色谱柱上均没有保留。U和UH2的LogP值分别为−0.707和−0.840,有较强的亲水性,决定了其不保留的性质。在定量方法的开发过程中,先后采用了Agilent Zorbax SB-C18色谱柱,Agilent Zorbax Eclipse-C18色谱柱,Waters Atlantis T3色谱柱,Waters Xselect色谱柱,Waters Xbridge等色谱柱来进行条件摸索,但上述色谱柱对U和UH2均没有保留。最后,采用Agilent Zorbax SB-Aq对U和UH2进行定量分析,该色谱柱对强极性的化合物有较好的保留效果,同时,兼容100%的起始流动相也对保留产生了良好的结果。
-
本研究还分别考察了几种常见的处理方法,包括甲醇和乙腈的蛋白沉淀、Waters Oasis HLB萃取板的固相萃取以及乙酸乙酯,甲基叔丁基醚,二氯甲烷/三氯甲烷,环己烷进行的液液萃取,结果发现乙酸乙酯对U和UH2的萃取效果较好,同时,还分别考察了5%、10%、20%、30%、40%、50%的异丙醇、乙酸乙酯溶液对U和UH2的萃取效果,结果发现,单纯的乙酸乙酯对待测化合物具有较好的提取效率。提取回收率均高于90%,且RSD<10%。另外对3%牛血清蛋白的基质效应进行了考察,结果发现平均基质效应在85%~101%之间,RSD<7%,说明该前处理方法对于基质的清除较为彻底,测定结果稳定,没有明显的基质干扰。
本研究虽重在方法开发,收集的样本数量较少,但从测定的U和UH2浓度分布来看DPD对内源性U的代谢存在个体差异,建议临床应用5-氟尿嘧啶及其卡培他滨筛查DPD总体活性[12-13],后续可进一步扩大样本数量进行深入研究。
-
本实验建立了一种快速,稳定,高灵敏度的UHPLC-MS/MS方法,可用于测定人体内源性物质U和UH2的含量,从代谢物的角度评价DPD酶的活性,从而协助临床医生制定化疗药物5-氟尿嘧啶及其口服前药卡培他滨合理的用量,以较低的毒副反应获得最大的临床疗效。
UHPLC-MS/MS determination of uracil and dihydrouracil in human plasma
-
摘要:
目的 建立同时测定人血浆中尿嘧啶(U)和二氢尿嘧啶(UH2)含量的超高效液相色谱串联质谱(UHPLC-MS/MS)方法。 方法 在Agilent 6460A串联质谱仪上采用正离子检测模式,以氯尿嘧啶为内标,3%牛血清蛋白为代血浆基质,样本经乙酸乙酯液液萃取后在Agilent poroshell 120 SB-Aq (2.1 mm×100 mm,2.7 μm)色谱柱上采用梯度洗脱进行色谱分离。流动相为5 mmol/L醋酸铵水溶液和乙腈溶液;流速0.3 ml/min;柱温为30 ℃;进样量为5 μl。 结果 尿嘧啶和二氢尿嘧啶的线性范围为10.0~1500.0 ng/ml,线性关系良好,其相关系数r>0.990,日内与日间精密度偏差均<15%。 结论 该方法操作简单、选择性好,可用于测定人血浆中尿嘧啶和二氢尿嘧啶的含量。 -
关键词:
- 超高效液相串联质谱法 /
- 尿嘧啶 /
- 二氢尿嘧啶 /
- 含量测定
Abstract:Objective To establish an UHPLC-MS/MS method for the determination of uracil (U) and dihydrouracil (UH2) in human plasma. Methods A positive ion detection mode was adopted on the Agilent 6460A mass spectrometer. Chlorouracil was used as the internal standard. 3% bovine serum albumin was used as surrogate plasma matrix. The pretreatment of plasma sample was completed based on liquid-liquid extraction with ethyl acetate. The chromatographic separation was achieved on an Agilent Poroshell 120 SB-Aq (2.1 mm×100 mm, 2.7 μm) column with gradient elution. The mobile phase was 5 mmol/L ammonium acetate aqueous solution and acetonitrile solution. The flow rate was 0.3 ml/min. The column temperature was 30°C. The injection