留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

茚满霉素类天然产物的研究进展

朱玉琴 吴杰群 孙鹏

闪雪纯, 李旭, 杜红丽, 鲍蕾蕾, 王慧. 肝胆外科肿瘤患者应用利奈唑胺致血小板减少危险因素分析[J]. 药学实践与服务, 2023, 41(11): 694-699. doi: 10.12206/j.issn.2097-2024.202210061
引用本文: 朱玉琴, 吴杰群, 孙鹏. 茚满霉素类天然产物的研究进展[J]. 药学实践与服务, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034
SHAN Xuechun, LI Xu, DU Hongli, BAO Leilei, WANG Hui. Risk factors of linezolid-related thrombocytopenia in patients in the department of hepatobiliary surgery[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(11): 694-699. doi: 10.12206/j.issn.2097-2024.202210061
Citation: ZHU Yuqin, WU Jiequn, SUN Peng. Research progress on indanomycin natural products[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034

茚满霉素类天然产物的研究进展

doi: 10.12206/j.issn.1006-0111.201910034
基金项目: 国家自然科学基金(81622044,81573342,41876184);上海市科委基金(18ZR1449600)
详细信息
    作者简介:

    朱玉琴,硕士研究生,研究方向:分子生物学,Email:zyq15700086152@163.com

  • 中图分类号: R914

Research progress on indanomycin natural products

  • 摘要: 茚满霉素类天然产物是一类具有反式四氢茚满环(indan)结构的微生物次级代谢产物,该类化合物普遍具有良好的抗菌、杀虫以及抗肿瘤等生物活性,因而引起了药物化学家和生物学家的广泛兴趣。对1979年至今有关茚满霉素类化合物的天然发现、生物活性、化学合成以及生物合成等方面的研究进展进行综述,为该类抗生素的基础和应用研究提供科学参考。
  • 肾衰宁颗粒由太子参、黄连、制半夏、陈皮、茯苓、大黄、丹参、牛膝、红花、甘草等十味中药制成;具有补气健脾,活血化痰,祛浊的功效[1]。有文献表明,肾衰宁在治疗慢性肾脏疾病中疗效较为显著[2];在尿毒症腹膜透析患者的治疗过程中能够降低血清硫酸吲哚酯浓度[3];对于慢性肾脏病的Ⅳ期患者,在西医基础治疗的同时服用肾衰宁颗粒,可以明显改善肾功能,同时提升患者的治愈率,具有较高的临床使用价值[4]。由于中药成分复杂[5],使得如何控制中药的质量成为十分重要的问题。指纹图谱是在了解中药物质整体作用的基础上,通过光谱和色谱技术获得中药化学成分的光谱或色谱图,以鉴别中药的真伪,评价质量的一致性和产品的稳定性,其具有信息量大、特征性强、完整性和模糊性等特点[6]。指纹图谱中的质量控制技术既能保证中药的功效,又在实现中药现代化过程中起关键性作用[7]。因此,本实验以10个批次的肾衰宁颗粒为研究对象,拟建立肾衰宁颗粒的指纹图谱,对肾衰宁颗粒进行质量评价。

    肾衰宁颗粒是由十味中药组成的复方制剂,其化学成分十分复杂,且许多复方治疗疾病的药物基础并不明显,因此检测成分必须是发挥药效的有效成分[8],本实验针对大黄中的大黄酚(chrysophanol)[9-10]、丹参中的丹酚酸B(salvianolic acid B)[11]、陈皮中的橙皮苷(hesperidin)[9, 12]3种指标性成分,进行HPLC法含量测定。在多成分的质量控制检测成本高而对照品紧缺的情况下,能较大程度地节约检验成本,又可较全面地控制该制剂的质量,保证临床用药的有效性和安全性,同时为肾衰宁颗粒的质量控制提供参考。

    Agilent 1260高效液相色谱仪(美国Agilent公司),包含G1311C四元泵,G1329B自动进样器,G1316A柱温箱,G4212B-DAD二极管阵列检测器,Chemstation色谱工作站;光电分析天平(德国Sartorius公司,CPA 225D型),最大载荷220 g,分度值0.01 mg;冷冻真空浓缩仪(丹麦Labogene公司,ScanVac ScanSpeed 40型);超声波清洗器(上海科导超声仪器有限公司,SK7200H型);涡旋混匀器(海门市其林贝尔仪器制造有限公司,Vortex QL-901型)。

    肾衰宁颗粒(德元堂制药集团,批号:51103111、51103009 346、51103010 471、51103011 593、51103105、51103018 486、41103033 563、51103110、61103102、61103101)。蜕皮激素(ecdysterone,批号:P11N6F5706)、甘草苷(liquiritin,批号:2O1027BA14)、甘草酸(glycyrrhizic acid,批号:230A6B1)、大黄酚(chrysophanol,批号:T31O6F5345)、丹酚酸B(salvianolic acid B,批号:Y14M7H14804)、橙皮苷(hesperidin,批号:K02M3C1)对照品,均由上海源叶有限公司提供。大黄素(modin,批号:110756-200110)、盐酸小檗碱(berberine hydrochloride,批号:09030522)对照品,由中国食品药品检定研究院提供。甲醇、乙腈、甲酸,均为德国Merck公司生产,色谱纯。二氯甲烷,色谱纯。水为纯净水,娃哈哈公司生产。

