-
据2019年国际糖尿病联盟发布的全球糖尿病地图,我国成人糖尿病患者数量位居世界第一,已达1.164亿人[1]。与非糖尿病人群相比,2型糖尿病(T2DM)患者发生心血管疾病的风险可增加2~4倍,其中心肌梗死和卒中是T2DM患者死亡的主要原因[2]。美国FDA和欧洲药品管理局要求加强对现有降糖药物的心血管安全性监测,同时所有新型降糖药物上市前必须通过心血管安全性研究(CVOT)[3]。2015年EMPA-REG OUTCOME试验结果揭晓了恩格列净对T2DM患者有显著的心血管保护作用,随后LEADER、CANVAS试验相继证实了利拉鲁肽、卡格列净等的心血管益处。目前,国内外对钠-葡萄糖共转运蛋白2(SGLT-2)抑制剂、胰高血糖素样多肽-1(GLP-1)受体激动剂的心血管保护作用开展了广泛的研究,现就SGLT-2抑制剂、GLP-1受体激动剂的心血管安全性研究进展做一综述。
-
肾脏重吸收葡萄糖主要依赖SGLT-2,其主要分布于近曲小管S1、S2段管腔侧细胞膜上,介导90%葡萄糖的重吸收[4]。SGLT-2抑制剂通过抑制肾脏肾小管中的SGLT-2,抑制葡萄糖重吸收,降低肾糖阈,促进尿葡萄糖排泄,起降低血液循环中葡萄糖水平的作用。目前,FDA批准上市的SGLT-2抑制剂有:恩格列净、卡格列净、达格列净、埃格列净。在我国被批准上市的有:恩格列净、卡格列净和达格列净。
-
恩格列净、卡格列净、达格列净、埃格列净的心血管安全性试验分别称为EMPA-REG OUTCOME、CANVAS、DECLARE-TIMI 58、VERTIS-CV试验,均为大型、双盲、随机、安慰剂对照的前瞻性试验。试验均以心血管死亡、非致死性心肌梗死和非致死性卒中的主要心血管事件(MACE)为终点,评价SGLT-2抑制剂对T2DM患者的心血管作用。试验结果(见表1)显示,与安慰剂相比,恩格列净、卡格列净均可降低T2DM患者心血管事件的发生风险(P=0.038和0.02),而达格列净在心血管事件的风险与安慰剂相比无统计学差异;同时研究显示,恩格列净可降低T2DM患者的心血管死亡、全因死亡及心力衰竭住院风险(P<0.001、P<0.001、P=0.002),卡格列净、达格列净可降低T2DM患者心衰住院风险[5-7]。在心肌梗死和卒中风险事件,恩格列净与安慰剂相比无统计学差异;卡格列净与安慰剂相比在心血管死亡、非致死性心肌梗死或非致死性卒中事件无统计学差异。VERTIS-CV试验结果未发布,埃格列净对T2DM患者的心血管作用尚不明确。
表 1 SGLT-2抑制剂的心血管安全性研究
试验项目 EMPA-REG OUTCOME CANVAS DECLARE-TIMI 58 干预措施 恩格列净(10~25 mg/d) 卡格列净(100~300 mg/d) 达格列净(10 mg/d) 样本量(例,T/C①) 4687/2333 5795/4347 8582/ 8578 平均年龄(年) 63.1 63.3 64.0 中位随访期(年) 3.1 2.4 4.2 合并ASCVD(例,%) 7020(100%) 6656(65.6%) 6974(40.6%) 主要事件(HR,95%CI) 0.86(0.74~0.99) 0.86(0.75~0.97) 0.93(0.84~1.03) 心肌梗死 0.87(0.70~1.09) 0.85(0.69~1.05) NA 缺血性卒中 1.18(0.89~1.56) 0.90(0.71~1.15) 1.01(0.84~1.21) 心血管死亡 0.62(0.49~0.77) 0.87(0.72~1.06) 0.98(0.82~1.17) 全因死亡 0.68(0.57~0.82) 0.87(0.74~1.01) 0.93(0.82~1.04) 心力衰竭住院 0.65(0.50~0.85) 0.67(0.52~0.87) 0.73(0.61~0.88) 注:T/C:试验组/对照组;ASCVD,动脉粥样硬化性心血管疾病;NA,无数据。 -
纳入SGLT-2抑制剂的EMPA-REG OUTCOME、CANVAS、DECLARE-TIMI 58试验进行Meta分析,共34322例患者,其中60.2%合并动脉粥样硬化性心血管疾病(ASCVD),疗效包括:心血管事件,心血管死亡、心力衰竭住院和肾病进展的复合事件[8]。研究表明,SGLT-2抑制剂可降低T2DM患者发生心血管事件的风险(HR 0.89, 95% CI 0.83~0.96, P=0.0014),但结果仅在合并ASCVD的T2DM人群中具有统计学差异(HR 0.86, 95% CI 0.80~0.93),对伴有ASCVD高危因素的T2DM患者,SGLT-2抑制剂与安慰剂相比在主要结果无统计学差异(HR 1.00, 95% CI 0.87~1.16)。同时研究显示,在合并或伴有ASCVD高危因素,以及合并/无心力衰竭T2DM人群中,SGLT-2抑制剂均可降低心血管死亡或心力衰竭住院风险(HR 0.77, 95% CI 0.71~0.84, P<0.0001)[8]。另一项纳入了上述四项试验的Meta分析结果显示,SGLT-2抑制剂可降低合并或伴有ASCVD高危因素的T2DM患者心血管事件的发生风险(HR 0.88, 95% CI 0.82~0.94, P<0.001)[9]。此外,另一项Meta分析提示SGLT-2抑制剂可降低T2DM合并慢性肾脏病(CKD)患者心血管死亡、非致死性心肌梗死、非致死性卒中的复合事件发生风险(RR 0.81, 95% CI 0.70~0.94),心力衰竭住院风险可降低39%(95% CI 0.48~0.78)[10]。
-
CVD-REAL是一项研究SGLT-2抑制剂对T2DM患者的心血管益处,共纳入309 056名T2DM患者,其中87%的患者无心血管疾病史。结果显示,SGLT-2抑制剂可降低T2DM患者的心衰住院风险(HR 0.61, 95% CI 0.51~0.73, P<0.001),降低全因死亡风险(HR 0.49, 95% CI 0.41~0.57, P<0.001),心衰住院和全因死亡事件的复合事件风险降低46%(95% CI 0.48~0.60, P<0.001)[11]。同时CVD-REAL试验的亚组分析提示,与其他降糖药物相比,SGLT-2抑制剂可降低T2DM患者的心肌梗死和卒中风险(HR 0.85, 95% CI 0.72~1.00, P=0.05; HR 0.83, 95% CI 0.71~0.97, P =0.02)[12]。OBSERVE-4D研究纳入了来自4个美国大型医保报销数据库的1 060 449例T2DM患者,头对头地比较卡格列净与其他SGLT-2抑制剂或其他非SGLT-2抑制剂,对T2DM患者心力衰竭住院的影响。研究结果显示,与非SGLT-2抑制剂的降糖药相比,卡格列净降低T2DM患者因心力衰竭住院的风险(HR 0.39, 95% CI 0.26~0.60),卡格列净与其他SGLT-2抑制剂对T2DM患者心力衰竭住院风险的影响无统计学差异(HR 0.90, 95% CI 0.71~1.13);对于合并心血管疾病的T2DM人群,卡格列净可降低心力衰竭住院风险(HR 0.44, 95% CI 0.36~0.54),但与其他SGLT-2抑制剂相比,研究结果无统计学差异(HR 0.70, 95% CI 0.30~1.63)[13]。恩格列净的EMPRISE试验结果显示,与西格列汀相比,恩格列净可降低T2DM患者心力衰竭风险(HR 0.50, 95% CI 0.28~0.91)[14]。
