留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

CYP2C19基因多态性对PCI术后患者氯吡格雷血药浓度、血小板抑制率和安全性的影响

侯文洁 张亮 李翔宇 王洁

孙丹倪, 黄勇, 张嘉宝, 王培. 代谢相关脂肪性肝病的无创诊断与药物治疗[J]. 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
引用本文: 侯文洁, 张亮, 李翔宇, 王洁. CYP2C19基因多态性对PCI术后患者氯吡格雷血药浓度、血小板抑制率和安全性的影响[J]. 药学实践与服务, 2021, 39(5): 472-475. doi: 10.12206/j.issn.1006-0111.202008029
SUN Danni, HUANG Yong, ZHANG Jiabao, WANG Pei. Noninvasive diagnosis and pharmacotherapy of metabolic dysfunction-associated steatotic liver disease[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
Citation: HOU Wenjie, ZHANG Liang, LI Xiangyu, WANG Jie. Effect of CYP2C19 gene polymorphism on clopidogrel concentration, platelet inhibition rate and safety in patients after PCI[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(5): 472-475. doi: 10.12206/j.issn.1006-0111.202008029

CYP2C19基因多态性对PCI术后患者氯吡格雷血药浓度、血小板抑制率和安全性的影响

doi: 10.12206/j.issn.1006-0111.202008029
基金项目: 南京市医学科技发展一般项目(编号:YKK16207)
详细信息
    作者简介:

    侯文洁,硕士,主管药师,研究方向:临床药学,Email:houwj121218@163.com

    通讯作者: 王 洁,学士,主任药师,研究方向:临床药学与药事管理,Tel:025-58619845
  • 中图分类号: R973

Effect of CYP2C19 gene polymorphism on clopidogrel concentration, platelet inhibition rate and safety in patients after PCI

  • 摘要:   目的  探讨CYP2C19基因多态性对氯吡格雷血药浓度、血小板抑制率和安全性的影响。  方法  根据纳入和排除标准,筛选我院使用氯吡格雷的经皮冠状动脉介入治疗(PCI)术后患者,收集氯吡格雷用药后第6天的血样,采用反相高效液相色谱(RP-HPLC)法测定氯吡格雷血药浓度,非扩增免疫杂交技术检测患者CYP2C19基因型,并通过血栓弹力图来评估血小板抑制率。应用SPSS 20.0对数据进行统计分析。  结果  共纳入87例患者,男性46例,女性41例;其中34例为快代谢型,38例中代谢型,15例慢代谢型;结果显示,快、中代谢型的药物浓度无显著性差异(P=0.667),而慢代谢型与快、中代谢型药物浓度有显著性差异(P<0.05);方差分析和卡方检验显示CYP2C19基因多态性对氯吡格雷的血小板抑制率和安全性的影响有显著性差异(P<0.05)。  结论  仅根据CYP2C19基因型指导氯吡格雷临床用药并不一定达到较好的治疗效果,可联合CYP2C19基因型检测与血药浓度监测来指导氯吡格雷的临床个体化给药。
  • 白蔹为葡萄科蛇葡萄属植物白蔹的干燥块根,首载于《神农本草经》。白蔹是最早用于疮痈、烫伤[1]治疗的药物,具有解毒、生肌的功效。资料显示,白蔹在皮肤创伤治疗中的使用频率较高。随着白蔹药理研究的不断深入,发现白蔹还具有抗菌、抗病毒[2-6]、免疫调节及促进溃疡快速愈合等作用。

    在2015版《中国药典》中,白蔹的质量标准只有定性分析而无定量分析。白蔹成分检测中发现其含大黄素等蒽醌类活性成分[7],且白蔹中大黄素的定量测定方法文献资料[8-9]较少。本实验采用反相高效液相色谱法,建立白蔹药材中大黄素含量测定方法,为白蔹的质量控制标准提供方法和依据。

    大黄素对照品(中国食品药品检定研究院,批号:110756-201512,经面积归一化法计算含量为99.1%);甲醇(烟台远东精细有限公司,批号:160706)为色谱纯,水为超纯水,磷酸(莱阳市双双化工有限公司,批号:2010246)为分析纯,硫酸(淄博市淄川区张庄化学试剂厂,批号:950626)为分析纯。白蔹饮片(安国市弘发中药材饮片有限公司,批号:131001),经淄博市中医院药品供应科主任魏星教授鉴定为葡萄科蛇葡萄属植物白蔹Ampelopsis japonica(Thunb.) Makino的干燥块根。