volume was 5 μl. Results The linear range of uracil and dihydrouracil was 10.0-1500.0 ng/ml. Both of uracil and dihydrouracil had good linear relationship with correlation coefficient (r)>0.990. Both of inter- and intra-day precision was <15%. Conclusion The established method is simple, selective, and suitable for the determination of U and UH2 in human plasma. -
Key words:
- UHPLC-MS/MS /
- uracil /
- dihydrouracil /
- content determination
-
玉米(Zea mays L.)属于禾本科玉蜀黍属一年生草本植物。玉米须(corn silk, maydis stigma)是玉米的干燥花柱及柱头,是我国传统中药材,《滇南本草》最早记载其入药,1985年版《中华人民共和国卫生部药材标准》将玉米须列为常用药材品种,并在1977年版《中国药典》中收录。
玉米须, 别名蜀黍须、玉蜀黍须、包谷须, 秋季玉米收获时采收,烘干或晒干。玉米须性平, 味甘、淡,具有利尿消肿、平肝利胆的功效,《黄帝内经》中记载,玉米须在治疗前列腺疾病方面具有良好的效果。玉米须还被广泛用作茶[1]、功能食品及食品添加剂[2-3]。现代研究表明,玉米须黄酮类化合物是玉米须治疗肥胖、高血糖、肾炎、膀胱炎、痛风、前列腺炎等疾病的重要药效成分[4-5]。本文通过对近10年文献的查阅, 综述了玉米须黄酮在提取工艺、成分表征、含量测定、药理作用及安全性方面的研究进展, 为玉米须黄酮的进一步开发应用提供参考。
1. 提取工艺研究
1.1 总黄酮的提取
热回流提取法是提取中药有效成分和有效部位最常用的方法。虽然热回流提取法的提取效率非常高,但样品在持续的受热过程中不稳定,导致有效成分分解,得到的产品品质也会降低。近年来,具有低温、高效、时间短等优点的超声波提取法、微波提取法被广泛用于中药有效部位的提取,提取效率要远高于普通浸提法和热回流提取法。近几年有多篇文献对玉米须总黄酮的提取工艺进行了研究,详细总结见表1。
表 1 玉米须总黄酮提取工艺编号 提取方法 优化工艺条件 总黄酮提取率
(mg/g)参考
文献1 回流提取法
(单因素试验结合响应面法)温度80℃、时间2.5 h、pH值 2.0、乙醇体积分数72%、
液料比70 ml/g3.89 [6] 2 真空减压提取法
(单因素试验和正交试验)真空度 0.07 Mpa、时间35 min、乙醇体积分数 50%、
液料比 40 ml/g1.35 [7] 3 超声波提取法
(正交试验)超声功率 500 W、超声温度70℃、超声提取时间10 min、
乙醇体积分数60%、料液比70 ml/g34.58 [8] 4 超声波提取法
(响应面优化法)超声功率 500 W、超声温度57℃、超声时间45 min、
乙醇体积分数70%、液料比26 ml/g23.37 [9] 5 超声波-双酶协同提取法
(Box-Behnken 响应面设计法)超声功率 173 W、超声时间35 min、乙醇体积分数60%、
液料比 31 ml/g、酶解时间 42 min、加酶比(果胶酶∶纤维素酶)1.9∶17.2 [10] 6 超声波辅助提取法 超声功率 260 W、超声温度63℃、超声时间 l7 min、
乙醇体积分数60%5.63 [11] 7 微波辅助提取法(正交试验优化) 提取时间 8 min、乙醇体积分数 60%、液料比50 ml/g 7.87 [11] 1.2 总黄酮的纯化
采用溶剂法提取获得的玉米须黄酮提取物总黄酮含量比较低,一般要经过色谱方法进行纯化才能获得高含量的总黄酮。包京姗等[12]考察了D101大孔吸附树脂对超声提取的玉米须总黄酮的纯化效果,5 g大孔吸附树脂、总黄酮上样液质量浓度7 mg/ml、上样液体积1 ml、盐酸调pH值为3、60%乙醇洗脱、洗脱体积为5 倍柱体积、流速1.0 ml/min,纯化后总黄酮的纯度质量分数由41.35%提高到69.20%。刘杰等[13]比较了5种大孔吸附树脂的静态吸附-解吸总黄酮的效果,发现AB-8型大孔吸附树脂纯化玉米须总黄酮效果最佳。单因素试验结合响应面法确定了AB-8大孔吸附树脂柱色谱的最佳参数为:总黄酮上样液质量浓度1.41 mg/ml、洗脱液流速2.00 ml/min、乙醇体积分数为70%、总黄酮的平均解吸率为96.52%。上述研究为玉米须总黄酮的纯化提供了理论参考。
2. 黄酮成分分离与表征
