留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

秀丽隐杆线虫在抗感染研究中的应用

胡淦海 李德东 赵兰雪 王彦 姜远英

胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
引用本文: 胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Citation: HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002

秀丽隐杆线虫在抗感染研究中的应用

doi: 10.3969/j.issn.1006-0111.2014.01.002
基金项目: 国家自然科学基金(81273558,81072678,90913008);国家重点基础研究发展计划(2013CB531602);国家科技部科技重大专项(2011ZX09102-002-01);上海市科技重点项目(10431902200).

Application of Caenorhabditis elegans in anti-infective research

  • 摘要: 目的 介绍秀丽隐杆线虫(Caenorhabditis elegans)作为模式生物宿主在抗感染研究中的应用,为秀丽隐杆线虫在抗感染研究领域的进一步应用提供参考。 方法 参阅近年来国内、外相关文献,对其进行分析、整合及归纳。 结果 发现秀丽隐杆线虫具有生长周期短、成本低等特点,被广泛用于病原微生物致病机制的研究以及抗感染药物的研发。 结论 秀丽隐杆线虫在病原微生物致病机制研究和抗感染药物研发中有广阔的应用前景。
  • [1] Millet A,Ewbank JJ. Immunity in Caenorhabditis elegans[J]. Curr Opin Immunol, 2004, 16(1):4-9.
    [2] Ferrandon D, Imler JL, Hetru C, et al. The drosophila systemic immune response:sensing and signalling during bacterial and fungal infections[J]. Nat Rev Immunol, 2007, 7(11):862-874.
    [3] Trede NS, Langenau DM, Traver D, et al. The use of zebra fish to understand immunity[J]. Immunity, 2004, 20(4):367-379.
    [4] Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94.
    [5] Byerly L,Cassada R,Russell R. The life cycle of the nematode Caenorhabditis elegans:I. Wild-type growth and reproduction[J]. Devel Biol, 1976, 51(1):23-33.
    [6] Cassada RC,Russell RL. The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans[J]. Devel Biol, 1975, 46(2):326-342.
    [7] Albert PS,Brown SJ,Riddle DL. Sensory control of dauer larva formation in Caenorhabditis elegans[J]. J Compar Neur, 1981, 198(3):435-451.
    [8] Sifri CD,Begun J,Ausubel FM. The worm has turned-microbial virulence modeled in Caenorhabditis elegans[J]. Trends Microbiol, 2005, 13(3):119-127.
    [9] Lindsay JA. Genomic variation and evolution of Staphylococcus aureus[J]. Intern J Med Microbiol, 2010, 300(2):98-103.
    [10] Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors[J]. Proc Natl Acad Sci, 2001, 98(19):10892-10897.
    [11] Irazoqui JE, Troemel ER, Feinbaum RL, et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus[J]. PLo S Pathogens, 2010, 6(7):1-24.
    [12] Sifri CD, Begun J, Ausubel FM, et al. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis[J]. Infect Immun, 2003, 71(4):2208-2217.
    [13] Ogawa T, Sato M, Yonekawa S, et al. Infective endocarditis caused by enterococcus faecalis treated with continuous infusion of ampicillin without adjunctive aminoglycosides[J]. Intern Med, 2012, 52(10):1131-1135.
    [14] Maadani A, Fox KA, Mylonakis E, et al. Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host[J]. Infect Immun, 2007, 75(5):2634-2637.
    [15] Sifri CD, Mylonakis E, Singh KV, et al. Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice[J]. Infect Immun, 2002, 70(10):5647-5650.
    [16] Chávez V, Mohri-Shiomi A, Maadani A, et al. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans[J]. Genetics, 2007, 176(3):1567-1577.
    [17] van der Hoeven R, McCallum KC, Cruz M R, et al. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans[J]. PLoS Pathogens, 2011, 7(12):1-14.
    [18] Mahajan-Miklos S, Tan MW, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans.Pathogene Model[J]. Cell, 1999, 96(1):47-56.
    [19] Tan MW,Mahajan-Miklos S,Ausubel F M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis[J]. Proc Natl Acad Sci, 1999, 96(2):715-720.
    [20] Kabir MA,Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era:an overview[J]. Expert Rev Anti-infect Ther, 2009, 7(1):121-134.
    [21] Breger J, Fuchs B B, Aperis G, et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay[J]. PLoS Pathogens, 2007, 3(2):0168-0178.
    [22] Mayer FL,Wilson D,Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2):119-128.
    [23] Pukkila-Worley R,Ausubel F M,Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses[J]. PLoS Pathogens, 2011, 7(6):1-13.