    Lab Alliance PC 3000 高效液相色谱仪(美国科学系统公司),紫外检测器(北京普析通用仪器有限责任公司);LD310-2R电子天平(沈阳龙腾电子有限公司);FA/JA系列电子天平(上海上平仪器有限公司);RE-201D型恒温水浴锅、RE-201D型旋转蒸发器(郑州博科仪器设备有限公司);766-3型远红外快速干燥箱(江苏省南通县金余电器配件厂)。

    Apollo-C18色谱柱(4.6 mm×250 mm,5 μm);流动相为甲醇−0.2%磷酸溶液(85:15),流速1.0 ml/min,检测波长220 nm,进样量20 μl。在此条件下,大黄素与相邻色谱峰分离度良好,无干扰,理论塔板数为2 000。对照品与供试品色谱图见图1

    图  1  白蔹HPLC图
    A.对照品;B.供试品;1.大黄素
    2.2.1   对照品溶液的制备

    取大黄素对照品(含量为99.1%)约10 mg,精密称定,置于1 000 ml 容量瓶中,加甲醇溶解并稀释至刻度,摇匀,得浓度为9.91 μg /ml 的大黄素对照品储备液,备用。

    2.2.2   供试品溶液的制备

    取过5目筛的白蔹药材粉末,置烘箱内(70±2)℃,2 h烘干。精密称量30 g,用10倍量质量分数20%的硫酸在50 ℃条件下回流水解2 h。过滤,取滤渣。滤渣用纯化水洗至中性(pH=7),烘干。称其质量,记录。再以8倍量体积的95%乙醇在82 ℃条件下回流提取2次,每次1 h,过滤,合并乙醇提取液,减压蒸馏,浓缩至无醇味,加乙醇溶解并定容于10 ml容量瓶中,即得供试品溶液。

    2.3.1   线性关系考察

    分别精密量取“2.2.1”项下制备的大黄素对照品溶液各125、250、500、1 000、2 000、4 000 μl,分别置10 ml容量瓶中,加甲醇稀释至刻度,配制成6种不同浓度的对照品溶液。依次精密吸取对照品溶液各20 μl注入高效液相色谱仪中,记录峰面积。以峰面积Y为纵坐标,对照品溶液浓度X为横坐标,进行线性回归,得回归方程为Y = 53 962X − 966. 46,r = 0.999 7;结果表明大黄素在0.124~3.968 μg/ml浓度范围内线性关系良好。

    2.3.2   精密度试验

    精密量取对照品溶液20 μl,按“2.1”项下色谱条件连续进样6次,测定峰面积。大黄素峰面积RSD为1.7%。仪器精密度良好,符合要求。

    2.3.3   重复性试验

    精密称取同一批号样品6份,按“2.2.2”项下方法平行制备样品溶液,在“2.1”项色谱条件下,分别进样,测定大黄素的峰面积,RSD为1.2%(n= 6),结果表明本方法重复性良好。

    2.3.4   稳定性试验

    按“2.1”项下色谱条件,分别精密量取在室温(10~30 ℃)下放置0、2.5、5、7.5、10、24 h的同一份供试品溶液各20 μl进样测定,记录大黄素的峰面积,6次进样结果表明,供试品溶液在24 h内基本稳定,RSD为1.5%。

    2.3.5   加样回收率试验

    取同一批次(批号:20170704)已知含量的白蔹药材样品9份,分别按相当于样品溶液中大黄素含量的80%(n=3)、100%(n=3)、120%(n=3)加入“2.3.1”项下制备的对照品溶液,按“2.2”项下色谱条件进行测定。计算回收率,结果见表1

    表  1  白蔹药材样品加样回收率试验结果
    样品含有量(m/mg)加样量(m/mg)测得量(m/mg)回收率(%)平均回收率(%)RSD
    (%)
    0.2250.1800.399 96.799.72.5
    0.2250.1800.403 98.9
    0.2250.1800.409102.0
    0.2250.2250.446 98.2
    0.2250.2250.458103.6
    0.2250.2250.447 98.7
    0.2250.2700.503103.0
    0.2250.2700.494 99.6
    0.2250.2700.487 97.0
    下载: 导出CSV 
    | 显示表格
    2.3.6   样品测定