    色谱柱:Waters SunFire™ C18(250 mm×4.6 mm,5 μm)。流动相A:乙腈;流动相B:0.1%甲酸溶液,梯度洗脱。流速:1 ml/min。柱温:25 ℃。进样量:10 μl。检测波长:254 nm。梯度洗脱条件见表1

    表  1  梯度洗脱条件
    时间(t/min)乙腈(%)0.1%甲酸溶液(%)
    0595
    12377
    182575
    193070
    317525
    608515
    下载: 导出CSV 
    | 显示表格

    精密依次称取丹酚酸B、橙皮苷、大黄素标准品10.25、10.35、10.05 mg,分别置于10 ml容量瓶中,以纯甲醇定容至刻度,摇匀,得储备液并将其分装后储存于−20 ℃的冰箱中。精密称取10.10 mg大黄酚,置于10 ml容量瓶中,加入少量二氯甲烷溶解,超声处理3 min,然后用纯甲醇稀释至刻度,摇匀,得到对照品的储备液,置于−20 ℃冰箱保存。

    取肾衰宁颗粒适量,研磨成细粉,混合均匀,精密称取0.10 g,加适量70%甲醇溶液使其溶解,超声45 min,再用70%甲醇溶液定容至2 ml,冷却,过0.45 μm微孔滤膜后,取续滤液进样分析。

    2.4.1   精密度试验

    取肾衰宁颗粒(批号:41103033 563),按照“2.3”项制备供试品溶液,在“2.1”项色谱条件下连续进样5次,通过大黄素(7号色谱峰)作为参照峰,确定相对保留时间和相对峰面积。相对保留时间的RSD在1.0%以内,相对峰面积的RSD在2.0%以内,表明进样仪器的精密度良好。

    2.4.2   重复性试验

    取肾衰宁颗粒(批号:41103033 563),按照“2.3”项平行制备5份供试品溶液,测定在“2.1”项色谱条件下的相对保留时间和相对峰面积。相对保留时间RSD在1.0%以内,相对保留面积RSD在2.0%以内。表明该实验方法的重复性良好。

    2.4.3   稳定性试验

    取肾衰宁颗粒(批号:41103033 563),并根据“2.3”项下平行制备5份供试品溶液,在“2.1”项色谱条件下,分别记录0、4、8、24、36 h的相对保留时间和相对峰面积。相对保留时间RSD在1.0%以内,相对保留面积RSD在2.0%以内。表明供试样品溶液在36 h内稳定性好。

    分别称取10个批次的肾衰宁粉末,按照“2.3”项制备供试品溶液,每个批次平行制备3份供试品溶液,记录图谱,见图1。利用中国药典委员会“中药色谱指纹图谱相似度评价系统2008A版”的软件,将10批次肾衰宁颗粒的图谱导入,将批号为61103102的样品溶液用作针对相似性计算校正的参考图。结果显示,1~9批制剂间指纹图谱与对照图谱之间相似度均不小于0.90,见表2,表明相似度良好。对保留时间0~60 min内的色谱峰进行分析,均有22个稳定的特征峰,确定其为肾衰宁的共有指纹峰,经过标准品比对,其中,6号峰为橙皮苷,14号峰为丹酚酸B,21号峰为大黄酚。

    图  1  10批肾衰宁颗粒的色谱图
    表  2  10批肾衰宁颗粒HPLC指纹图谱相似度
    样品号S1S2S3S4S5S6S7S8S9S10对照指纹图谱
    S11.0000.9800.9100.9410.9340.9480.9160.9410.9500.8740.965
    S20.9801.0000.9340.9340.9320.9450.9510.9460.9780.8670.973
    S30.9100.9341.0000.9520.9470.9370.9720.9400.9450.9140.973
    S40.9410.9340.9521.0000.9900.9840.9510.9710.9230.9400.986
    S50.9340.9320.9470.9901.0000.9780.9380.9760.9100.9100.979
    S60.9480.9450.9370.9840.9781.0000.9540.9870.9310.9230.986
    S70.9160.9510.9720.9510.9380.9541.0000.9490.9660.9130.979
    S80.9410.9460.9400.9710.9760.9870.9491.0000.9280.8900.980
    S90.9500.9780.9450.9230.9100.9310.9660.9281.0000.8920.969
    S100.8740.8670.9140.9400.9100.9230.9130.8900.8921.0000.937
    对照指纹图谱0.9650.9730.9730.9860.9790.9860.9790.9800.9690.9371.000
    下载: 导出CSV 
    | 显示表格
    2.6.1   线性结果考察