目前,已从玉米须中分离得到的黄酮类成分类型众多,包括黄酮及其苷类、黄酮醇及其苷类、二氢黄酮及其苷类、异黄酮及其苷类、黄烷类、花青素类等,且苷类成分既有氧苷也有碳苷。由于黄酮类成分极性适中,容易分离得到,所以前期已经分离获得了大量的玉米须黄酮类化合物。近几年从玉米须中分离得到的新黄酮类化合物并不多,仅检索到3个新黄酮碳苷。Sarfare等[14]运用多种色谱分离技术及光谱鉴定技术,从玉米须中分离得到2个为新黄酮碳苷:chrysoeriol 6-C-β-oliopyranosyl-7-O-β-D-glucopyranoside, 3'-methoxycassiaoccidentalin A,以及2个已知的黄酮类成分chrysoeriol 6-C-β-boivinopyranosyl-7-O-β-D-glucopyranoside和ax-4"- hydroxy-3'-methoxymaysin。宋少江课题组[15]从玉米须中分离得到1个新黄酮碳苷silkone A,以及3个已知的黄酮类成分莲子草素 (alternanthin), [(2S)-7,4'-二羟基-3'-异戊烯基-黄烷]和 [(2S)-7,3'-二羟基-4'-甲氧基黄烷]。新黄酮碳苷及玉米须中主要黄酮类化合物的结构如图1所示。
与传统的色谱分离方法相比,液相色谱-质谱联用技术(LC-MS)越来越多地应用于复杂体系化学成分全面表征的研究中。高分辨率质谱法提供了精确的分子质量信息,从而有助于识别未知化合物;生物信息学的发展提升了化学分析和质谱数据处理的能力;各种工具和成倍增加的网络平台有助于代谢产物的鉴定研究。例如,Fougère等[16]采用超高效液相色谱/高分辨二级串联质谱(UHPLC/HRMS2)方法共表征了玉米须中的104个化合物,并进一步结合全球天然产物社会分子网络(GNPS)平台和Cytoscape软件以及文献对照等方法鉴定了其中的19个黄酮类化合物,但由于缺乏对照品,最终并没有全部确定这些化合物的结构。目前已报道从玉米须中鉴定的黄酮类化合物有:5,7,4′-三羟基-3′-甲氧基黄酮-6-C-α-L-(鼠李糖-α-L-1,2-鼠李糖苷)[17]、ax-5"-甲烷-3′-甲氧基玉米素(ax-5"-methane-3′-methoxy maysin)[17]、5,7,4′-三羟基-3′-甲氧基黄酮-3-C-β-D-阿拉伯糖苷-6-C-α-L-鼠李糖苷[17]、香叶木素(Diosmetin)[18]、夏佛塔苷(Schaftoside)[18]、异荭草素(Isoorientin)[18]、大豆苷(Daidzin)[18]、当药黄素(Swertisin)[18]、红车轴草素-7-O-β-D-吡喃葡糖苷(Pratensein 7-O-β-glucopyranoside)[18]、芹糖葛根素苷(Mirificin)[18]、漆黄素(Butin)[18]、牡荆素(Vitexin)[18]、野漆树苷(Rhoifolin)[18-19]、皂草苷(Saponarin)[18] 、李属异黄酮苷(Prunetrin)[19]、木犀草素(Luteolin)[19]、2"-O-α-L-鼠李糖基-6-C-(3-脱氧葡萄糖基)-3'-甲氧基木犀草素(2"-O-α-L-rhamnosyl-6-C-3-deoxyglucosyl-3′-methoxyluteolin)[20]、6,4'-二羟基-3'-甲氧基黄酮-7-O-β-葡萄糖苷(6,4′-dihydroxy-3′-methoxyflavone-7-O-β-glucoside)[20]、锦葵素(Malvidin)[20]、芍药素(Peonidin)[20]。
3. 含量测定
总黄酮是玉米须的主要有效部位之一。玉米须及其相关产品的质控也多以总黄酮为指标,其含量也将直接影响玉米须的品质及相关产品的功效。徐建霞等[21]对比分析了贵州常用的8种骨干玉米在3个不同生长时期(吐丝未授粉期、灌浆期和成熟期)的玉米须总黄酮的含量。研究结果显示,未授粉期6号(1703)材料总黄酮含量最高,品质最优。研究结果为筛选玉米须原料和选择采收期提供了科学依据。彭磊等[22]建立了紫外分光光度法测定玉米须黄酮含量的方法,测定波长为 400 nm,共测定了15 批样品,总黄酮的含量范围是3.896 ~ 9.512 mg/g。侯少平等[23] 以芦丁为对照品,利用紫外-可见分光光度法对陕西兴平种植的3种玉米须的乙醇提取物总黄酮含量进行测定,郑单958含量最高达10.739 mg/g,申单9号含量为8.174 mg/g,武科 2号含量最低为 4.684 mg/g。