    取不同批次白蔹药材样品,分别按“2.3.2”项下方法制备样品溶液,按“2.2”项下色谱条件测定峰面积,连续进样3次,以外标法计算含量,测定结果见表2

    表  2  白蔹样品大黄素含量测定结果(n=3)
    批号含量(μg/g)RSD(%)
    2017062217.8451.16
    2017062619.1132.07
    2017070415.0022.50
    下载: 导出CSV 
    | 显示表格
    3.1.1   检测波长的选择

    笔者所查文献[8-10]中,测量大黄素所用波长有254、290 nm等。通过实验发现,不同的波长影响其重现性及灵敏度。通过对大黄素标准品甲醇溶液全波段(200~400 nm)紫外扫描可见:其在220、254、260、272、278 nm处均具有特征吸收。通过综合比较上述波长处大黄素峰的峰形及峰面积,220 nm处波长的峰形较好、干扰少、峰面积较大,故选定220 nm作为白蔹药材中大黄素的测定波长。

    3.1.2   流动相的选择

    大黄素的化学名为1'3'8-三羟基-6-甲基蒽醌,具有一定的极性和酸性。所查文献中,大黄素含量测定的流动相体系有多种。在实验过程中发现,流动相对色谱峰的保留时间及分离度有较大影响。故本实验在选择流动相时,考察了不同比例的甲醇-水,乙腈-水,甲醇:0.1%磷酸溶液[8-10],甲醇:0.5%磷酸溶液[11],甲醇:0.2%磷酸溶液,甲醇:0.02%磷酸溶液,甲醇:1% 冰醋酸[12]等不同溶剂系统,结果表明,相同条件下,甲醇:0.2%磷酸溶液(85:15)为流动相时,可以达到基线分离,出峰时间较短,峰形较好。

    3.1.3   流速与进样量的选择

    在流动相及波长选定的条件下,考察了不同流速(0.5~2.0 ml/min)对出峰时间的影响,当流速小于1.0 ml/min时,保留时间延长,使流动相的用量增加,会造成试剂的浪费;当流速大于1.0 ml/min时,保留时间缩短,但大黄素的峰会与杂质峰产生重叠,影响分离度及重现性。本实验选择1.0 ml/min作为流速。

    在样品浓度一定的条件下,考察了不同进样体积(10~30 μl)的影响。实验结果表明,进样体积小于20 μl时,重现性及灵敏度均下降;大于20 μl时,杂质峰明显。当进样量为20 μl时,峰的对称性得到保证。因此,本实验选择20 μl为进样量。

    已有文献[8]对白蔹中大黄素的提取方法采用甲醇提取及三氯甲烷萃取法。通过实验发现这种方法稳定性差、步骤烦琐,且所用试剂毒性较大。本实验在上述提取方法的基础上,参照大黄药材中大黄素的提取方法[10],通过4因素(粒度、溶剂剂量、溶剂浓度、提取时间)3水平的正交设计确定了白蔹中大黄素的提取方法。结果表明,采用过5目筛的白蔹粉末,先用20%的硫酸在50 ℃条件下回流酸水解2 h,滤渣用纯化水洗至中性。再用8倍量体积的95%乙醇,水浴回流2 h能够达到较好的提取效果。白蔹中含大黄素等游离蒽醌,还含有结合型蒽醌[13-14]。先进行酸水解,使结合型蒽醌水解,结果大黄素的含量有所提高。白蔹具有的抗菌性与其中的大黄素[15-16]有关,大黄素是白蔹的活性成分。本提取方法克服了以往相关文献报道方法的不足,分离度好、重现性好、结果准确,因此大黄素作为白蔹药材中指标成分有一定可行性,为完善白蔹药材的质量控制标准提供了方法和依据。新药临床试验的质量是药品上市后安全、有效的保障[17],所以临床试验过程中的质量控制尤为重要。包括相似性评价(外观检测和观感评估测试)、安全性评价(常规安全性检测)、适用性评价(薄层鉴别、HPLC、指标成分测定和药理实验)和最终制剂的质量标准。临床试验过程中的质量控制所要评价的范围更广、要求更为严格,是为了确保临床数据的真实、准确、完整和可靠,为下一步临床应用提供依据,对提高医疗水平具有重大意义。