    按照“2.2”项下制备标准品溶液,得到混合对照品色谱图见图2。将标准品储备液用纯甲醇稀释,丹酚酸B浓度梯度为:10、20、40、80和100 μg/ml;橙皮苷浓度梯度为:40、80、160、320和400 μg/ml;大黄酚浓度梯度为:8、16、40、100和350 μg/ml。在“2.1”项色谱条件下,分别记录3种成分的峰面积,以峰面积(Y)对浓度(X)进行线性回归,结果见表3

    图  2  混合对照品溶液(A)和供试品溶液(B)色谱图
    1.橙皮苷;2.丹酚酸B;3.大黄酚
    表  3  各成分线性关系
    对照品回归方程r线性范围(μg/ml)
    橙皮苷Y=2.391 8X–2.798 30.999 740~400
    丹酚酸BY=10.689X–5.578 30.999 810~100
    大黄酚Y=58.983X+121.990.999 97~350
    下载: 导出CSV 
    | 显示表格
    2.6.2   精密度试验

    取同一对照品溶液,根据“2.1”项下色谱条件进行测定,重复进样5次,并记录峰面积。橙皮苷、丹酚酸B、大黄酚峰面积的RSD分别为0.17%、0.20%、0.15%,表明仪器精密度良好。

    2.6.3   检测限和定量限

    精密吸取橙皮苷、丹酚酸B、大黄酚对照品溶液适量,使用甲醇逐步稀释,至色谱图中上述3种成分的峰高分别为噪音的3倍和10倍,测得橙皮苷的检测限和定量限分别为0.18和1 μg/ml;丹酚酸B的检测限和定量限分别为0.3和1.2 μg/ml;大黄酚的检测限和定量限分别为1和5 μg/ml。

    2.6.4   稳定性试验

    取同一供试品溶液(批号:41103033 563),并根据“2.1”项色谱条件在0、2、4、8、24、36 h测定。橙皮苷、丹酚酸B、大黄酚的峰面积的RSD分别为2.01%、2.22%、2.05%,结果表明:供试品在36 h内稳定。

    2.6.5   重复性试验

    取同一供试品溶液(批号:41103033 563),平行制备6份,并根据“2.1”项色谱条件进行测定,橙皮苷、丹酚酸B、大黄酚的峰面积的RSD分别为0.67%、2.00%、2.02%,表明系统重复性良好。

    2.6.6   加样回收率试验

    精密量取肾衰宁溶液1 ml,分别加入100%含量橙皮苷对照品(理论值为192.02 μg),100%含量丹酚酸B对照品(理论值为62.66 μg),100%含量大黄酚对照品(理论值35.22 μg),按照“2.2”项平行制备6份,并根据“2.1”的色谱条件进行测量,按照下述公式计算加样回收率,平均加样回收分别为119.20%、84.69%、84.58%。结果见表4

    表  4  加样回收率试验结果
    成分取样量(V/ml)样品含量(m/μg)加入量(m/μg)测得量(m/μg)回收率(%)平均回收率(%)
    橙皮苷1.00383.0295.88773.46101.80100.27
    1.00380.3995.88764.91100.26
    1.00380.3195.88763.64 99.95
    1.00384.4695.88771.17100.83
    1.00385.8195.88772.95100.94
    1.00389.2095.88764.32 97.81
    丹酚酸B1.00120.7931.80250.42101.91 98.82
    1.00122.5031.80251.14101.12
    1.00125.5631.80248.78 96.87
    1.00127.5731.80254.87100.07
    1.00127.7431.80251.44 97.25
    1.00127.7531.80249.44 95.66
    大黄酚1.00 72.6717.79138.19 92.06 97.36
    1.00 69.6217.79135.41 92.44
    1.00 68.4617.79140.83101.69
    1.00 71.0317.79141.25 98.66
    1.00 68.9817.79141.57102.00
    1.00 71.9217.79141.17 97.30
    下载: 导出CSV 
    | 显示表格

    回收率=(实测量-样品含量)/加入量×100%。

    2.6.7   样品含量测定

    取10批肾衰宁颗粒,按“2.2”项制备试液,按“2.1”项色谱条件测定,结果见表5

    表  5  10批肾衰宁样品中3种成分的测定结果
    药品批号橙皮苷(μg/ml)丹酚酸B(μg/ml)大黄酚(μg/ml)
    6110310266.9942.2944.65
    5110311083.4139.3442.89
    5110311194.7541.3644.51
    51103009 34680.5743.2143.44
    51103011 59383.5142.0442.58
    51103018 48679.9441.9442.96
    51103010 47190.0341.8844.03
    41103033 56383.4843.0143.94
    6110310185,9242.9343.85
    5110310588.0441.7642.94
    下载: 导出CSV 
    | 显示表格

    在190~400 nm处全波长扫描,盐酸小檗碱、大黄素、大黄酚、丹酚酸B、蜕皮激素、甘草酸、甘草苷、橙皮苷分别在345、254、254、286、250、237、237、283 nm处有最大吸收,通过对比分析,在波长254 nm处,上述8种成分具有良好的响应,样品中相邻色谱峰的基线分离可以满足含量检测的要求。因此,选择波长254 nm作为检测波长。