彭磊等[22]采用HPLC方法对购于河南河北的15批玉米须中芹菜素的含量进行了测定,芹菜素的含量范围为0.047~0.246 mg/g,含量差异可达5倍以上。张晓明等[24] 测定了山西原平、定襄、五台、忻州4个不同产地的玉米须样品中芦丁的含量,其中忻州样品的芦丁含量最高为0.623 mg/g。研究结果显示不同产地不同品种所含有效成分的含量也具有较大的差异,这也进一步说明了优质品种筛选的重要性。上述2篇文献分别以芹菜素和芦丁作为指标成分对玉米须的品质评价进行了研究。芹菜素和芦丁两个黄酮类化合物在植物中广泛存在,以此为标准评价玉米须的品质缺乏专属性和选择性。如能结合药理学研究结果,选用具有生物活性的黄酮类化合物为指标成分,可更好地评价玉米须的品质。
4. 药理作用
4.1 抗糖尿病
玉米须黄酮具有显著抗糖尿病作用。Zhang等[25]采用链脲佐菌素(STZ)诱导的糖尿病小鼠模型评价玉米须粗黄酮(CSFs)的抗糖尿病活性。研究结果显示,CSFs给药4周后,可显著降低糖尿病小鼠的体重及耗水量,尤其是血糖浓度,且CSFs高剂量组(500 mg/kg)降低糖尿病小鼠体重的作用最强;与糖尿病模型对照组相比,CSFs高剂量组可显著降低糖尿病小鼠血清甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、丙二醛(MDA)和肝糖原水平,高密度脂蛋白胆固醇(HDL-C)和超氧化物歧化酶(SOD)水平略有升高。研究结果说明,CSFs可能是通过调节脂质代谢、清除氧自由基以保护机体的新陈代谢和修复机体的抗氧化能力等途径发挥抗糖尿病作用。
杨生辉等[26]研究发现,玉米须总黄酮对晚期糖基化终产物、乙酰胆碱酯酶和α-葡萄糖苷酶具有一定抑制活性,且呈现浓度依赖性。采用Pearson相关分析法对玉米须黄酮含量与抗糖基化、乙酰胆碱酯酶和α-葡萄糖苷酶抑制能力进行相关性分析,发现抗糖基化、乙酰胆碱酯酶和α-葡萄糖苷酶抑制活性与黄酮含量呈正相关(相关系数r分别为0.83、0.90和0.57,P<0.05)。
Li等[9]采用网络药理学方法计算发现,芦丁、木犀草素、高车前素是玉米须抑制高血糖活性的主要活性成分。Chaudhary等[27]采用分子对接的方法预测玉米须中生物活性物质对糖尿病相关靶点的结合亲和力。26种生物活性物质与5个不同的靶标(蛋白酪氨酸磷酸酶1-B、葡萄糖转运蛋白-1、二肽基肽酶-4、α-葡萄糖苷酶和α-淀粉酶)对接,发现儿茶素、槲皮素、芦丁、山柰酚等化合物对蛋白酪氨酸磷酸酶1-B(PTPN-1B)具有最高的结合亲和力,结合能最高为 −8.5 kcal/mol,可用于研究和开发新的抗糖尿病分子。
4.2 抗炎、镇痛作用
Jeong等[28]采用乙酸诱导的小鼠扭体反应和二甲苯诱导的美国癌症研究所(ICR)小鼠耳肿胀模型研究玉米须黄酮提取物(MSE)的体内镇痛和抗炎作用。ICR小鼠灌胃不同剂量的MSE(100 mg/kg、200 mg/kg、300 mg/kg),发现300 mg/kg的MSE可显著抑制乙酸注射引起的扭体反应(52.40%),并显著减少二甲苯诱导的小鼠耳肿胀度(77.61%)。组化分析结果显示,MSE能以剂量依赖的方式减少水肿引起的小鼠耳组织细胞浸润或肿胀,其中300 mg/kg 玉米须黄酮提取物的抑制作用比阳性药吲哚美辛更显著。采用二甲苯致小鼠耳肿胀实验、热板实验和扭体实验等方法,律广富等[29]研究了玉米须总黄酮的抗炎、镇痛作用。小鼠以玉米须总黄酮(2.12 g/kg、1.06 g/kg、 0.53 g/kg)预灌胃给药7 d后,与模型对照组相比,药物中、高剂量组小鼠耳肿胀度显著降低(P<0.05),出现舔足时间显著延长(P<0.05);药物高剂量组出现扭体时间显著延长、扭体次数显著减少(P<0.05)。
采用脂多糖(LPS)诱导的巨噬细胞炎症模型,研究玉米须黄酮的体外抗炎特性及其分子机制[28],结果表明,玉米须黄酮(10 μg/ml、100 μg/ml、 200 μg/ml)可显著降低LPS诱导巨噬细胞的诱导型一氧化氮合酶(iNOS)和环氧合酶(COX-2)水平,剂量依赖性地抑制NO的分泌,且不会产生细胞毒性。深入研究发现,玉米须黄酮对LPS诱导的巨噬细胞的抗炎活性可能与急性期蛋白(AP-1)信号通路的抑制有关。
4.3 抗痛风
已有多项研究报道,玉米须黄酮对急性痛风性关节炎具有改善作用。律广富等[29]采用尿酸钠诱导家兔急性痛风性关节炎模型,研究了玉米须黄酮抗炎、镇痛活性,及其对家兔急性痛风关节炎的改善作用。玉米须黄酮(0.58 g/kg、0.29 g/kg、0.15 g/kg)预灌胃给药7 d后,与模型组比较,药物组滑膜组织炎症明显减轻,充血、水肿、滑膜增生不明显,并显著减少炎细胞浸润。林贺等[30]测试了玉米须黄酮提取物对尿酸钠诱导大鼠痛风性关节炎的影响。研究结果显示,玉米须黄酮提取物高、中剂量组(1 g/kg、0.5 g/kg) 可显著减轻踝关节肿胀度(P<0.01),降低血浆白细胞介素-1α(IL-1α)、白细胞介素-6(IL-6)、肿瘤生长因子-α(TNF-α)及血浆细胞间粘附分子1(ICAM-1)、基质金属蛋白酶-1 (MMP-1)水平(P<0.05),显著改善大鼠关节滑膜组织的病理变化。