-
GLP-1是一种肠促胰素,分布于胰腺、心脏、肺、脑和胃肠道等区域,通过葡萄糖浓度依赖性的方式促进胰岛β细胞分泌胰岛素,抑制胰岛α细胞释放胰高血糖素[15-16]。GLP-1受体激动剂通过提高T2DM患者体内GLP-1受体活性,促进胰岛素分泌,抑制胰高血糖素释放,延缓胃排空,中枢性食欲抑制等多种机制调控机体血糖稳态。目前FDA批准上市的GLP-1受体激动剂有利拉鲁肽、索马鲁肽、艾塞那肽、利司那肽、度拉糖肽、阿必鲁肽。中国食品药品监督管理总局批准上市的GLP-1受体激动剂有利拉鲁肽、艾塞那肽、度拉糖肽、贝那鲁肽和洛塞那肽。
-
GLP-1受体激动剂相关的大型心血管安全性试验有LEADER、SUSTAIN-6、EXSCEL、ELIXA试验,分别研究了利拉鲁肽、索马鲁肽、艾塞那肽和利司那肽对T2DM患者心血管疾病的影响,其中LEADER、SUSTAIN-6、EXSCEL均以心血管事件为主要结局,ELIXA以心血管死亡、非致死性心肌梗死、非致死性卒中和不稳定性心绞痛住院的复合终点为主要结局[17-20]。试验结果(见表2)显示,利拉鲁肽、索马鲁肽可降低心血管事件发生风险(P=0.01、P=0.02);此外,利拉鲁肽可降低T2DM患者发生心血管死亡和全因死亡的风险(P=0.007、P=0.02),索马鲁肽可降低非致死性卒中风险(P=0.04);利拉鲁肽与安慰剂在非致死性心肌梗死、非致死性卒中和心力衰竭住院事件方面无统计学差异;在心肌梗死、全因死亡、心血管死亡及心衰住院终点方面,索马鲁肽与安慰剂无明显统计学差异[17-18]。与安慰剂相比,艾塞那肽和利司那肽对T2DM合并心血管疾病的患者具有非劣效性,两者在主要终点处均无统计学差异(P=0.81、P=0.06)[19-20]。
表 2 GLP-1受体激动剂的心血管安全性研究
试验项目 EXSCEL SUSTAIN-6 LEADER ELIXA 干预措施 艾塞那肽(2 mg/w) 索马鲁肽(0.5~1.0 mg/w) 利拉鲁肽(0.6~1.8 mg/d) 利司那肽(10~20 μg/d) 样本量(例,T/C①) 7256/7396 1648/1649 4668/4672 3034/3034 中位随访期(年) 3.2 2.1 3.5 2.1 合并ASCVD(例,%) 10782(73.1%) 2735(83%) 6764(72.4%) 6068(100%) 主要终点(HR,95%CI) 0.91 (0.83~1.00) 0.74(0.58~0.95) 0.87 (0.78~0.97) 1.02 (0.89~1.17) 心肌梗死 0.97 (0.85~1.10) 0.74 (0.51~1.08) 0.86 (0.73~1.00) 1.03 (0.87~1.22) 缺血性卒中 0.85 (0.70~1.03) 0.61 (0.38~0.99) 0.86 (0.71~1.06) 1.11 (0.47~2.62) 心血管死亡 0.88 (0.76~1.02) 0.98 (0.65~1.48) 0.78 (0.66~0.93) 0.98 (0.78~1.22) 全因死亡 0.86 (0.77~0.97) 1.05 (0.74~1.50) 0.85 (0.74~0.97) 0.94 (0.78~1.13) 心力衰竭住院 0.94 (0.78~1.13) 1.11 (0.77~1.61) 0.87 (0.73~1.05) 0.96 (0.75~1.23) 注:T/C:试验组/对照组。 -
GLP-1受体激动剂的心血管安全性试验结果不一,为验证GLP-1受体激动剂对心血管的保护作用,Bethel等[21]将上述四项大型CVOT试验纳入Meta分析,结果显示,GLP-1受体激动剂可降低心血管事件发生风险(HR 0.90, 95%CI 0.82~0.99, P=0.033),同时心血管死亡风险降低13%(95%CI 0.76~0.96, P=0.007),全因死亡风险降低12%(95%CI 0.81~0.95, P=0.002);但在心肌梗死、卒中、不稳定性心绞痛住院或心力衰竭住院方面,GLP-1受体激动剂与安慰剂相比均无统计学差异。Kristensen等[22]根据现有临床试验证据进行Meta分析和系统回顾,结果显示,GLP-1受体激动剂可降低T2DM患者心血管事件的发生风险(HR 0.88, 95% CI 0.82~0.94, P<0.0001),其中,心血管死亡风险降低12%(95% CI 0.81~0.96, P=0.003),卒中风险降低12%(95% CI 0.83~0.95, P=0.001),心力衰竭住院风险可降低9%(95% CI 0.83~0.99, P=0.028)。
-
一项为期36个月的利拉鲁肽研究[23]共纳入307例患者,其中19.9%的患者合并心血管疾病,研究显示心血管事件的发生率低于LEADER试验(2.59比3.4 /100人·年),但合并心血管疾病的T2DM患者再发心血管不良事件的风险明显增高。另一项基于人群的开放性队列研究[24]显示,接受GLP-1治疗的T2DM患者较未经GLP-1受体激动剂治疗的T2DM患者全因病死率降低(RR 0.64, 95%CI 0.56~0.74, P<0.0001)。
-
EMPA-REG OUTCOME、CANVAS、LEADER、SUSTAIN-6试验,分别为恩格列净、卡格列净、利拉鲁肽、索马鲁肽具有心血管保护作用提供了可靠的临床证据。因此《2020ADA/EASD糖尿病诊疗标准》推荐,无论糖化血红蛋白水平如何,对于合并ASCVD、伴有ASCVD高危因素、合并糖尿病肾病或合并心力衰竭的T2DM患者,建议将具有明确心血管益处的SGLT-2抑制剂作为降糖治疗方案的药物之一,同时推荐具有明确心血管益处的GLP-1受体激动剂作为合并或伴有ASCVD高危因素的T2DM患者治疗药物之一[25]。但指南未明确推荐SGLT-2抑制剂和GLP-1受体激动剂的具体药品和用法用量,同时具有心血管保护作用的新型降糖药物之间缺乏头对头的随机对照试验,治疗方案之间的有效性和安全性差异尚不明确。因此,有研究通过网状Meta分析,间接比较T2DM患者应用SGLT-2抑制剂和GLP-1受体激动剂的心血管益处。
-
Täger等[26]根据卡格列净、达格列净、恩格列净和埃格列净的大型临床随机对照试验,以全因死亡为主要终点,心血管死亡和心力衰竭恶化为次要终点,通过网状Meta分析研究,间接比较了4种SGLT-2抑制剂对T2DM患者的心血管安全性。试验结果显示,与安慰剂相比,卡格列净和恩格列净可改善T2DM患者的全因死亡风险(RR 0.85, 95% CI 0.75~0.97; RR 0.67, 95% CI 0.55~0.80),降低心血管死亡风险(RR 0.85, 95% CI 0.73~0.99; RR 0.61, 95% CI 0.49~0.77),减少心力衰竭恶化的风险(RR 0.62, 95% CI 0.52~0.75; RR 0.66, 95% CI 0.50~0.86)。达格列净可降低T2DM患者心力衰竭恶化的风险(RR 0.75, 95% CI 0.62~0.88),与卡格列净和达格列净相比,恩格列净对降低T2DM患者的全因死亡和心血管死亡风险有明显优势。埃格列净与安慰剂或其他SGLT-2抑制剂相比,在主要结果和次要结果方面均无统计学差异。