    将肾衰宁粉末直接用水溶解后进样,发现样品出峰很少,所测成分在色谱条件下没有吸收。后用50%、70%、80%的甲醇溶解样品,发现用70%甲醇溶解出峰数最多,且所测成分在此条件下均有吸收,故选择70%甲醇进行样品的前处理。

    有文献报道,肾衰宁含量测定使用甲醇-0.1%磷酸[13]、乙腈-水-1%甲酸[14]、乙腈-05%磷酸[15]进行90 min的大梯度洗脱,发现色谱峰分不开,且特征峰较少。经过反复实验,确定乙腈-0.1%甲酸水溶液用作梯度洗脱的流动相,分离出样品中测得的特征峰,特征峰很多,峰形良好。

  • 图  1  茚满霉素及其天然类似物

    图  2  茚满霉素中间体(10)的化学合成路线

    图  3  茚满霉素中间体(11)的化学合成路线

    图  4  茚满霉素的化学合成路线

    图  5  茚满霉素的生物合成基因簇、PKS模块、前体合成及后修饰过程推测

  • [1] LIU C M, HERMANN T E, LIU M, et al. X-14547A, a new ionophorous antibiotic produced by Streptomyces antibioticus NRRL 8167. Discovery, fermentation, biological properties and taxonomy of the producing culture[J]. J Antibiot,1979,32(2):95-99. doi:  10.7164/antibiotics.32.95
    [2] MURENETS N V, KUDINOVA M K, KOROBKOVA T P, et al. Kafamycin: a new pyrrol ether antibiotic[J]. Antibiot Med Biotechnol,1987,32(11):811-814.
    [3] LARSEN S H, BOECK L D, MERTZ F P, et al. 16-Deethylindanomycin (A83094A), a novel pyrrole-ether antibiotic produced by a strain of Streptomyces setonii. Taxonomy, fermentation, isolation and characterization[J]. J Antibiot,1988,41(9):1170-1177. doi:  10.7164/antibiotics.41.1170
    [4] LIAN X Y, ZHANG Z Z. Indanomycin-related antibiotics from marine Streptomyces antibioticus PTZ0016[J]. Nat Prod Res,2013,27(23):2161-2167. doi:  10.1080/14786419.2013.793688
    [5] MIAO S. Stawamycin, A new pyrroloketoindane natural product from the cultures of Streptomyces sp[J]. Tetrahedron Lett,1995,36(32):5699-5702. doi:  10.1016/00404-0399(50)11274-
    [6] DIAS L C, JARDIM L S A, FERREIRA A A, et al. Towards the total synthesis of Stawamycin. Synthesis of C11-C21 fragment[J]. J Braz Chem Soc,2001,12(4):463-466. doi:  10.1590/S0103-50532001000400003
    [7] IZUMIKAWA M, KOMAKI H, HASHIMOTO J, et al. Stawamycin analog, JBIR-11 from Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830[J]. J Antibiot,2008,61(5):326-329. doi:  10.1038/ja.2008.47
    [8] FAYE D, MBAYE M D, COUFOURIER S, et al. Zinc mediated straightforward access to diacylpyrroles[J]. Comptes Rendus Chimie,2017,20(5):492-499. doi:  10.1016/j.crci.2017.01.003
    [9] GUMILA C, ANCELIN M L, JEMINET G, et al. Differential in vitro activities of ionophore compounds against Plasmodium falciparum and mammalian cells[J]. Antimicrob Agents Chemother,1996,40(3):602-608. doi:  10.1128/AAC.40.3.602
    [10] ZHANG D, NAIR M G, MURRY M, et al. Insecticidal activity of indanomycin[J]. J Antibiot,1997,50(7):617-620. doi:  10.7164/antibiotics.50.617
    [11] 张鑫, 姜南, 沈雪莉, 等. 土壤链霉菌HS-HY-197抗肿瘤代谢产物的研究[C]//2010年中国药学大会暨第十届中国药师周论文集. 天津, 2010: 4394-4398.
    [12] AZZI N, GRIFFEN E, LIGHT M, et al. An enantioselective desymmetrisation approach to C9-substituted trans-hydrindene rings based on a diastereotopic group-selective intramolecular Diels-Alder reaction[J]. Chem Commun (Camb),2006(47):4909-4911. doi:  10.1039/B607488J
    [13] WHITNEY R A. Cyclic hydroboration of geraniol derivatives: a synthesis of the left-hand portion of X-14547A[J]. Can J Chem,1986,64(4):803-807. doi:  10.1139/v86-132
    [14] CLARKE S L, MCSWEENEY C M, MCGLACKEN G P. Investigation of a novel diamine based chiral auxiliary in the asymmetric alkylation of ketones[J]. Tetrahedron: Asymmetry,2014,25(4):356-361. doi:  10.1016/j.tetasy.2014.01.006
    [15] ROUSH W R, MYERS A G. Antibiotic X-14547A: total synthesis of the right-hand half[J]. J Org Chem,1981,46(7):1509-1511. doi:  10.1021/jo00320a060
    [16] BOECKMAN R K, ENHOLM E J, DEMKO D M, et al. An efficient enantioselective total synthesis of (-)-X-14547A (indanomycin)[J]. J Org Chem,1986,51(24):4743-4745. doi:  10.1021/jo00374a054
    [17] ROEGE K E, KELLY W L. Biosynthetic origins of the ionophore antibiotic indanomycin[J]. Org Lett,2009,11(2):297-300. doi:  10.1021/ol802422n
    [18] RAVINDRAN A, SUNDERRAJAN S, PENNATHUR G. Phylogenetic studies on the prodigiosin biosynthetic operon[J]. Curr Microbiol,2019,76(5):597-606. doi:  10.1007/s00284-019-01665-0
    [19] LI C X, ROEGE K E, KELLY W L. Analysis of the indanomycin biosynthetic gene cluster from Streptomyces antibioticus NRRL 8167[J]. ChemBioChem,2009,10(6):1064-1072. doi:  10.1002/cbic.200800822
    [20] NIEHS S P, DOSE B, SCHERLACH K, et al. Genome mining reveals endopyrroles from a nonribosomal peptide assembly line triggered in fungal-bacterial symbiosis[J]. ACS Chem Biol,2019,14(8):1811-1818. doi:  10.1021/acschembio.9b00406
    [21] MIYANAGA A. Michael additions in polyketide biosyn-thesis[J]. Nat Prod Rep,2019,36(3):531-547. doi:  10.1039/C8NP00071A
    [22] LUHAVAYA H, DIAS M V B, WILLIAMS S R, et al. Enzymology of pyran Ring A formation in salinomycin biosynthesis[J]. Angew Chem Int Ed,2015,54(46):13622-13625. doi:  10.1002/anie.201507090
    [23] KNIRSCHOVÁ R, NOVÁKOVÁ R, FECKOVÁ L, et al. Multiple regulatory genes in the salinomycin biosynthetic gene cluster of Streptomyces albus CCM 4719[J]. Folia Microbiol (Praha),2007,52(4):359-365. doi:  10.1007/BF02932090
    [24] SULTANA A, KALLIO P, JANSSON A, et al. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation[J]. EMBO J,2004,23(9):1911-1921. doi:  10.1038/sj.emboj.7600201
    [25] KLYMYSHIN D A, STEFANYSHYN O N, FEDORENKO V A. Role of genes snoaM, snoaL, and snoaE in the biosynthesis of nogalamycin in Streptomyces nogalater Lv65[J]. Cytol Genet,2015,49(3):152-157. doi:  10.3103/S0095452715030081
    [26] ROMMEL K R, LI C X, KELLY W L. Identification of a tetraene-containing product of the indanomycin biosynthetic pathway[J]. Org Lett,2011,13(10):2536-2539. doi:  10.1021/ol200570u
  • [1] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [2] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [3] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 1-7. doi: 10.12206/j.issn.2097-2024.202406035
    [4] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [5] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [6] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [7] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [8] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [9] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [10] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [11] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [12] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
  • 期刊类型引用(12)