李萍等[31]采用氧嗪酸钾和单钠尿酸盐(MSU)联合诱导的大鼠改良痛风模型,研究玉米须黄酮提取物对改良急性痛风模型大鼠的改善作用及可能的作用机制。结果表明,造模 24 h 后,黄酮提取物高、中剂量组及秋水仙碱组大鼠的踝关节肿胀度均显著减轻(P<0.05)。给药 7 d 后,与模型组相比,黄酮提取物高、中剂量组及秋水仙碱组大鼠血清 IL-1β水平均显著降低(P<0.05),黄酮提取物高、中剂量组及苯溴马隆组大鼠血清尿酸(UA)水平均显著减少(P<0.01)。研究结果表明,玉米须黄酮可能是通过抑制炎性细胞因子 IL-1β 的表达缓解急性痛风性关节炎的急性炎症反应。
4.4 神经保护作用
冯小童[32]研究了玉米须总黄酮(STF)对β-淀粉样蛋白(Aβ25-35)所致阿尔兹海默症(AD)模型小鼠学习记忆能力的影响。玉米须总黄酮灌胃治疗3 周后,通过检测小鼠空间学习记忆能力、脑组织中ROS 和MDA 含量评价其药效。结果显示,STF 高剂量组较AD 模型组可显著增加空间学习记忆能力(P<0.01),明显降低脑组织中 ROS 和 MDA 含量(P<0.01)。玉米须总黄酮具有改善 Aβ25-35 所致 AD 小鼠学习记忆的能力,可能与抑制 AD 小鼠脑内氧化应激反应有关。
Ryuk等[33]则考察了玉米须黄酮水提取物(CSW)对缓解蒙古沙土鼠短暂性脑缺血再灌注(I/R)的缺血性卒中症状和卒中后高血糖的影响。在其 40% 能量脂肪饮食中给予0.05% CSW(I/R-L)和0.2% CSW(I/R-H)、0.02% 阿司匹林(I/R-阿司匹林)和纤维素(I/R-对照)3周后,对蒙古沙土鼠进行8 min的动脉闭塞和再灌注,并按照规定的饮食继续喂养3周。CSW的摄入减少了I/R损伤蒙古沙土鼠的神经元细胞死亡,并剂量依赖性地改善了神经症状,包括下垂的眼睛、蹲姿、屈肌反射和行走模式;减轻了短期记忆、自发变化和握力;对缺血性卒中症状的保护作用与TNF-α、IL-1β、超氧化物和脂质过氧化物水平降低有关,从而促进海马组织超氧化物歧化酶活性;改善血流等。此外,CSW可预防与降低胰腺β细胞质量相关的卒中后高血糖,并且与保护β细胞凋亡有关,恢复了与假手术组类似的β细胞质量。与I/R对照组相比,CSW摄入提高了乳酸杆菌、双歧杆菌、异杆菌和阿克曼菌的相对丰度。Picrust2分析表明,与I/R对照组相比,CSW增加了丙酸盐和丁酸盐的代谢以及淀粉和葡萄糖的代谢,但减少了脂多糖的合成。总之,CSW通过减少氧化应激和炎症、增加血流量和β细胞质量来预防神经元细胞死亡和高血糖症,这种缓解可能是通过改善肠-脑轴相关的肠道微生物组群落来实现的。
4.5 护肤作用
玉米须在美白保健护肤方面也具有很大潜在价值。Wang等[15]建立了微量2'-联氮-二(3-乙基苯并噻唑啉-6-磺酸)(ABTS)自由基清除法,评价从玉米须中分离得到的1个新黄酮化合物silkone A以及3个已知的黄酮类物质,莲子草素 (alternanthin),(2S)-7,4'-二羟基-3'-异戊烯基-黄烷和 (2S)-7,3'-二羟基-4'-甲氧基黄烷对自由基清除能力的大小。其半数抑制浓度 (IC50)值31.34~37.04 μmol/L,显示比阳性药Trolox具有更强的自由基清除活性。2个黄烷化合物 [(2S)-7,4'-二羟基-3'-异戊烯基-黄烷、(2S)-7,3'-二羟基-4'-甲氧基黄烷] 对酪氨酸酶表现出中等的抑制活性,IC50 值分别为0.49 mmol/L和0.21 mmol/L。通过分子对接计算进一步研究推测,2个黄酮配体与活性位点残基之间的氢键相互作用可能是其发挥抑制酪氨酸酶活性的关键。研究证实了玉米须黄酮类化合物在抗氧化和抑制酪氨酸酶活性方面的潜力,并为开发玉米须护肤产品提供依据。
紫外线B(UVB)照射会对皮肤产生不良影响。玉米须含有的黄酮类化合物可通过抗氧化和抗炎作用防止皮肤光老化。Kim等[34]研究了膳食玉米须对UVB诱导的小鼠皮肤损伤的潜在光保护作用以及作用机制。口服玉米须水提取物 (CS)2 g/(kg·d)或4 g/(kg·d)19周,显著降低了UVB照射的SKH-1无毛小鼠的表皮厚度、皱纹形成和增殖细胞核抗原 (PCNA)、Ki67和8-OHdG阳性染色,并增加了胶原染色。CS组的促炎核因子κB (NF-κB)靶基因 (IL-1β、iNOS和COX-2)和MMP-9的表达较低,转化生长因子β/Smad (TGF-β/Smad)信号传导增加。检测到皮肤脂质过氧化和血液DNA氧化水平较低,血液谷胱甘肽含量较高,抗氧化转录因子Nrf2相关的过氧化氢酶和人超氧化物歧化酶1 (SOD1)蛋白以及谷胱甘肽信使核糖核酸水平增加。CS提取物可以通过抗氧化和抗炎机制减少UVB诱导的皮肤损伤。