  • 表  1  患者的基本特征(n=87)

    项目信息
    人口学特征性别(男/女)46/41
    年龄(n±s66.2±7.9
    体重(n±s55.3±12.3
    基因型快(例)34
    中(例)38
    慢(例)15
    血栓弹力图参数R(min)5.72±1.51
    K(min)1.52±0.33
    α角(deg)70.44±7.02
    MA(mm)65.58±5.93
    综合凝血指数1.01±1.33
    血小板抑制率(%)62.56±31.22
    不良反应呼吸抑制(%)10.34%(9/87)
    出血(%)5.75%(5/87)
    下载: 导出CSV

    表  2  CYP2C19基因型分布频率(n=87)

    基因表型基因型基因频率/%Chi-squareH-W平衡检验/P
    CYP2C19*1/*143.59(34/87)1.12>0.5
    CYP2C19*1/*248.71(38/87)
    CYP2C19*1/*3
    CYP2C19*2/*27.69(15/87)
    CYP2C19*3/*3
    下载: 导出CSV

    表  3  CYP2C19基因型与氯吡格雷血药浓度、血小板抑制率和不良反应发生率的关系

    基因型基因多态性浓度(mg/L)血小板抑制率(%)不良反应(%)
    CYP2C19*1/*12.64±1.0366.26±24.718.97(7/87)
    CYP2C19*1/*22.88±1.7967.77±22.325.13(4/87)
    CYP2C19*1/*3
    CYP2C19*2/*25.23±3.2342.45±17.880(0/87)
    CYP2C19*3/*3
    下载: 导出CSV
  • [1] OESTREICH J H, BEST L G, DOBESH P P. Prevalence of CYP2C19 variant alleles and pharmacodynamic variability of aspirin and clopidogrel in Native Americans[J]. Am Heart J,2014,167(3):413-418. doi:  10.1016/j.ahj.2013.10.028
    [2] TANTRAY J A, REDDY K P, JAMIL K, et al. Pharmacodynamic and cytogenetic evaluation in CYP2C19*2 and CYP2C19*3 allelomorphism in South Indian population with clopidogrel therapy[J]. Int J Cardiol,2017,229:113-118. doi:  10.1016/j.ijcard.2016.11.217
    [3] XIE X, MA Y T, YANG Y N, et al. CYP2C19 phenotype, stent thrombosis, myocardial infarction, and mortality in patients with coronary stent placement in a Chinese population[J]. PLoS One,2013,8(3):e59344. doi:  10.1371/journal.pone.0059344
    [4] ZOU J J, XIE H G, CHEN S L, et al. Influence of CYP2C19 loss-of-function variants on the antiplatelet effects and cardiovascular events in clopidogrel-treated Chinese patients undergoing percutaneous coronary intervention[J]. Eur J Clin Pharmacol,2013,69(4):771-777. doi:  10.1007/s00228-012-1392-5
    [5] REHMAN K U, AKHTAR T, SABAR M F, et al. Allele frequency distribution of CYP2C19*2 allelic variants associated with clopidogrel resistance in cardiac patients[J]. Exp Ther Med,2015,10(1):309-315. doi:  10.3892/etm.2015.2493
    [6] ARADI D, KOMÓCSI A. Platelet function monitoring in patients on clopidogrel: What should we learn from GRAVITAS? Platelets,2012,23(3):167-176. doi:  10.3109/09537104.2011.610475
    [7] 周健, 吕虹, 康熙雄. 中国汉族人群不同性别、年龄、体重指数之间细胞色素氧化酶CYP2C19基因多态性的检测[J]. 中国临床药理学与治疗学, 2007, 12(2):208-213. doi:  10.3969/j.issn.1009-2501.2007.02.018
    [8] 侯文洁, 张亮, 丁红梓, 等. 硫酸氢氯吡格雷片在PCI术后患者体内的药动学研究[J]. 现代药物与临床, 2018, 33(3):451-455.
    [9] 曹津津, 周秋云, 钱智磊, 等. 利用基因检测技术指导氯吡格雷的合理应用[J]. 药学与临床研究, 2017, 25(3):251-252.
    [10] HELD C, ASENBLAD N, BASSAND J P, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes undergoing coronary artery bypass surgery: results from the PLATO (Platelet Inhibition and Patient Outcomes) trial[J]. J Am Coll Cardiol,2011,57(6):672-684. doi:  10.1016/j.jacc.2010.10.029