-
一项纳入了LEADER、SUSTAIN-6、EXSCEL、ELIXA试验的网状Meta分析[27]比较了GLP-1受体激动剂利拉鲁肽、索马鲁肽、艾塞那肽和利司那肽对T2DM患者的心血管安全性。试验结果显示,与安慰剂相比,GLP-1受体激动剂可降低T2DM患者的心血管死亡风险(RR 0.87, 95% CI 0.78~0.96),其中利拉鲁肽可减少T2DM患者心血管死亡风险21%。在心血管死亡、心力衰竭住院、非致死性心肌梗死、非致死性卒中方面,利拉鲁肽、索马鲁肽、艾塞那肽和利司那肽分别与其他3种GLP-1受体激动剂相比均无统计学差异。但研究显示,与其他3种GLP-1受体激动剂相比,利拉鲁肽是降低T2DM患者心血管死亡和心衰住院风险的首选药物,索马鲁肽对降低T2DM患者的非致死性卒中和非致死性心肌梗死具有明显优势。
-
对SGLT-2抑制剂和GLP-1受体激动剂的14个双盲、随机对照试验进行网状Meta分析,比较两者对T2DM患者发生心血管不良事件的影响[28]。试验共纳入121 047例患者,主要结果为MACE,次要结果为非致死性卒中、非致死性心肌梗死、心血管死亡、全因死亡、心衰住院等[28]。结果显示,SGLT-2抑制剂与安慰剂相比可降低T2DM患者的心血管死亡风险(OR 0.82, 95% CI 0.73~0.93)和全因死亡风险(OR 0.84, 95% CI 0.77~0.92),SGLT-2抑制剂和GLP-1受体激动剂均可降低MACE的发生风险(OR 0.88, 95% CI 0.82~0.95; OR 0.87, 95% CI 0.82~0.93),降低心衰住院风险(OR 0.68, 95% CI 0.61~0.77; OR 0.87, 95% CI 0.82~0.93),SGLT-2抑制剂降低T2DM患者心衰住院风险的优势高于GLP-1受体激动剂(OR 0.79, 95% CI 0.69~0.90),而GLP-1受体激动剂可降低T2DM患者的非致死性卒中风险(OR 0.88, 95% CI 0.77~0.99),SGLT-2抑制剂在非致死性卒中风险方面与安慰剂相比无统计学差异[28]。
一项以全因死亡率为主要结果的网状Meta分析[29]提示,SGLT-2抑制剂和GLP-1受体激动剂均可降低T2DM患者的全因病死率(HR 0.80, 95% CI 0.71~0.89; HR 0.88, 95% CI 0.81~0.94),减少T2DM患者的心血管死亡风险(HR 0.79, 95% CI 0.69~0.91; HR 0.85, 95% CI 0.74~0.94)。与对照组相比,SGLT-2抑制剂可减少T2DM患者的心衰住院风险(HR 0.62, 95% CI 0.54~0.72)和卒中风险(HR 0.86, 95% CI 0.77~0.97)。
-
2型糖尿病患者心血管事件发生率明显高于普通人群,与微血管并发症不同,研究显示严格控制血糖对其降低动脉粥样硬化性心血管疾病发生风险的效果一般[30]。自2008年以来,多项心血管安全性试验逐渐证实了SGLT-2抑制剂、GLP-1受体激动剂不增加2型糖尿病患者发生心血管事件的风险,其中研究证实恩格列净、卡格列净、利拉鲁肽、索马鲁肽对T2DM患者具有心血管获益,为2型糖尿病治疗策略提供了新的方向。对现有的临床证据进行Meta分析,结果提示,SGLT-2抑制剂可降低心血管事件的发生风险,在合并或伴有ASCVD高危因素的T2DM人群中结果一致;GLP-1受体激动剂对于合并或伴有ASCVD高危因素的T2DM患者也具有一定的心血管保护作用。但达格列净、艾塞那肽和利司那肽在CVOT中未显示有心血管益处,具有心血管保护作用的恩格列净、卡格列净、利拉鲁肽和索马鲁肽也缺乏头对头的研究,SGLT-2抑制剂和GLP-1受体激动剂的疗效优势尚不明确,需要进一步研究。目前,多种新型降糖药物正在进行心血管安全性试验,其研究结果将陆续公布,相信未来有更多降糖药物对2型糖尿病患者具有心血管保护作用。
Advances in cardiovascular safety of SGLT-2 inhibitors and GLP-1 receptor agonists
-
摘要: 2型糖尿病是动脉粥样硬化性心血管疾病发病的高危因素。研究发现,钠-葡萄糖共转运蛋白2(SGLT-2)抑制剂、胰高血糖素样多肽-1(GLP-1)受体激动剂对2型糖尿病合并心血管疾病的患者具有心血管保护作用。故从心血管安全性试验及其Meta分析、网状Meta分析方面,对SGLT-2抑制剂、GLP-1受体激动剂的心血管安全性研究进展进行归纳和总结。
-
关键词:
- SGLT-2抑制剂 /
- GLP-1受体激动剂 /
- 2型糖尿病 /
- 心血管安全性
Abstract: Type 2 diabetes is a high risk factor for atherosclerotic cardiovascular disease. Studies have found that SGLT-2 inhibitor and GLP-1 receptor agonists have cardiovascular protective effects in patients with type 2 diabetes and cardiovascular disease. Therefore, from the aspects of cardiovascular safety test and its Meta-analysis and net-like Meta-analysis, the research progress of cardiovascular safety of SGLT-2 inhibitors and GLP-1 receptor agonists is summarized.-
Key words:
- SGLT-2 inhibitors /
- GLP-1 receptor agonists /
- type 2 diabetes /
- cardiovascular safety
-
海绵是具有代表性的海洋生物,其共附生微生物也是近年来研究的热点。在海洋高盐、高压、低温、寡营养的生存环境下,海绵共附生微生物能够产生结构新颖、生物活性良好的次级代谢产物。其中海绵共附生真菌是海绵化学多样性的重要来源[1]。
曲霉属 (Aspergillus sp)真菌分布广泛而且研究丰富。海洋曲霉属真菌的次级代谢产物主要包括聚酮类[2]、生物碱类[3]、肽类[4]、萜类[5]等化合物,具有抗肿瘤[6]、抗菌[7]、抗病毒[4]等生物活性。本课题的土曲霉(Aspergillus terreus)是从我国南海西沙永兴岛海域的棕色扁海绵Phakellia fusca中分离得到的,属于散囊菌目(Eurotiales)发菌科(Tri-chocomaceaez)的一种真菌,在海洋动植物和陆地植物中均有分布。该菌的次级代谢产物具有多样性,包括生物碱类化合物[8]、丁烯酸内酯类化合物[9]、萜类化合物[10]、环肽类化合物[11]等。本文采用硅胶柱色谱、Sephadex LH-20凝胶柱色谱、高效液相色谱等多种分离方法从土曲霉Aspergillus terreus中共分离得到8个单体化合物。通过理化常数测定、波谱数据分析等方法确定了化合物的结构。化合物1~8的结构见图1。
1. 材料和方法
1.1 样品