    1. 马启刚,徐光红,高贵,程志坤. 不同剂量羟考酮对胃肠肿瘤手术患者术后致痛物质水平和组织灌注及肠道屏障的影响. 中国临床研究. 2024(08): 1214-1218 . 百度学术
    2. 杨岳,彭俊波,韩锋. 羟考酮复合右美托咪定对甲状腺腔镜手术患者全身麻醉气管插管应激反应的影响. 中国药物应用与监测. 2024(05): 568-572 . 百度学术
    3. 杨芳. 舒芬太尼诱发呛咳反应的研究进展. 中国城乡企业卫生. 2023(01): 42-44 . 百度学术
    4. 李一男. 舒芬太尼在小儿疝气修补术中的不良反应发生情况及其影响因素分析. 中国医学创新. 2023(02): 124-127 . 百度学术
    5. 田岩,赵媛媛. 右美托咪定联合羟考酮在腹腔镜胃肠手术患者中的应用研究. 中外医疗. 2023(23): 100-104 . 百度学术
    6. 童鹏才,徐小凯,洪婷,吴沛琴. 右美托咪定辅助全身麻醉对妇科腹腔镜手术患者麻醉恢复期躁动的影响及风险预测模型构建. 药品评价. 2023(08): 1024-1027 . 百度学术
    7. 吴维强,姚泽宇,王学军. 羟考酮与舒芬太尼在老年股骨转子间骨折患者PFNA内固定术中的应用效果对比. 局解手术学杂志. 2022(06): 515-519 . 百度学术
    8. 张武华,张宇菲. 羟考酮联合丙泊酚与舒芬太尼联合丙泊酚在气道困难者中的应用. 中国卫生标准管理. 2022(11): 156-159 . 百度学术
    9. 邓国鹏,孙亮亮,孙能宏. 氢溴酸依他佐辛联合舒芬太尼对经腹腔镜胃癌根治术患者炎性因子及疼痛介质的影响. 现代医学与健康研究电子杂志. 2021(02): 32-34 . 百度学术
    10. 张迪,王珊珊,张洁,李燕爽. 腹腔镜术后麻醉苏醒期病人躁动防控措施的应用分析. 全科护理. 2021(30): 4262-4265 . 百度学术
    11. 杨振宇,周莉媛,钱家树,林学正. 低流量七氟醚复合舒芬太尼在盆腔炎性包块腹腔镜微创术中的麻醉作用. 中国妇幼保健. 2021(24): 5639-5643 . 百度学术
    12. 赵超,张潇,田皇华,王双华. 羟考酮复合舒芬太尼诱导在腹腔镜胆囊切除术中的麻醉效果观察. 名医. 2020(15): 70-72 . 百度学术