    [11] JIA D M, CHEN Z B, ZHANG M J, et al. CYP2C19 polymorphisms and antiplatelet effects of clopidogrel in acute ischemic stroke in China[J]. Stroke,2013,44(6):1717-1719. doi:  10.1161/STROKEAHA.113.000823
    [12] SNOEP J D, HOVENS M M, EIKENBOOM J C, et al. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis[J]. Am Heart J,2007,154(2):221-231. doi:  10.1016/j.ahj.2007.04.014
  • [1] 段禹, 刘爱军.  活血化瘀法治疗血管性痴呆的研究进展 . 药学实践与服务, 2025, 43(4): 151-155, 173. doi: 10.12206/j.issn.2097-2024.202408045
    [2] 张淑秀, 袁伯川, 杜丽娜, 金义光.  多糖用于放射性核素清除的研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202405060
    [3] 徐璐璐, 刘爱军.  丹参白术方“异病同治”冠心病、血管性痴呆、特发性膜性肾病的网络药理学作用机制研究 . 药学实践与服务, 2025, 43(3): 143-150. doi: 10.12206/j.issn.2097-2024.202312027
    [4] 续畅, 周心娜, 漆璐, 王瑜, 王兴河.  基于文献计量学对我国临床试验用药品管理研究现状的数据挖掘 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202404050
    [5] 徐尧, 马春辉, 李志勇.  高血压对心血管纤维化及sFRP2表达的影响 . 药学实践与服务, 2025, 43(4): 1-5. doi: 10.12206/j.issn.2097-2024.202409055
    [6] 周文艳, 胡珊珊, 张万年, 庄春林.  Keap1-Nrf2通路在炎症疾病中的研究进展 . 药学实践与服务, 2025, 43(3): 97-108, 116. doi: 10.12206/j.issn.2097-2024.202405013
    [7] 杨彬, 王作君, 陈菡, 张敬一.  基于DRGs的医院合理用药管理机制探索实践 . 药学实践与服务, 2025, 43(1): 22-25, 46. doi: 10.12206/j.issn.2097-2024.202404030
    [8] 曹金发, 钟玲, 何苗, 田泾.  炎症性肠病合并心房颤动患者的用药分析与监护 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202403004
    [9] 葛鹏程, 苏日古嘎, 任天舒, 党大胜.  硫酸黏菌素联合头孢哌酮舒巴坦治疗泛耐药鲍曼不动杆菌肺内感染的疗效分析 . 药学实践与服务, 2025, 43(): 1-4. doi: 10.12206/j.issn.2097-2024.202404093
    [10] 詹济华, 颜滢.  低蛋白血症对头孢哌酮血药浓度的影响 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202309040
    [11] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [12] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [13] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [14] 王耀振, 徐灿, 吕顺莉, 田泾, 张东炜.  钾离子竞争性酸阻滞剂的药学特征研究进展 . 药学实践与服务, 2024, 42(7): 278-284. doi: 10.12206/j.issn.2097-2024.202306040
    [15] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [16] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [17] 丁千雪, 尚圣兰, 余梦辰, 余爱荣.  机器学习在肾病综合征患者他克莫司个体化用药中的应用 . 药学实践与服务, 2024, 42(6): 227-230, 243. doi: 10.12206/j.issn.2097-2024.202310007
    [18] 陈春娟, 郑志新, 李骊.  平喘方联合孟鲁司特钠治疗儿童支气管哮喘的临床疗效观察 . 药学实践与服务, 2024, 42(12): 524-527, 532. doi: 10.12206/j.issn.2097-2024.202405035
    [19] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [20] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
  • 加载中
计量
  • 文章访问数:  4731
  • HTML全文浏览量:  1565
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2021-06-15
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2021-09-25

CYP2C19基因多态性对PCI术后患者氯吡格雷血药浓度、血小板抑制率和安全性的影响

doi: 10.12206/j.issn.1006-0111.202008029
    基金项目:  南京市医学科技发展一般项目(编号:YKK16207)
    作者简介:

    侯文洁,硕士,主管药师,研究方向:临床药学,Email:houwj121218@163.com

    通讯作者: 王 洁,学士,主任药师,研究方向:临床药学与药事管理,Tel:025-58619845
  • 中图分类号: R973

摘要:   目的  探讨CYP2C19基因多态性对氯吡格雷血药浓度、血小板抑制率和安全性的影响。  方法  根据纳入和排除标准,筛选我院使用氯吡格雷的经皮冠状动脉介入治疗(PCI)术后患者,收集氯吡格雷用药后第6天的血样,采用反相高效液相色谱(RP-HPLC)法测定氯吡格雷血药浓度,非扩增免疫杂交技术检测患者CYP2C19基因型,并通过血栓弹力图来评估血小板抑制率。应用SPSS 20.0对数据进行统计分析。  结果  共纳入87例患者,男性46例,女性41例;其中34例为快代谢型,38例中代谢型,15例慢代谢型;结果显示,快、中代谢型的药物浓度无显著性差异(P=0.667),而慢代谢型与快、中代谢型药物浓度有显著性差异(P<0.05);方差分析和卡方检验显示CYP2C19基因多态性对氯吡格雷的血小板抑制率和安全性的影响有显著性差异(P<0.05)。  结论  仅根据CYP2C19基因型指导氯吡格雷临床用药并不一定达到较好的治疗效果,可联合CYP2C19基因型检测与血药浓度监测来指导氯吡格雷的临床个体化给药。

English Abstract

孙丹倪, 黄勇, 张嘉宝, 王培. 代谢相关脂肪性肝病的无创诊断与药物治疗[J]. 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
引用本文: 侯文洁, 张亮, 李翔宇, 王洁. CYP2C19基因多态性对PCI术后患者氯吡格雷血药浓度、血小板抑制率和安全性的影响[J]. 药学实践与服务, 2021, 39(5): 472-475. doi: 10.12206/j.issn.1006-0111.202008029
SUN Danni, HUANG Yong, ZHANG Jiabao, WANG Pei. Noninvasive diagnosis and pharmacotherapy of metabolic dysfunction-associated steatotic liver disease[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
Citation: HOU Wenjie, ZHANG Liang, LI Xiangyu, WANG Jie. Effect of CYP2C19 gene polymorphism on clopidogrel concentration, platelet inhibition rate and safety in patients after PCI[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(5): 472-475. doi: 10.12206/j.issn.1006-0111.202008029
  • 氯吡格雷是一种前药,其代谢产物是血小板聚集抑制剂,可以选择性地抑制二磷酸腺苷(ADP)与其血小板P2Y12受体的结合及继发的ADP介导的糖蛋白GPⅡb/Ⅲa复合物的活化。它是经皮冠状动脉介入治疗(PCI)术后治疗方案中的主要药物,可以改善疾病的预后,预防支架内再狭窄[1]。但氯吡格雷作为前药,需要经肝药酶代谢为活性产物才能发挥药效。此外,还有其他因素会影响氯吡格雷的血药浓度和临床疗效,包括基因多态性,生理状况,肝肾功能、合用药物以及年龄等[2]。研究表明,主要是编码CYP2C19酶的等位基因突变会导致氯吡格雷代谢减慢,使其对血小板的抑制作用减弱。已有报道认为在亚裔人群中,能导致P450酶活性下降或者丢失的等位基因有两个位点,一个是CYP2C19*2,另一个是CYP2C19*3,这两个等位基因的突变都会导致氯吡格雷疗效减弱[3-5]

    由于氯吡格雷的疗效和不良反应存在个体差异,不同患者的剂量需求不一样[6-7]。本研究通过实验对PCI术后患者的代谢酶基因型和体内血药浓度进行测定,探索基因多态性对血药浓度、血小板抑制率和安全性的影响,来指导临床实施个体化治疗,为PCI术后患者的合理治疗提供依据。

    • LC-20AB高效液相色谱系统(检测器为SPD-M20A,日本岛津);TG1650-WS高速离心机(上海卢湘仪);乙腈(色谱纯,德国Merck);甲酸(分析纯,中国国药集团)。荧光检测仪(西安天龙科技有限公司);PHARM-GENE 01 SNP分析保存液;PHARM-GENE 200 SNP分析样本处理试剂;NH4Cl预处理液。氯吡格雷片(波立维,75mg,赛诺菲制药,批准文号:J20180029),阿司匹林肠溶片(拜阿司匹林,100mg,批准文号:H20130339)。