菌株来源于棕色扁海绵Phakellia fusca,由上海交通大学海洋药物研究中心鉴定为Aspergillus terreus,菌株保存在上海交通大学医学院附属仁济医院药学部海洋药物研究中心(菌株编号152805)。
1.2 仪器与试剂
Agilent 600核磁共振波谱仪(美国 Agilent 公司);Waters高效液相色谱仪(美国Waters公司);XBridge C18半制备型液相色谱柱(10 mm×250 mm,5 μm);快速制备色谱仪(法国Interchim公司);OSB-2100旋转蒸发仪(日本EYELA 公司);振荡培养箱(上海知楚)。薄层硅胶、200~300目柱色谱用硅胶(青岛海洋化工厂);Sephadex LH-20凝胶(瑞典GE Healthcare公司);色谱纯试剂(天津康科德科技有限公司);其他分析纯有机试剂(上海化学试剂公司);氘代试剂(剑桥同位素实验室)。
1.3 发酵与萃取
取Aspergillus terreus单菌落接种到装有100 ml PDB培养液的250 ml三角瓶中,28 ℃,220 r/min震荡培养3 d,以该发酵液10%的接种量接到装有500 ml的真菌2号培养液(甘露醇20 g,麦芽糖20 g,CaCO3 15 g,葡萄糖10 g,谷氨酸钠10 g,酵母提取物3 g,玉米浆1 g,KH2PO4 0.5 g,MgSO4·7H2O 0.3 g,海盐30 g,蒸馏水1 L)的1 L三角瓶中,28 ℃,220 r/min震荡培养10 d,获得菌株的发酵物。收集发酵液24 L,用等体积的乙酸乙酯萃取3次,浓缩后得到乙酸乙酯相浸膏9.3 g。
1.4 提取分离
乙酸乙酯相浸膏首先经Sephadex LH-20凝胶柱色谱分离,以二氯甲烷-甲醇(体积比为1∶1)作为溶剂进行洗脱,得到组分Fr.1~Fr.4。组分Fr.2经硅胶柱色谱(石油醚:丙酮 = 100∶1~0∶100)分离得到组分Fr.2-1~Fr.2-9。组分Fr.2-5经反相中压柱色谱分离得到8个亚组分,其中Fr.2-5d经重结晶得到化合物3 (2.5 mg)。组分Fr.2-6经LH-20凝胶柱色谱和反相半制备HPLC(38%乙腈-水)分离得到化合物1 (3.5 mg, tR = 21.0 min)。化合物2 (3.5 mg, tR = 13.0 min)由组分Fr.2-7经反相半制备HPLC,以33%乙腈-水为流动相等梯度洗脱得到。组分Fr.2-8以乙腈-水 (体积比10∶90~100∶0)为流动相,经反相中压柱色谱和反相半制备HPLC(20%乙腈-水)分离得到化合物4 (2.0 mg, tR=30.0 min)、 化合物5 (4.0 mg, tR=28.0 min)和化合物6 (9.0 mg, tR=14.0 min)。Fr.3经过硅胶柱色谱分离得到7个组分,其中Fr.3-3经反相半制备HPLC进一步纯化得到化合物7 (1.7 mg, tR=12.0 min)。组分Fr.3-4以20%~100%的乙腈-水为流动相,经反相中压柱色谱和反相半制备HPLC(15%乙腈-水)分离得到化合物8 (18.0 mg, tR = 8.0 min)。
2. 结构鉴定
化合物1为黄色粉末(甲醇),硫酸/香草醛显色为黄色,ESIMS给出的分子离子峰[M+H]+m/z 466.15。1H NMR (600 MHz, CDCl3)中,δH 12.23 (1H, s)为氨基质子信号;一组邻位二取代的苯环质子信号δH 8.82 (1H, dd, J=8.5, 0.8 Hz, H-3), 7.89 (1H, dd, J=7.9, 1.3 Hz, H-6), 7.60 (1H, td, J=8.5, 1.3 Hz, H-4), 7.22 (1H, m, H-5),芳香质子信号δH 9.21 (1H, brs, H-9), 8.70 (1H, d, J=4.5 Hz, H-1′), 8.25 (1H, dt, J=8.0, 2.2 Hz, H-3′), 7.36 (1H, dd, J=8.0, 4.5 Hz, H-2′),提示3-取代吡啶环的存在;1个芳香质子信号δH 7.27 (1H, s, H-10′);4个甲氧基质子信号δH 3.97 (3H, s, 4″-OCH3), 3.91 (3H, s, 3″-OCH3), 3.90 (3H, s, 5″-OCH3), 3.82 (3H, s, 7″-OCH3)。13C NMR (150 MHz, CDCl3)共显示24个碳信号,结合DEPT谱,推断δC 168.2, 167.2, 164.0为羰基碳信号;17个芳香碳信号;δC 61.3, 61.3, 56.5, 52.7为4个甲氧基碳信号。碳信号归属为:δC 168.2 (C-7)、167.2 (C-7′′)、164.0 (C-7′)、152.6 (C-4′)、151.5 (C-5′′)、149.3 (C-2′)、148.8 (C-3′′)、146.9 (C-4′′)、140.4 (C-2)、135.2 (C-6′)、133.6 (C-4)、130.3 (C-1′)、127.9 (C-6)、125.8 (C-2′′)、123.8 (C-5)、123.6 (C-5′)、121.8 (C-3)、120.4 (C-1′′)、119.0 (C-1)、108.8 (C-6′′)、61.3 (3″-OCH3)、61.3 (4″-OCH3)、56.5 (5″-OCH3)、52.7 (7″-OCH3)。该化合物核磁数据与参考文献[11]对照基本一致,确定化合物为methyl-3,4,5-trimethoxy-2-(2-(nicotinamido)benzamido) benzoate。
化合物2为黄色粉末(甲醇),ESIMS给出的分子离子峰[M+H]+m/z 457.14。1H NMR (600 MHz, DMSO-d6)中,δH 12.19 (1H, s, 3-NH), 11.10 (1H, s, 1′′-NH), 8.52 (1H, d, J = 8.1 Hz, 1′-NH)为氨基质子信号;1个芳香质子单峰信号δH 9.29 (1H, s, H-7);一组邻位二取代的苯环质子信号δH 8.44 (1H, d, J = 8.5 Hz, H-7′′), 7.92 (1H, dd, J = 7.9, 1.5 Hz, H-4′′), 7.63 (1H, td, J = 7.9, 1.5 Hz, H-6′′), 7.20 (1H, td, J = 7.6, 1.5 Hz, H-5′′);2个相邻的连接杂原子的次甲基质子信号δH 4.55 (1H, dd, J = 8.1, 2.9 Hz, H-2′), 4.41 (1H, m, H-4′);3个甲基质子信号δH 3.70 (3H, s, H-9′′), 3.52 (3H, s, H-9), 1.19 (3H, d, J = 6.4 Hz, H-5′)。13C NMR (150 MHz, DMSO-d6)共显示20个碳信号,结合DEPT谱,推断δC 168.8, 167.3, 162.7, 159.5, 150.1为羰基碳信号;10个芳香碳信号;δC 65.9, 59.8为2个连杂原子的次甲基碳信号;δC 52.4, 28.6, 20.5为3个甲基碳信号,结合氢谱信号,确定有一个甲氧基和一个氮甲基。