留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

P53-MDM2界面的肽类及拟肽类抑制剂的研究进展

李翔 邹燕 吴茂诚 黄婷 胡宏岗 吴秋业

李翔, 邹燕, 吴茂诚, 黄婷, 胡宏岗, 吴秋业. P53-MDM2界面的肽类及拟肽类抑制剂的研究进展[J]. 药学实践与服务, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
引用本文: 李翔, 邹燕, 吴茂诚, 黄婷, 胡宏岗, 吴秋业. P53-MDM2界面的肽类及拟肽类抑制剂的研究进展[J]. 药学实践与服务, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
LI Xiang, ZOU Yan, WU Maocheng, HUANG Ting, HU Honggang, WU Qiuye. Research progress of inhibitors of peptides and peptidomimetic acting on P53-MDM2 interface[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
Citation: LI Xiang, ZOU Yan, WU Maocheng, HUANG Ting, HU Honggang, WU Qiuye. Research progress of inhibitors of peptides and peptidomimetic acting on P53-MDM2 interface[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004

P53-MDM2界面的肽类及拟肽类抑制剂的研究进展

doi: 10.3969/j.issn.1006-0111.2015.06.004

Research progress of inhibitors of peptides and peptidomimetic acting on P53-MDM2 interface

  • 摘要: 当前,肿瘤疾病以日益增高的发病率越来越受到人们的重视。抑制P53-MDM2的相互作用已经成为治疗癌症药物设计的重要靶标,通过各种药物筛选手段,研究人员发现了许多肽类及小分子抑制剂。综述近年来国内外关于肽类及拟肽类的P53-MDM2抑制剂的研究进展。
  • [1] Oliner JD, Kinzler KW, Meltzer PS, et al. Amplication of a gene encoding a p53-associated protein in human sarcomas[J]. Nature, 1992, 358: 80-83.
    [2] Levine AJ. P53, the cellular gate keeper for growth and division[J]. Cell, 1997, 88(3): 323-331.
    [3] Bert V, David L, Arnold JL. Surfing the p53 network[J]. Nature, 408: 307-310.
    [4] Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53[J]. Nature, 1993, 362: 857-860.
    [5] Pickskey SM, Lane DP. The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53[J]. BioEssays, 1993, 15: 689-690.
    [6] Raymond EM, Melanie C, Tina ND, et al. Direct inhibition of the NOTCH transcription factor complex[J]. Nature, 2009, 462(7270): 182-188.
    [7] Wu X, Bayle JH, Olson D, et al. The P53-mdm-2 autoregulatory feedback loop[J]. Genes Devel, 1993, 7(7a): 1126-1132.
    [8] Almerico AM, Tutone M, Pantano L, et al. Molecular dynamics studies on Mdm2 complexes: an analysis of the inhibitor influence[J]. Biochem Biophys Res Commun, 2012, 424(2): 341-347.
    [9] Meng W, Brigance RP, Chao HJ,et al. Discovery of 6-(aminomethyl)-5-(2,4-dichlorophenyl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxa mides as potent, selective dipeptidyl peptidase-4 (DPP4) inhibitors[J]. J Med Chem, 2010, 53(15): 5620-5628.
    [10] Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the P53 pathway by small-molecule antagonists of MDM2[J]. Science, 2004, 303(5659): 844-848.
    [11] Wang B, Fang L, Zhao H, et al. MDM2 inhibitor nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells[J]. Acta Biochim Biophys Sin (Shanghai), 2012, 44(8): 685-691.
    [12] Warner WA, Sanchez R, Dawoodian A, et al. Identification of FDA-approved drugs that computationally bind to MDM2[J]. Chem Biol Drug Des, 2012, 80(4): 631-637.
    [13] Zhuang C, Miao Z, Zhu L, et al. Synthesis and biological evaluation of thio-benzodiazepines as novel small molecule inhibitors of the P53-MDM2 protein-protein interaction[J]. Eur J Med Chem, 2011, 46(11): 5654-5661.
    [14] Grasberger BL, Lu T, Schubert C, et al. Discovery and cocrystalstructure of benzodiazepinedione MDM2 antagonists that activate P53 in cells. J Med Chem, 2005, 48(4): 909-912.
    [15] Mohammad RM, Wu J, Azmi AS, et al. An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals[J]. Mol Cancer, 2009, 8: 115.
    [16] Andrea GC. Protein-protein interfaces: mimics and inhibitors[J]. Curr Opin Chem Biol, 2001, 5:654-659.
    [17] Arkin MR and Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream[J]. Nat Rev Drug Discov, 2004, 3(4): 301-317.
    [18] Pazgier M, Liu M, Zou G, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX[J]. Proc Natl Acad Sci(USA), 2009, 106(12): 4665-4670.
    [19] Chang YS, Graves B, Guerlavais V, et al. Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy[J]. Proc Natl Acad Sci USA, 2013, 110(36): E3445-E3454.
    [20] Li C, Pazgier M, Liu M, et al. Apamin as a template for structure-based rational design of potent peptide activators of p53[J]. Angew Chem Int Ed Engl, 2009, 48(46): 8712-8715.
    [21] Li C, Zhan C, Zhao L, et al. Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction[J]. Bioorg Med Chem, 2013, 21(14): 4045-4050.
    [22] Hu Y, Li X, Sebti SM, et al. Design and synthesis of peptides: a new class of peptide mimics[J]. Bioorg Med Chem Lett, 2011, 21(5): 1469-1471.
    [23] Noguchi T, Oishi S, Honda K, et al. Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: identification of novel peptidic inhibitors[J]. Bioorg Med Chem Lett, 2013, 23(13): 3802-3805.
    [24] Duncan SJ, Gruschow S, Williams DH, et al. Isolation and structure elucidation of chlorofusin, a novel P53-MDM2 antagonist from a Fusarium sp[J]. J Am Chem Soc, 2001, 123: 554-560.
    [25] Lee SY and Boger DL. Synthesis of the chlorofusin cyclic peptide[J]. Tetrahedron, 2009, 65(16): 3281-3284.
    [26] Sakurai K and Kahne D. Design and synthesis of functionalized trisaccharides as P53-peptide mimics[J]. Tetrahedron Lett, 2010, 51(29): 3724-3727.
    [27] Phan J, Li Z, Kasprzak A, et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX[J]. J Biol Chem, 2010, 285(3): 2174-2183.
    [28] Liu M, Pazgier M, Li C, et al. A left-handed solution to peptide inhibition of the P53-MDM2 interaction[J]. Angew Chem Int Ed Engl, 2010, 49(21): 3649-3652.
    [29] Li C, Pazgier M, Li J, et al. Limitations of peptide retro-inverso isomerization in molecular mimicry[J]. J Biol Chem, 2010, 285(25): 19572-19581.
    [30] Harker EA and Schepartz A. Cell-permeable beta-peptide inhibitors of p53/hDM2 complexation[J]. Chembiochem, 2009, 10(6): 990-993.
    [31] Hintersteiner M, Kimmerlin T, Garavel G, et al. A highly potent and cellularly active beta-peptidic inhibitor of the p53/hDM2 interaction[J]. Chembiochem, 2009, 10(6): 994-998.
    [32] Yamada S, Kanno H and Kawahara N. Trans-membrane peptide therapy for malignant glioma by use of a peptide derived from the MDM2 binding site of p53[J]. J Neurooncol, 2012, 109(1): 7-14.
    [33] Li C, Shen J, Wei X, et al. Targeted delivery of a novel palmitylated D-peptide for antiglioblastoma molecular therapy[J]. J Drug Target, 2012, 20(3): 264-271.
    [34] Jeong WJ, Lee MS and Lim YB. Helix stabilized, thermostable, and protease-resistant self-assembled peptide nanostructures as potential inhibitors of protein-protein interactions[J]. Biomacromolecules, 2013, 14(8): 2684-2689.
    [35] Muppidi A, Wang Z, Li X, et al. Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx[J]. Chem Commun (Camb), 2011, 47(33): 9396-9398.
    [36] Muppidi A, Li X, Chen J, et al. Conjugation of spermine enhances cellular uptake of the stapled peptide-based inhibitors of p53-Mdm2 interaction[J]. Bioorg Med Chem Lett, 2011, 21(24): 7412-7415.
    [37] Madden MM, Muppidi A, Li Z, et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition[J]. Bioorg Med Chem Lett, 2011, 21(5): 1472-1476.
  • [1] 毛智毅, 王筱燕, 陈晓颖, 汤逸斐.  度拉糖肽联合二甲双胍对肥胖型2型糖尿病患者机体代谢、体脂成分及血清脂肪因子的影响 . 药学实践与服务, 2024, 42(7): 305-309. doi: 10.12206/j.issn.2097-2024.202305032
    [2] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [3] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [4] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
    [5] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
  • 加载中
计量
  • 文章访问数:  3537
  • HTML全文浏览量:  310
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 修回日期:  2014-03-31