    • 纳入2017年6月至2019年12月心内科87 例PCI 术后服用氯吡格雷联合阿司匹林抗血小板治疗的患者(氯吡格雷75mg,1次/d;阿司匹林100 mg,1次/d)。

      纳入标准如下:①接受氯吡格雷联合阿司匹林双抗治疗的患者,年龄<80岁;②氯吡格雷用药时间应大于5 d,以保证体内药物处于稳态。

      排除标准如下:①使用了对药物代谢酶活性有影响的药物,包括细胞色素P450 的诱导剂(如苯巴比妥、水合氯醛、苯妥英钠、利福平等)和活性抑制剂(如氯霉素、对氨基水杨酸、异烟肼、保泰松等);②治疗前或治疗中发生了肝或肾功能改变;③同一份样品,经多次测量,其血药浓度变异系数(CV)>25%。本研究经医院伦理委员会批准(批号:2017-KL002-03)。

    • 药物在体内经4~5个给药周期可以达到稳态,所以于氯吡格雷开始服药后第6天,在给药前静脉采血。

    • 使用RP-HPLC法检测人血浆中氯吡格雷的药物浓度,血清样品300 μl置于1.5 ml离心管中,加内标溶液900 μl,涡旋振荡30 s,以15000 r/min转速,离心3 min,取上清液10 μl,经0.45 μm滤膜过滤后进样分析[8]

    • 使用非扩增免疫杂交技术检测CYP2C19的基因型,操作步骤:①使用耀金保预处理标本,收集DNA;②耀金分带有针对特定SNP位点的荧光染色原位杂交探针,使用耀金分对标本DNA进行原位杂交检测;③标本DNA中含有特定碱基时可以检测到荧光信号,判断目标碱基类型[9]

    • 血栓弹力图是一种检测方式,便于快速、准确地对血小板的活性以及抗血小板聚集的效果进行评价和分析。记录的参数包括:凝血反应时间(R)、凝血形成时间(K)、凝固角(α)、最大血凝块强度(MA)和综合凝血指数。

    • 氯吡格雷最主要的不良反应包括呼吸困难以及出血。根据国际多中心、随机对照试验(PLATO)[10],按照呼吸困难的程度划分:轻度,易于察觉到的轻微呼吸困难症状,但可以耐受,不影响正常体力活动;中度,呼吸困难影响了正常的体力活动,但可以耐受;重度,呼吸困难导致无法完成正常的体力活动。根据PLATO研究[10]将出血事件分为:主要出血和次要出血。

    • 样本的基因频率经Hardy-Weinberg遗传平衡检验,检验结果P>0.05,表明收集的样本符合H-W平衡,具有群体代表性。所有数据采用SPSS20.0进行统计分析。率的比较选择双侧χ2检验,各组之间的血药浓度比较采用方差分析或t检验,P<0.05为差异有统计学意义。

    • 本研究中共纳入87名患者,均检测了CYP2C19的基因型和氯吡格雷的血药浓度测定。其中男性46名,女性41名,患者平均年龄为(66.2±7.9)岁,平均体重(55.3±12.3)kg。患者基本情况及检测结果见表1。对样本CYP2C19的基因频率进行了Hardy-Weinberg遗传平衡检验,计算结果Chi-square为1.12,P>0.5,结果见表2。结果表明,收集的样本符合H-W平衡,具有群体代表性。

      表 1  患者的基本特征(n=87)

      项目信息
      人口学特征性别(男/女)46/41
      年龄(n±s66.2±7.9
      体重(n±s55.3±12.3
      基因型快(例)34
      中(例)38
      慢(例)15
      血栓弹力图参数R(min)5.72±1.51
      K(min)1.52±0.33
      α角(deg)70.44±7.02
      MA(mm)65.58±5.93
      综合凝血指数1.01±1.33
      血小板抑制率(%)62.56±31.22
      不良反应呼吸抑制(%)10.34%(9/87)
      出血(%)5.75%(5/87)

      表 2  CYP2C19基因型分布频率(n=87)