碳信号归属为:δC 168.8 (C-3′)、167.3 (C-8″)、162.7 (C-10)、159.5 (C-4)、151.2 (C-8a)、150.1 (C-2)、146.3 (C-7)、139.3 (C-2′′)、138.2 (C-6)、134.2 (C-6′′)、130.7 (C-4′′)、127.2 (C-4a)、123.4 (C-5′′)、120.7 (C-7′′)、117.1 (C-3′′)、65.9 (C-4′)、59.8 (C-2′)、52.4 (C-9″)、28.6 (C-9)、20.5 (C-5′)。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ +98 (c 0.1, MeOH)。该核磁数据与参考文献[12]对照基本一致,确定该化合物为terrelumamide A。化合物3为白色结晶(甲醇),ESIMS给出的分子离子峰[M+H]+m/z 323.13。1H-NMR (600 MHz, CDCl3)中,δH 7.2-7.5 (10H, m, H-3′-H-7′, H-3′′-H-7′′)为10个芳香质子信号,提示存在2个单取代苯基;2个亚甲基质子信号δH 4.20 (2H, brs, H-1′′), 3.94 (2H, brs, H-1′);1个甲氧基质子信号δH 3.92 (3H, s, 2-OCH3)。13C-NMR (150 MHz, CDCl3)共显示19个碳信号,结合DEPT谱推断δC 158.2为羰基碳信号;12个芳香碳信号;δC 34.0, 30.4为2个亚甲基碳信号,提示结构中存在两个苄基基团;δC 61.8为甲基碳信号;δC 144.2, 140.6, 129.4为3个烯碳信号。碳信号归属为:δC 158.2 (C-5), 144.2 (C-6), 140.6 (C-2), 136.5 (C-2′′), 135.6 (C-1′), 129.6 (C-3′, 7′), 129.4 (C-3, 3′′, 7′′), 128.6 (C-4′, 6′), 127.8 (C-4′′, 6′′), 126.9 (C-5′, 5′′), 61.8 (2-OCH3), 34.0 (C-1′′), 30.4 (C-1′)。该化合物核磁数据与参考文献[13]对照基本一致,确定化合物为emeheterone。
化合物4为黄色粉末(甲醇),硫酸/香草醛显色为紫色,ESIMS给出的分子离子峰[M+H]+m/z 240.12。1H NMR (600 MHz, CD3OD)中,给出1个芳香质子信号δH 6.13 (1H, d, J = 0.7 Hz, H-5);3个次甲基氢信号δH 6.07 (1H, d, J = 3.0 Hz, H-8), 3.89 (1H, dt, J = 10.5, 3.0 Hz, H-9), 1.90 (1H, m, H-11);1个亚甲基质子信号δH 1.58 (1H, ddd, J = 12.2, 10.5, 4.6 Hz, H-10), 1.36 (1H, ddd, J = 12.2, 10.5, 3.0 Hz, H-10);3个甲基质子信号δH 2.28 (3H, s, H-7), 0.99 (3H, d, J = 6.7 Hz, H-13), 0.96 (3H, d, J = 6.7 Hz, H-12)。13C NMR (150 MHz, CD3OD)共显示12个碳信号,结合DEPT谱推断δC 155.0为羰基碳信号;4个芳香碳信号;δC 115.8, 70.5, 25.2为3个次甲基脂肪碳信号,结合对应的氢信号提示结构中存在1个缩醛碳信号和一个连氧次甲基碳信号;δC 40.4为亚甲基碳信号;δC 24.0, 21.8, 18.8为3个甲基碳信号。碳谱信号归属为:δC 157.9 (C-4)、155.0 (C-2)、143.5 (C-6)、132.7 (C-3)、115.8 (C-8)、95.0 (C-5)、70.5 (C-9)、40.4 (C-10)、25.2 (C-11)、24.0 (C-12)、21.8 (C-13)、18.8 (C-7)。该化合物的ECD曲线显示在217 nm处有负的Cotton 效应(Δε −5.86),其核磁和ECD数据与参考文献[14]对照基本一致,最终确定该化合物为(8R, 9S)-dihydroisoflavipucine。
化合物5为黄色结晶(甲醇),硫酸/香草醛显色为紫色,ESIMS给出的分子离子峰[M+H]+m/z 240.12。1H NMR (600 MHz, CD3OD)中,给出1个芳香质子信号δH 6.13 (1H, d, J = 0.7 Hz, H-5);3个次甲基氢信号δH 6.06 (1H, d, J = 3.0 Hz, H-8), 3.90 (1H, dt, J = 10.5, 3.0 Hz, H-9), 1.90 (1H, m, H-11);1组亚甲基质子信号δH 1.56 (1H, ddd, J = 12.3, 10.5, 4.6 Hz, H-10), 1.36 (1H, ddd, J = 12.3, 10.5, 3.0 Hz, H-10);3个甲基质子信号δH 2.28 (3H, s, H-7), 0.99 (3H, d, J = 6.6 Hz, H-13), 0.95 (3H, d, J = 6.6 Hz, H-12)。13C NMR (150 MHz, CD3OD)共显示12个碳信号,结合DEPT谱推断δC 155.0为羰基碳信号;4个芳香碳信号;δC 115.8, 70.5, 25.2为3个次甲基碳信号,结合对应的氢信号提示结构中存在1个次甲二氧基碳信号和一个连氧次甲基碳信号;δC 40.5为亚甲基碳信号;δC 24.0, 21.8, 18.8为3个甲基碳信号。碳信号归属为:δC 157.8 (C-4)、155.0 (C-2)、143.4 (C-6)、132.8 (C-3)、115.8 (C-8)、95.1 (C-5)、70.5 (C-9)、40.5 (C-10)、25.2 (C-11)、24.0 (C-12)、21.8 (C-13)、18.8 (C-7)。该化合物的核磁数据与化合物4对比基本一致,ECD曲线显示在217 nm处有正的Cotton 效应(Δε +25.34),提示为化合物4的差向异构体。将此化合物的核磁和ECD数据与参考文献[14]对照基本一致,最终确定化合物为(8S, 9S)-dihydroisoflavipucine。