李浩楠等[35]在对玉米须总黄酮活性成分研究的基础上,通过正交设计对一款含玉米须总黄酮美容产品的基质进行优化,确定了最终制剂处方。优化后的制剂处方为,水相组分:氮酮 2%、尼泊金乙酯 0.1%、甘油 10%、单硬脂酸甘油酯 5%、乳化剂三乙醇胺 4%、玉米须总黄酮 5%;油相组分:液状石蜡 10%、白凡士林5%、硬脂酸 10%。该研究结果为进一步研制一款具有抗氧化作用的美容产品奠定基础。
4.6 细胞毒作用
玉米须总黄酮提取物具有显著的抗肿瘤活性,已有报道玉米须提取物(SME)可显著抑制荷瘤小鼠的肿瘤生长,显著延长S180 荷瘤鼠存活时间,并增强体外淋巴细胞转化功能[36]。Lee等[37]研究了玉米须提取物主要活性成分maysin 对雄激素依赖性人前列腺癌症细胞(PC-3)的细胞毒活性。结果表明,maysin可剂量依赖性地降低PC-3 细胞的活性,在200 μg/ml剂量时抑制了87%的PC-3细胞活性。Maysin可显著诱导凋亡细胞死亡、DNA断裂、MMP去极化,并降低B淋巴细胞瘤-2基因(Bcl-2)和半胱天冬酶-3酶原抗体(PRO-CASPASE-3)表达水平;显著减少蛋白激酶B(Akt)和细胞外调节蛋白激酶(ERK)的磷酸化;与其他已知抗癌药物 [包括氟尿嘧啶(5-FU)、依托泊苷、顺铂或喜树碱] 联合,可协同增强PC-3细胞凋亡性死亡的作用。这些结果首次证实,maysin可通过线粒体依赖性通路诱导PC-3癌细胞株的细胞凋亡,并可能对化疗耐药或雄激素依赖性人类前列腺癌具有强大的治疗潜力。
4.7 降脂作用
长期以来,玉米须及其提取物作为一种传统的民间药物在世界许多地方被广泛应用,玉米须提取物作为茶和功能食品添加剂具有抗高脂血症和抗糖尿病的特性[38]。然而,这些研究大多是使用玉米须的粗提取物进行的,关于玉米须提取物中单个成分的生物和药理活性的研究一直很少。
Lee等[39]利用小鼠前脂肪细胞(3T3-L1)和C57BL/6小鼠模型,研究了玉米须中主要黄酮类化合物maysin 在体外和体内的潜在抗肥胖作用。Maysin能降低细胞内脂滴和TG的水平,并下调了3T3-L1细胞中转录因子CCAAT/增强子结合蛋白α(C/EBP-α)、转录因子CCAAT/增强子结合蛋白β(C/EBP-β)、过氧化物酶体增殖物激活受体-γ(PPAR-γ)和急性期蛋白2(aP2)的蛋白质表达水平,抑制细胞内脂质积聚和脂肪细胞分化。Maysin通过激活胱天蛋白酶级联反应和线粒体功能障碍诱导3T3-L1细胞凋亡,最终导致脂肪组织质量减少。动物实验表明,maysin(25 mg/kg体重)可降低高脂饮食(HFD)喂养的C57BL/6小鼠的体重增重和附睾脂肪重量,降低了小鼠血清TG、总胆固醇、LDL胆固醇和葡萄糖的水平。这些结果首次表明maysin在体外和体内具有降脂活性,发挥抗肥胖作用,是玉米须提取物的主要有效成分。
5. 安全性研究
玉米须在中国和许多其他国家作为传统草药或功能性食品使用历史悠久,曾被1977版《中国药典》收载。因此,对玉米须的安全性评价具有重要意义。Peng等[40]评估了玉米须黄酮苷提取物(FMS)对小鼠的亚慢性毒性和遗传毒性。在亚慢性毒性研究中,小鼠口服FMS 2.50 g/(kg·d)、5.00 g/(kg·d)和10.00 g/(kg·d),连续28 d。实验结束时,检查一般临床症状、死亡率、血液学、生化和组织病理学参数。通过微核实验和精子畸形实验对FMS的遗传毒性进行评价。结果显示,实验期间所有动物均存活,与对照组相比,所有FMS治疗组均未观察到统计学显著差异或毒理学相关的差异;未观察到的不良反应水平(NOAEL)剂量确定为10 g/(kg·d)。根据微核实验和精子畸形实验的结果,即使在实验上限剂量10 g/(kg·d)时,也没有在体细胞或生殖细胞中发现遗传毒性的证据。
Ha等[41]报道了玉米须提取物对ICR小鼠的急性和亚急性毒性。小鼠口服灌胃玉米须提取物2 g/(kg·d),测试其急性毒性,记录14 d的临床症状、死亡率和体重变化。在实验期间,所有药物组均未观察到死亡或异常症状。与对照组相比,体重没有任何显著变化。玉米须提取物的致死剂量估计超过2 g/kg。小鼠口服灌胃玉米须提取物500 mg/(kg·d),连续4周,测定体重、水和食物消耗量以及器官重量。玉米须提取物对体重、水分摄入、食物消耗、尿液参数、临床化学或器官重量没有相关毒性影响。组织病理学检查显示没有异常,确定玉米须提取物的最大无毒剂量超过500 mg/kg。
Saheed等[42]评估了Wistar大鼠给予100、200、400 mg/kg体重的玉米须水提取物1、7、14、21和28 d后,对血液学指标的毒理学影响,并在实验结束后分析了其脂质参数。在所有测试剂量下,玉米须水提取物对红细胞、红细胞压积、血红蛋白、平均红细胞体积、平均红血球血红蛋白、平均白细胞血红蛋白浓度和平均血小板体积没有任何显著影响(P>0.05)。研究还表明,玉米须水提取物可显著升高血清白细胞、血小板、淋巴细胞、高密度脂蛋白胆固醇水平;显著降低总胆固醇、低密度脂蛋白胆固醇和动脉硬化指数。研究结果显示,在实验剂量范围内,玉米须水提取物不具有血液毒性,并且可能是治疗冠心病的良好候选药物。以上研究结果表明,玉米须提取物作为功能性食品、食品添加剂和天然药物的使用是安全的。