P53-MDM2界面的肽类及拟肽类抑制剂的研究进展

doi: 10.3969/j.issn.1006-0111.2015.06.004

摘要: 当前,肿瘤疾病以日益增高的发病率越来越受到人们的重视。抑制P53-MDM2的相互作用已经成为治疗癌症药物设计的重要靶标,通过各种药物筛选手段,研究人员发现了许多肽类及小分子抑制剂。综述近年来国内外关于肽类及拟肽类的P53-MDM2抑制剂的研究进展。

English Abstract

李翔, 邹燕, 吴茂诚, 黄婷, 胡宏岗, 吴秋业. P53-MDM2界面的肽类及拟肽类抑制剂的研究进展[J]. 药学实践与服务, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
引用本文: 李翔, 邹燕, 吴茂诚, 黄婷, 胡宏岗, 吴秋业. P53-MDM2界面的肽类及拟肽类抑制剂的研究进展[J]. 药学实践与服务, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
LI Xiang, ZOU Yan, WU Maocheng, HUANG Ting, HU Honggang, WU Qiuye. Research progress of inhibitors of peptides and peptidomimetic acting on P53-MDM2 interface[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
Citation: LI Xiang, ZOU Yan, WU Maocheng, HUANG Ting, HU Honggang, WU Qiuye. Research progress of inhibitors of peptides and peptidomimetic acting on P53-MDM2 interface[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(6): 494-497,512. doi: 10.3969/j.issn.1006-0111.2015.06.004
参考文献 (37)

目录

    /

    返回文章
    返回