化合物6为黄色粉末(甲醇),硫酸/香草醛溶液无明显显色,ESIMS给出的分子离子峰[M+H]+m/z 245.12。1H NMR (600 MHz, CDCl3)中,给出1组单取代的苯环芳香质子信号δH 7.32 (2H, t, J = 7.5 Hz, H-5′), 7.26 (1H, t, J = 7.5 Hz, H-4′), 7.20 (2H, d, J = 7.5 Hz, H-6′);2个次甲基氢信号δH 4.25 (1H, dd, J=10.5, 2.9 Hz, H-9), 4.04 (1H, t, J = 7.8 Hz, H-6);4组亚甲基质子信号δH 3.65-3.50 (2H, m, H-3); 3.65-3.50 (1H, m, H-10), 2.76 (1H, dd, J=14.5, 10.5 Hz, H-10); 2.30 (1H, m, H-5), 1.88 (1H,m, H-5); 1.98 (2H, m, H-4)。13C NMR (150 MHz, CDCl3)共显示14个碳信号,结合DEPT谱推断δC 169.6, 165.3为酰胺羰基碳信号;6个芳香碳信号;δC 59.3, 56.4为2个连氮次甲基碳信号;δC 45.6, 37.0, 28.5, 22.7为4个亚甲基碳信号,提示结构中存在苯丙氨酸和脯氨酸片段。碳信号归属为:δC 169.6 (C-7)、165.3 (C-1)、136.1 (C-1′)、129.4 (C-2′)、129.4 (C-6′)、129.3 (C-3′)、129.3 (C-5′)、127.7 (C-4′)、59.3 (C-6)、56.4 (C-9)、45.6 (C-3)、37.0 (C-10)、28.5 (C-5)、22.7 (C-4)。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ -47 (c 0.1, MeOH),将核磁数据与参考文献[15]对照基本一致,最终确定化合物为cyclo(S-Pro-S-Phe)。化合物7为浅黄色粉末(甲醇),硫酸/香草醛显色不明显,ESIMS给出的分子离子峰[M+H]+m/z 284.13。1H NMR (600 MHz, DMSO-d6)中给出2个氨基质子信号δH 10.83 (1H, s, H-1′), 7.71 (1H, s, H-8);1组邻二取代的苯环芳香质子信号δH 7.54 (1H, d, J = 8.0 Hz, H-5′), 7.30 (1H, d, J = 8.0 Hz, H-8′), 7.03 (1H, t, J = 7.3 Hz, H-7′), 6.94 (1H, t, J = 7.3 Hz, H-6′);1个芳香质子单峰信号δH 7.16 (1H, s, H-2′);2个次甲基氢信号δH 4.28 (1H, t, J = 5.0 Hz, H-9), 4.04 (1H, t, J = 8.5 Hz, H-6);4组亚甲基质子信号δH 3.36 (1H, m, H-3), 3.23 (1H, m, H-10), 3.21(1H, m, H-3), 3.05 (1H, m, H-10), 1.95 (1H, m, H-5), 1.66 (1H, m, H-4), 1.59 (1H, m, H-4), 1.36 (1H, m, H-5)。13C NMR (150 MHz, DMSO-d6)共显示16个碳信号,结合DEPT谱推断δC 169.0, 165.5为酰胺羰基碳信号;8个芳香碳信号;δC 58.4, 55.2为2个连氮次甲基碳信号;δC 44.6, 27.7, 25.8, 21.8为4个亚甲基碳信号。碳信号归属为:δC 169.0 (C-7)、165.5 (C-1)、136.0 (C-9′)、127.3 (C-4′)、124.4 (C-2′)、120.8 (C-7′)、118.6 (C-5′)、118.2 (C-6′)、111.2 (C-8′)、109.3 (C-3′)、58.4 (C-6)、55.2 (C-9)、44.6 (C-3)、27.7 (C-5)、25.8 (C-10)、21.8 (C-4)。将核磁数据与化合物6对比,化合物7中吲哚基取代了化合物6中的苯基。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ -90 (c 0.1, MeOH),将该核磁数据与参考文献[16]对照基本一致,最终确定化合物为brevianamide F。化合物8为棕黄色油状(甲醇),ESIMS给出的分子离子峰[M+Na]+m/z 177.06。1H NMR (600 MHz, DMSO-d6)中,给出3个烯氢信号δH 6.72 (1H, m, H-7), 6.37 (1H, d, J = 15.8 Hz, H-6), 6.00 (1H, s, H-2),其中一对为反式烯氢;2个羟基信号δH 5.80 (1H, s, 5-OH), 5.68 (1H, s, 4-OH);2个连氧次甲基质子信号δH 4.50 (1H, m, H-4), 3.89 (1H, m, H-5);1个甲基质子信号δH 1.88 (3H, d, J = 6.3 Hz, H-8)。13C NMR (150 MHz, DMSO-d6)共显示8个碳信号,结合DEPT谱,推断δC 203.7为酮羰基碳信号;4个双键碳信号;δC 80.8, 76.4为2个连氧次甲基碳信号;δC 19.1为甲基碳信号。碳信号归属为:δC 203.7 (C-1)、168.5 (C-3)、139.4 (C-7)、125.5 (C-6)、124.8 (C-2)、80.8 (C-5)、76.4 (C-4)、19.1 (C-8)。该化合物的比旋光值为
$[\alpha]_{\rm{D}}^{20} $ +78 (c 0.1, MeOH),将该化合物核磁数据与参考文献[17]对照基本一致,确定化合物为terrein。3. 活性测试
对分离得到的化合物进行α-葡萄糖苷酶抑制活性的测试。采用PBS缓冲液为反应体系,利用α-葡萄糖苷酶,以4-硝基苯基-α-D吡喃葡萄糖苷(PNPG)为特异性底物,以阿卡波糖作为阳性药,分别设立空白对照组、α-葡萄糖苷酶空白组和PNPG空白组,评价化合物的α-葡萄糖苷酶的抑制活性。结果表明,化合物3具有较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L。其他化合物没有明显的α-葡萄糖苷酶的抑制活性。另外,还对化合物的抗氧化活性进行测试。采用DPPH的方法,以抗氧化剂N-乙酰半胱氨酸作为阳性药对分离得到的化合物进行了体外抗氧化活性测试。结果显示这些化合物抗氧化活性不明显。
4. 讨论
本研究从棕色扁海绵共附生真菌土曲霉中分离得到了8个化合物,其中化合物3、4、5、7为首次从该菌中分离得到,丰富了土曲霉次级代谢产物的多样性,为进一步探索该属真菌的化学成分和生源途径提供了理论依据。
根据文献报道,化合物2可以提高胰岛素的敏感性[13],化合物4和5测试了多个肿瘤细胞系,均显示细胞毒活性不明显[15],化合物6对大肠杆菌、金黄色葡萄球菌、黄体微球菌、白色念珠菌和隐球菌等具有很好的抗菌活性[16],化合物7对PaCa-2胰腺细胞的抗癌活性和抗菌活性都不明显[17],化合物8能够抑制雄激素依赖性前列腺癌细胞LNCaP-CR的血管生成素分泌,能够抑制人脐静脉内皮细胞的血管形成[18]。为了更好的探究该真菌代谢产物的活性,对分离得到的化合物进行了α-葡萄糖苷酶抑制活性和抗氧化活性测试。其中化合物3显示了较强的α-葡萄糖苷酶的抑制活性,IC50值为14.28 µmol/L,其α-葡萄糖苷酶抑制活性的机制有待于进一步研究。
-
表 1 SGLT-2抑制剂的心血管安全性研究