6. 结论
近10年来,玉米须黄酮在食品、保健品及药品领域的应用越来越广泛,相关研究受到了国内外众多学者的关注。玉米须黄酮化学成分的研究发现了新的黄酮碳苷,丰富了玉米须黄酮类化合物的种类;多项药理学研究证实玉米须黄酮具有抗糖尿病、抗炎镇痛、细胞毒、护肤、神经保护、抗痛风以及降脂等作用,拓展了玉米须应用功效;安全性评价为玉米须黄酮的安全应用提供了理论依据。综上,玉米须黄酮的应用及市场仍具有很大的潜力,还需要深入系统的研究为玉米须黄酮的应用提供理论依据。
-
表 1 尿嘧啶和二氢尿嘧啶的精密度 (n=5)
分析物 标示浓度 (ng/ml) 日内 日间 测定浓度 (ng/ml) 精密度(CV%) 准确性(RE%) 测定浓度 (ng/ml) 精密度(CV%) 准确性(RE%) 尿嘧啶 10 10.2±0.38 3.74 2.58 10.12±0.78 7.70 1.18 20 20.63±1.21 5.87 3.15 19.97±1.35 6.74 −0.16 500 529.73±4.64 0.88 5.95 484.32±35.72 7.37 −3.12 1000 1093.33±25.10 2.30 9.33 1098.25±25.16 2.29 9.82 二氢尿嘧啶 10 10.32±0.71 6.86 3.18 10.28±0.65 6.37 2.77 20 19.98±2.19 10.95 −0.12 19.86±1.85 9.31 −0.72 500 517.51±10.69 2.07 3.50 515.66±10.36 2.01 3.13 1000 1079.83±17.91 1.66 7.98 1080.11±24.50 2.27 8.01 表 2 尿嘧啶和二氢尿嘧啶的基质效应和提取回收率
分析物 标识浓度(ng/ml) 基质效应 提取回收率 平均基质效应 CV(%) 平均回收率 CV(%) 尿嘧啶 1000 101.00 6.15 94.98 9.01 20 99.99 3.63 100.01 7.64 二氢尿嘧啶 1000 85.72 2.07 106.47 1.58 20 93.58 4.53 99.54 9.77 表 3 样品的稳定性(RE%)
分析物 冻融3次 室温放置6 h 置自动进样器24 h 低 高 低 高 低 高 尿嘧啶 100.71 98.34 93.49 106.60 108.20 107.99 二氢尿嘧啶 92.67 92.64 93.61 107.26 106.97 107.15 -
[1] SHARMA V, GUPTA S K, VERMA M. Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs[J]. Cancer Chemother Pharmacol,2019,84(6):1157-1166. doi: 10.1007/s00280-019-03936-w [2] KOBUCHI S, AKUTAGAWA M, ITO Y, et al. Association between the pharmacokinetics of capecitabine and the plasma dihydrouracil to uracil ratio in rat: a surrogate biomarker for dihydropyrimidine dehydrogenase activity[J]. Biopharm Drug Dispos,2019,40(1):44-48. doi: 10.1002/bdd.2168 [3] AMSTUTZ U, FROEHLICH T K, LARGIADÈR C R. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity[J]. Pharmacogenomics,2011,12(9):1321-1336. doi: 10.2217/pgs.11.72 [4] DEENEN M J, TOL J, BURYLO A M, et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer[J]. Clin Cancer Res,2011,17(10):3455-3468. doi: 10.1158/1078-0432.CCR-10-2209 [5] SISTONEN J, BÜCHEL B, FROEHLICH T K, et