    其他类型引用(0)

  • 加载中
图(5)
计量
  • 文章访问数:  10615
  • HTML全文浏览量:  2024
  • PDF下载量:  75
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2020-03-11
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-05-01

茚满霉素类天然产物的研究进展

doi: 10.12206/j.issn.1006-0111.201910034
    基金项目:  国家自然科学基金(81622044,81573342,41876184);上海市科委基金(18ZR1449600)
    作者简介:

    朱玉琴,硕士研究生,研究方向:分子生物学,Email:zyq15700086152@163.com

  • 中图分类号: R914

摘要: 茚满霉素类天然产物是一类具有反式四氢茚满环(indan)结构的微生物次级代谢产物,该类化合物普遍具有良好的抗菌、杀虫以及抗肿瘤等生物活性,因而引起了药物化学家和生物学家的广泛兴趣。对1979年至今有关茚满霉素类化合物的天然发现、生物活性、化学合成以及生物合成等方面的研究进展进行综述,为该类抗生素的基础和应用研究提供科学参考。

English Abstract

闪雪纯, 李旭, 杜红丽, 鲍蕾蕾, 王慧. 肝胆外科肿瘤患者应用利奈唑胺致血小板减少危险因素分析[J]. 药学实践与服务, 2023, 41(11): 694-699. doi: 10.12206/j.issn.2097-2024.202210061
引用本文: 朱玉琴, 吴杰群, 孙鹏. 茚满霉素类天然产物的研究进展[J]. 药学实践与服务, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034
SHAN Xuechun, LI Xu, DU Hongli, BAO Leilei, WANG Hui. Risk factors of linezolid-related thrombocytopenia in patients in the department of hepatobiliary surgery[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(11): 694-699. doi: 10.12206/j.issn.2097-2024.202210061
Citation: ZHU Yuqin, WU Jiequn, SUN Peng. Research progress on indanomycin natural products[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034
  • 聚醚类抗生素是一类重要的微生物次级代谢产物,其结构特征为分子中含有多个环醚单元,且分子一端有羧基,该类抗生素主要由链霉菌产生,具有离子载体性质,容易络合金属离子,常见的聚醚类抗生素有莫能菌素、南昌霉素、尼日利亚菌素等。聚醚类抗生素家族中含有一类特殊的天然产物,即茚满霉素类,该类化合物含有反式四氢茚满环和吡咯酮结构单元,其代表分子是茚满霉素(indanomycin,X-14547A),最早分离自链霉菌Streptomyces sp. NRRL 8167[1]。与其结构相似的化合物还有cafamycin[2]、16-deethylindanomycin[3]及其类似物[4]、homoindanomycin、stawamycin[5-6]和JBIR-11[7]等。茚满霉素类化合物均具有良好的抗菌、杀虫和抗原虫等活性,其特殊的化学结构和显著的生物活性引起了药物学家们的广泛兴趣,不少化学家对其进行全合成,生物学家也对含有该类特殊结构的天然产物的生物合成机制进行研究。

    本文就茚满霉素类化合物的天然发现、生物活性、化学合成和生物合成进行总结,为开发该类天然产物的药用价值提供科学基础,为采用组合生物合成的方法对该类化合物进行结构改造提供新思路。