试验项目 EMPA-REG OUTCOME CANVAS DECLARE-TIMI 58 干预措施 恩格列净(10~25 mg/d) 卡格列净(100~300 mg/d) 达格列净(10 mg/d) 样本量(例,T/C①) 4687/2333 5795/4347 8582/ 8578 平均年龄(年) 63.1 63.3 64.0 中位随访期(年) 3.1 2.4 4.2 合并ASCVD(例,%) 7020(100%) 6656(65.6%) 6974(40.6%) 主要事件(HR,95%CI) 0.86(0.74~0.99) 0.86(0.75~0.97) 0.93(0.84~1.03) 心肌梗死 0.87(0.70~1.09) 0.85(0.69~1.05) NA 缺血性卒中 1.18(0.89~1.56) 0.90(0.71~1.15) 1.01(0.84~1.21) 心血管死亡 0.62(0.49~0.77) 0.87(0.72~1.06) 0.98(0.82~1.17) 全因死亡 0.68(0.57~0.82) 0.87(0.74~1.01) 0.93(0.82~1.04) 心力衰竭住院 0.65(0.50~0.85) 0.67(0.52~0.87) 0.73(0.61~0.88) 注:T/C:试验组/对照组;ASCVD,动脉粥样硬化性心血管疾病;NA,无数据。 表 2 GLP-1受体激动剂的心血管安全性研究
试验项目 EXSCEL SUSTAIN-6 LEADER ELIXA 干预措施 艾塞那肽(2 mg/w) 索马鲁肽(0.5~1.0 mg/w) 利拉鲁肽(0.6~1.8 mg/d) 利司那肽(10~20 μg/d) 样本量(例,T/C①) 7256/7396 1648/1649 4668/4672 3034/3034 中位随访期(年) 3.2 2.1 3.5 2.1 合并ASCVD(例,%) 10782(73.1%) 2735(83%) 6764(72.4%) 6068(100%) 主要终点(HR,95%CI) 0.91 (0.83~1.00) 0.74(0.58~0.95) 0.87 (0.78~0.97) 1.02 (0.89~1.17) 心肌梗死 0.97 (0.85~1.10) 0.74 (0.51~1.08) 0.86 (0.73~1.00) 1.03 (0.87~1.22) 缺血性卒中 0.85 (0.70~1.03) 0.61 (0.38~0.99) 0.86 (0.71~1.06) 1.11 (0.47~2.62) 心血管死亡 0.88 (0.76~1.02) 0.98 (0.65~1.48) 0.78 (0.66~0.93) 0.98 (0.78~1.22) 全因死亡 0.86 (0.77~0.97) 1.05 (0.74~1.50) 0.85 (0.74~0.97) 0.94 (0.78~1.13) 心力衰竭住院 0.94 (0.78~1.13) 1.11 (0.77~1.61) 0.87 (0.73~1.05) 0.96 (0.75~1.23) 注:T/C:试验组/对照组。 -
[1] IDF DIABETES ATLAS, 9TH EDITION. Brussels; 2019. International Diabetes Federation. [2] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1):44-67. [3] GOLDFINE A B. Assessing the cardiovascular safety of diabetes therapies[J]. N Engl J Med,2008,359(11):1092-1095. doi: 10.1056/NEJMp0805758 [4] BAKRIS G L, FONSECA V A, SHARMA K, et al. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications[J]. Kidney Int,2009,75(12):1272-1277. doi: 10.1038/ki.2009.87 [5] ZINMAN B, WANNER C, LACHIN J M, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med,2015,373(22):2117-2128. doi: 10.1056/NEJMoa1504720 [6] NEAL B, PERKOVIC V, MAHAFFEY K W, et al. Canagli- flozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(7):644-657. doi: 10.1056/NEJMoa1611925 [7] WIVIOTT S D, RAZ I, BONACA M P, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med,2019,380(4):347-357. doi: 10.1056/NEJMoa1812389 [8] ZELNIKER T A, WIVIOTT S D, RAZ I, et al. SGLT2 inhibi- tors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet,2019,393(10166):31-39. doi: 10.1016/S0140-6736(18)32590-X [9] ARNOTT C, LI Q, KANG A, et al. Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis[J]. J Am Heart Assoc,2020,9(3):e014908. [10] TOYAMA T, NEUEN B L, JUN M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and meta-analysis[J]. Diabetes Obes Metab,2019,21(5):1237-1250. doi: 10.1111/dom.13648 [11] KOSIBOROD M, CAVENDER M A, FU A Z, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors)[J]. Circulation,2017,136(3):249-259. doi: 10.1161/CIRCULATIONAHA.117.029190 [12] KOSIBOROD M, LAM C S P, KOHSAKA S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study[J]. J Am Coll Cardiol,2018,71(23):2628-2639. doi: 10.1016/j.jacc.2018.03.009 [13] RYAN P B, BUSE J B, SCHUEMIE M J, et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: a real-world meta-analysis of 4 observational databases (OBSERVE-4D)[J]. Diabetes Obes Metab,2018,20(11):2585-2597. doi: 10.1111/dom.13424 [14] PATORNO E, PAWAR A, FRANKLIN J, et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care: a first analysis from the empagliflozin comparative