      基因表型基因型基因频率/%Chi-squareH-W平衡检验/P
      CYP2C19*1/*143.59(34/87)1.12>0.5
      CYP2C19*1/*248.71(38/87)
      CYP2C19*1/*3
      CYP2C19*2/*27.69(15/87)
      CYP2C19*3/*3
    • 87例患者接受氯吡格雷治疗后,血药浓度分布于2~7 mg/L之间,血小板抑制率分布于20%~90%之间。常见的不良反应是呼吸抑制[10.34%(9/87)]和出血[5.75%(5/87)]。

    • 在本研究中,根据CYP2C19的基因型进行了分类(快、中、慢)。快、中和慢代谢型患者的平均血药浓度分别为2.64±1.03、2.88±1.79和5.23±3.23 mg/L,使用t检验分析两两之间的血药浓度,结果显示,血药浓度在快、中代谢型之间没有显著性差异(P=0.667),但慢代谢型中的血药浓度在与快、中代谢型比较时有统计学差异(P<0.05)。快、中、慢代谢型的血小板抑制率分别是(66.26±24.71)%、(67.77±22.32)%和(42.45±17.88)%,采用方差分析进行统计,显示基因多态性对血小板抑制率有显著性影响(P<0.05)。不良反应发生率分别是8.97%(7/87)、5.13%(4/87)和0%(0/87),采用Fishier确切概率法对不良反应进行统计分析,结果显示,基因多态性对用药安全亦有显著性影响(P<0.05),见表3

      表 3  CYP2C19基因型与氯吡格雷血药浓度、血小板抑制率和不良反应发生率的关系

      基因型基因多态性浓度(mg/L)血小板抑制率(%)不良反应(%)
      CYP2C19*1/*12.64±1.0366.26±24.718.97(7/87)
      CYP2C19*1/*22.88±1.7967.77±22.325.13(4/87)
      CYP2C19*1/*3
      CYP2C19*2/*25.23±3.2342.45±17.880(0/87)
      CYP2C19*3/*3
    • 氯吡格雷属于前药,需要在体内经代谢后才能起效。因此,不同患者之间存在明显的个体差异。有性别、体重、年龄、合并用药等非遗传因素,但主要还是编码药物代谢酶及转运体的基因多态性。国内外对氯吡格雷在健康和患病人群中进行的一系列深入研究,结果一致表明该药物的体内过程同时受多种因素的影响[11]。对于不同个体、不一样的人群,它的治疗效果和安全性存在较大的差异。所以,我们应该关注基因多态性与血药浓度变化之间的关系。

      氯吡格雷的血药浓度受CYP2C19基因型的影响,在治疗前行基因检测可以预测初始疗效,血药浓度监测结合基因检测技术的个体化给药可能有助于减少不良反应且提高疗效。近几年有许多关于CYP2C19基因多态性影响药物药动学参数的研究,比较了CYP2C19突变型与野生型对氯吡格雷代谢的影响,结果显示突变型的血清氯吡格雷浓度较高[11]。这表明CYP2C19基因缺失影响了氯吡格雷的代谢。关于氯吡格雷的群体药动学模型参数的研究显示[12]CYP2C19基因型改变了氯吡格雷的药动学参数,CYP2C19突变型的氯吡格雷原药体内浓度高于野生型,且清除率也高于野生型,不因性别,年龄和体重等因素而改变。这表明CYP2C19发生突变不但可能使活性产物减少,而且还会加快氯吡格雷的体内清除速度。

      此外,还有一些现象无法完全用基因型和血药浓度的差异来解释,这可能需要考虑患者的个体差异。如CYP2C19为快代谢型,血药浓度亦处于正常范围,但患者出现了氯吡格雷相关的不良反应或有胸痛等症状。应考虑是个体差异导致的,建议停药,并观察生命体征变化,还需要进一步随访来确证是否为氯吡格雷个体差异所致。

      本研究表明,氯吡格雷的血药浓度在CYP2C19快、中代谢型患者中并无差异,但慢代谢型患者的浓度与快、中代谢型患者比较差异较大;且不同CYP2C19基因型对氯吡格雷有效性及安全性的影响也有差异。但个别案例仅通过CYP2C19基因多态性无法解释氯吡格雷疗效的差异,这可能与影响氯吡格雷药效的因素众多有关,故仅根据CYP2C19基因型指导氯吡格雷临床用药并不一定达到较好的治疗效果,可联合CYP2C19基因型检测与血药浓度监测来指导氯吡格雷的临床个体化给药。

参考文献 (12)

目录

/

返回文章
返回