    • 在从土壤培养物中寻找新抗生素的过程中,Miller课题组从链霉菌Streptomyces sp. NRRL 8167的发酵液中分离得到了茚满霉素(1),为该家族第一例化合物。化合物1能够将1价和2价阳离子从水溶液中萃取到不相溶的有机溶剂中,另外,与一些只能运输特定单价阳离子(如K+或Na+)的离子载体抗生素不同,化合物1还能通过溶剂屏障(CHCl3)将Rb+和Ca2+从一个水相转移到另一个水相,具有介导跨生物膜转运2价阳离子的特殊能力[8],迄今为止,仅有少数离子载体抗生素(如拉沙里菌素和离子霉素等)具有相似的运输能力[1]。化合物1具有良好的抗菌、杀虫和抗原虫等活性[9-10],具有与其他离子载体抗生素类似的抗菌谱,在体外对G+Mycobacterium phleiStreptomyces cellulosaeStaphylococcus aureusBacillus sp. E、Bacillus sp. TA、Sarcina luteaBacillus megate- riumBacillus subtilis的最低抑菌浓度(MIC)分别为3.1、0.8、0.2、0.2、0.2、0.1、0.1、0.1 μg/ml。研究显示,浓度为100 ppm的化合物1连续使用6 d可以使舞毒蛾和烟草天蛾幼虫的数量减少50%,使玉米穗虫的数量减少33%;浓度为20 ppm的化合物1可以使四龄的埃及伊蚊(Aedes aegypti)的死亡率达100%[1]。王继栋等人发现,化合物1对人乳腺癌细胞(MDA-MB-231)和人肝腺癌细胞(HepG-2)具有一定程度的抑制作用,其IC50值分别为14.01和7.26 μg/ml[11]

      Kliuev等人从产生蒽环类抗生素galtamycin的链霉菌培养液中分离得到了一种新型类似物cafamycin(2[2],其与化合物1的区别在于2位甲基被乙基取代,18位乙基被脱除。Occolowitz等人从美国蒙大拿州收集的土壤样品中分离出一种新的链霉菌Streptomyces setonii,并从中分离得到了一种新的类似物,即16-deethylindanomycin(3[3],该化合物对Streptococcus pneumoniae Park I的MIC值为2 μg/ml,对Staphylococcus aureus X1.1、S. aureus V41、S. aureus V400、S. aureus S13E的MIC值为4 μg/ml。当化合物3的浓度为0.31μg/ml时,可以100%抑制柔嫩艾美耳球虫(Emeria tenella)的生长。Zhang等人从海洋链霉菌Streptomyces antibioticus PTZ0016中分离得到了化合物3的类似物,iso-16-deethylindanomycin(4)、16-deethylindanomycin 甲酯(5)和iso-16-deethylindanomycin 甲酯(6),这3种化合物在体外实验中都显示出对金黄色葡萄球菌的抑制活性,其MIC值为4.0~8.0 μg/ml[4]。有趣的是,化合物46分别为化合物35的C-7手性异构体,这一现象在其他茚满霉素类似物中并不多见,提示该菌株中负责呋喃环形成的酶的立体选择性低。Homoindanomycin (7)分离自菌株Streptomyces galbus,其与化合物1唯一的区别在于2位上的甲基被乙基取代。Miao等人从链霉菌菌株Strepto-myces sp.的液体培养物中分离出一种新的天然产物stawamycin(8),化合物8保留了与化合物1类似的吡咯和四氢茚满结构,但不具有呋喃环,并且双键位置和构型与其他化合物相比也有明显区别,另外,该化合物的绝对构型并没有完全确定。化合物8具有抗人类疱疹病毒EB病毒(epstein-barr virus,EBV)活性,可以抑制病毒转录因子BZLF1与其DNA靶标的结合[5]。Miho等人从绿色链霉菌Streptomyces viridochromogenes的菌丝体中分离得到了JBIR-11(9),是化合物8的衍生物,不同的是化合物9在末端羧基上结合了一分子色氨酸,而且化合物9具有抗肿瘤活性,对人纤维肉瘤HT1080细胞具有生长抑制作用,其IC50值为25 μmol/L[7]。茚满霉素及其天然类似物的结构式如图1所示。

      图  1  茚满霉素及其天然类似物

    • 由于茚满霉素中不同寻常的结构,如反式四氢茚满环和吡咯酮,其全合成被多次报道[12-15]。Boeckman[16]等人对茚满霉素进行了逆合成分析,选择利用串联Wittig反应与分子内Diels-Alder环加成反应来合成反式四氢茚满环骨架。吡喃醛中间体(10)和磷叶立德(11)发生wittig反应得到中间体(20),随后由分子内[4+2] Diels-Alder环加成反应得到化合物1

      化合物10的构建以活泼醛(12)为原料,在二烷基铜锂的作用下发生羟醛缩合反应得到醇类中间体(13),化合物13在过量臭氧下双键发生断裂后,被硫醚还原得到化合物14。在二叔丁基联苯锂的存在下,化合物14发生锂盐化,最后经PPTS催化得到化合物10图2)。

      图  2  茚满霉素中间体(10)的化学合成路线

      化合物11的合成以二醇化合物(15)为起始原料,在DMAP催化作用下,伯羟基发生硅基烷基化反应,随后与二异丁基氢化铝在−78 ℃发生Claisen重排,得到烯醇(16)。化合物16进行磺基化反应后,以氰化钾作为氰源,合成氰化物(17)。化合物17在四丁基氟化铵和重金属氧化剂PDC作用下,得到α, β不饱和醛(18)。最后将化合物18与格氏试剂乙烯基溴化镁在−78 ℃进行无水无氧反应,由此得到的化合物19再与三苯基膦溴化氢反应,生成化合物11图3)。