effec- tiveness and safety (EMPRISE) Study[J]. Circulation,2019,139(25):2822-2830. doi: 10.1161/CIRCULATIONAHA.118.039177 [15] MAYO K E, MILLER L J, BATAILLE D, et al. International union of pharmacology. XXXV. The glucagon receptor family[J]. Pharmacol Rev,2003,55(1):167-194. doi: 10.1124/pr.55.1.6 [16] BAN K, NOYAN-ASHRAF M H, HOEFER J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and independent pathways[J]. Circulation,2008,117(18):2340-2350. doi: 10.1161/CIRCULATIONAHA.107.739938 [17] MARSO S P, DANIELS G H, BROWN-FRANDSEN K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med,2016,375(4):311-322. doi: 10.1056/NEJMoa1603827 [18] MARSO S P, BAIN S C, CONSOLI A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med,2016,375:1834-1844. doi: 10.1056/NEJMoa1607141 [19] HOLMAN R R, BETHEL M A, MENTZ R J, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med,2017,377(13):1228-1239. doi: 10.1056/NEJMoa1612917 [20] PFEFFER M A, CLAGGETT B, DIAZ R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome[J]. N Engl J Med,2015,373(23):2247-2257. doi: 10.1056/NEJMoa1509225 [21] BETHEL M A, PATEL R A, MERRILL P, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis[J]. Lancet Diabetes Endo,2018,6(2):105-113. doi: 10.1016/S2213-8587(17)30412-6 [22] KRISTENSEN S L, RORTH R, JHUND P S, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor ago- nists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endo,2019,7(10):776-785. doi: 10.1016/S2213-8587(19)30249-9 [23] MIRANI M, FAVACCHIO G, SERONE E, et al. Liraglutide and cardiovascular outcomes in a real world type 2 diabetes cohort[J]. Pharmacol Res,2018,137:270-279. doi: 10.1016/j.phrs.2018.09.003 [24] TOULIS K A, HANIF W, SARAVANAN P, et al. All-cause mortality in patients with diabetes under glucagon-like peptide-1 agonists: a population-based, open cohort study[J]. Diabetes Metab,2017,43(3):211-216. doi: 10.1016/j.diabet.2017.02.003 [25] AMERICAN DIABETES ASSOCIATION. Standards of medi- cal care in diabetes-2020[J]. Diabetes Care,2020,43(Suppl 1):S1-S212. [26] TÄGER T, ATAR D, AGEWALL S, et al. Comparative effi- cacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials[J]. Heart Fail Rev,2020. doi: 10.1007/s10741-020-09954-8 [27] YAMI M S A, ALFAYEZ O M, ALSHEIKH R, et al. Update in cardiovascular safety of glucagon like peptide-1 receptor ago- nists in patients with type 2 diabetes. a mixed treatment compari- son meta-analysis of randomised controlled trials[J]. Heart Lung Circ,2018,27(11):1301-1309. doi: 10.1016/j.hlc.2018.03.018 [28] FEI Y, TSOI M F, CHEUNG B M Y. Cardiovascular outcomes in trials of new antidiabetic drug classes: a network meta-analysis[J]. Cardiovasc Diabetol,2019,18(1):112. doi: 10.1186/s12933-019-0916-z [29] ZHENG S L, RODDICK A J, AGHAR-JAFFAR R, et al. Association between use of sodium-glucose cotransporter 2 inhibi- tors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis[J]. JAMA,2018,319(15):1580-1591. doi: 10.1001/jama.2018.3024 [30] ADVANCE COLLABORATIVE GROUP, PATEL A, MAC- MAHON S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes[J]. N Engl J Med,2008,358(24):2560-2572. doi: 10.1056/NEJMoa0802987 -