al. Predicting 5-fluorouracil toxicity: DPD genotype and 5, 6-dihydrouracil: uracil ratio[J]. Pharmacogenomics,2014,15(13):1653-1666. doi: 10.2217/pgs.14.126 [6] ROBIN T, SAINT-MARCOUX F, TOINON D, et al. Automatic quantification of uracil and dihydrouracil in plasma[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2020,1142:122038. doi: 10.1016/j.jchromb.2020.122038 [7] ANTUNES M V, RAYMUNDO S, CEZIMBRA DA SILVA A C, et al. Determination of endogenous concentrations of uracil and dihydrouracil in dried saliva spots by LC-MS/MS: method development, validation, and clinical application[J]. Ther Drug Monit,2019,41(3):383-390. doi: 10.1097/FTD.0000000000000615 [8] CHAVANI O, JENSEN B P, STROTHER R M, et al. Development, validation and application of a novel liquid chromatography tandem mass spectrometry assay measuring uracil, 5, 6-dihydrouracil, 5-fluorouracil, 5, 6-dihydro-5-fluorouracil, α-fluoro-β-ureidopropionic acid and α-fluoro-β-alanine in human plasma[J]. J Pharm Biomed Anal,2017,142:125-135. doi: 10.1016/j.jpba.2017.04.055 [9] JACOBS B A, ROSING H, DE VRIES N, et al. Development and validation of a rapid and sensitive UPLC-MS/MS method for determination of uracil and dihydrouracil in human plasma[J]. J Pharm Biomed Anal,2016,126:75-82. doi: 10.1016/j.jpba.2016.04.039 [10] ZHENG N Y, ZENG J N, JI Q C, et al. Bioanalysis of dried saliva spot (DSS) samples using detergent-assisted sample extraction with UHPLC-MS/MS detection[J]. Anal Chim Acta,2016,934:170-179. doi: 10.1016/j.aca.2016.05.057 [11] 肖力, 任斌, 陈小陆, 等. 高效液相色谱法测定人血浆中内源性尿嘧啶和二氢尿嘧啶含量[J]. 中国医院药学杂志, 2008, 28(2):112-114. doi: 10.3321/j.issn:1001-5213.2008.02.010 [12] CASNEUF V, BORBATH I, VAN DEN EYNDE M, et al. Joint Belgian recommendation on screening for DPD-deficiency in patients treated with 5-FU, capecitabine (and tegafur)[J]. Acta Clin Belg,2021:1-7. [13] DOLAT M, MACAIRE P, GOIRAND F, et al. Association of 5-FU therapeutic drug monitoring to DPD phenotype assessment may reduce 5-FU under-exposure[J]. Pharmaceuticals (Basel),2020,13(11):E416. doi: 10.3390/ph13110416 -