      图  3  茚满霉素中间体(11)的化学合成路线

      最后,化合物1011在叔丁醇钾的作用下,发生wittig反应得到中间体20。化合物20i-Bu2AlH还原为醛,随后在1,2-二氯乙烷中与吡咯酮(21)反应,先后进行wittig反应与分子内Diels-Alder环加成反应,得到化合物22。化合物22在三甲基碘硅烷作用下脱保护,再与过量的三氧化铬发生氧化反应,得到目标化合物1图4)。

      图  4  茚满霉素的化学合成路线

      该化合物的全合成历经21步,总体收率不高。反应过程需要使用锂化物、氢化铝、格氏试剂等危险品,还需要–78 ℃的低温无水反应,条件苛刻,并且使用到了剧毒化合物氰化钾、重金属试剂PDC及三氧化铬。因此,该方法对环境不友好,不符合绿色化学的理念,有待进一步的改善。

    • 化合物1是杂合了非核糖体肽合成酶-聚酮合酶(NRPS-PKS)装配线的天然产物,Roege等人用13C标记的前体喂养实验确定了其代谢起源,包括1个L-脯氨酸、6个丙二酰辅酶A、2个甲基丙二酰辅酶A和2个乙基丙二酰辅酶A[17-18]。Kelly课题组从抗生素链霉菌NRRL 8167中确认了化合物1的生物合成基因簇idm,其大小为80 kb左右(图5A[19]。其中16个基因参与了化合物1的生物合成(idm A-P),包括吡咯合成[20](pyrrole biosyn-thesis,idmI-K),调控和抗性基因(idmCDG),聚酮合成酶基因(idm L-P),聚酮前体合成基因(idmBEF),后修饰基因(idmAH),另外7个基因经基因敲除实验验证与化合物1的合成无关(orf 1-4orf 21-23)。起始单元吡咯-2-甲酰CoA是由L-脯氨酸经过脯氨酰依赖的转移酶(idmJ),载体蛋白(idmK)和黄素依赖的L-脯氨酰CoA脱氢酶(idmI)3个酶催化形成的(图5C)。IdmJ基因缺失实验证实idmJ参与了化合物1的生物合成。编码PKS的基因位于idmI-K的下游,包含编码idmL-P 5个酶,根据生物信息分析划分成10个模块:idmL(模块1~3),idmM(模块4和5),idmN(模块6~8),idmO(模块9),idmP(模块10和11)。PKS模块的结构域由酮基合成酶(KS)、酰基转移酶(AT)、脱氢酶(DH)、烯酰还原酶(ER)、酮基还原酶(KR)和酰基载体蛋白(ACP)等结构域组成,根据模块中的结构域分析,推测化合物1的PKS骨架形成与延伸过程如图5B所示。

      图  5  茚满霉素的生物合成基因簇、PKS模块、前体合成及后修饰过程推测

      模块1~10完成了化合物1的PKS骨架搭建,模块11是化合物1生物合成中的特殊PKS模块,它不参与聚酮链的延伸,而且它的模块结构不完整,仅包含一个KS单元、一个AT单元和一个特殊的cyc11单元,其中,cyc11单元与盐霉素(salinomycin)生物合成中的吡喃合成酶(SalBIII)的同源性较高,序列比对显示,cyc11(Asp28和Asp94)含有SalBIII(Asp38和Asp104)活性必需的残基[21-22],因此cyc11可能具有与盐霉素中吡喃形成类似的催化机制[23],即负责催化化合物23的C-3羟基脱水生成α, β-不饱和酮,然后进行C-7羟基的Michael加成产生化合物24。根据生物信息学预测,茚满霉素PKS模块最终对应的产物为含19-OH的中间体,而不是化合物23,因为其PKS模块2中无DH结构域,不能直接产生Δ19(20)双键。但是,该位置上双键需要作为化合物24上的亲双烯体进行[4+2]环加成以产生茚满环,具体哪个酶负责催化形成Δ19(20)双键目前尚不明确。另外,序列比对表明idmH与环化酶SnoaL[24-25]存在很大的相似性,所以负责[4+2]环化形成茚满环结构的酶可能是idmH[19, 26],但目前尚无体外生化反应验证。根据生物信息学推测的茚满霉素后修饰合成路线如图5D所示。

    • 含反式四氢茚满环结构的化合物在天然产物中比较少见,自1979年茚满霉素首次报道以来,这类化合物就引起了药物化学家和生物学家的广泛兴趣,本综述总结了其在生物活性、化学全合成以及生物合成等方面获得的研究成果,为该类天然产物的药用价值开发提供科学依据。虽然茚满霉素的生物合成步骤尚未完全阐明,但随着其生物合成基因簇的发现,利用组合生物合成的方法对该类化合物进行结构改造将成为可能。

参考文献 (26)

目录

/

返回文章
返回