    [24] Pukkila-Worley R, Peleg AY, Tampakakis E, et al. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model[J]. Eukary cell, 2009, 8(11):1750-1758.
    [25] Pukkila-Worley R,Mylonakis E. From the outside in and the inside out:antifungal immune responses in Caenorhabditis elegans[J]. Virulence, 2010, 1(3):111-112.
    [26] Gantner BN,Simmons RM,Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments[J]. EMBO J, 2005, 24(6):1277-1286.
    [27] Netea MG, Brown GD, Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system[J]. Nat Rev Microbiol, 2008, 6(1):67-78.
    [28] Jouault T, Sarazin A, Martinez-Esparza M, et al. Host responses to a versatile commensal:PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans[J]. Cellular Microbiol, 2009, 11(7):1007-1015.
    [29] Peleg AY, Tampakakis E, Fuchs BB, et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans[J]. Proc Natl Acad Sci, 2008, 105(38):14585-14590.
    [30] Tampakakis E,Peleg AY,Mylonakis E. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium[J]. Eukary Cell, 2009, 8(5):732-737.
    [31] Mylonakis E, Ausubel FM, Perfect JR, et al. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis[J].Proc Natl Acad Sci, 2002, 99(24):15675-15680.
    [32] van den Berg MC, Woerlee JZ, Ma H, et al. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans[J]. Genetics, 2006, 173(2):677-683.
    [33] Tang RJ, Breger J, Idnurm A, et al. Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach[J]. Infect Immun, 2005, 73(12):8219-6225.
    [34] Powell JR,Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens[J].Meth Molecul Biol, 2008, 415:403-427.
    [35] Moy T I, Ball A R, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model[J]. Proc Natl Acad Sci, 2006, 103(27):10414-10419.
    [36] Moy TI, Conery AL, Larkins-Ford J, et al. High-throughput screen for novel antimicrobials using a whole animal infection model[J]. ACS Chem Biol, 2009, 4(7):527-533.
    [37] Zhou YM, Shao L, Li JA, et al. An efficient and novel screening model for assessing the bioactivity of extracts against multidrug-resistant Pseudomonas aeruginosa using Caenorhabditis elegans[J]. Biosci Biotechnol Biochem, 2011, 75(9):1746-1751.
    [38] Okoli I, Coleman J J, Tempakakis E, et al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay[J]. PloS One, 2009, 4(9):1-8.
    [39] Coleman JJ, Okoli I, Tegos GP, et al. Characterization of plant-derived saponin natural products against Candida albicans[J]. ACS Chem Biol, 2010, 5(3):321-332.
  • [1] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [2] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [3] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [4] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [5] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [6] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [7] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [8] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [9] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [10] 杨彬, 王作君, 陈菡, 张敬一.  基于DRGs的医院合理用药管理机制探索实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404030
    [11] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [12] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [13] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202310043
    [14] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404034
    [15] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [16] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202404008
    [17] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [18] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [19] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
    [20] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
  • 加载中
计量
  • 文章访问数:  3479
  • HTML全文浏览量:  447
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-11-17

秀丽隐杆线虫在抗感染研究中的应用

doi: 10.3969/j.issn.1006-0111.2014.01.002
    基金项目:  国家自然科学基金(81273558,81072678,90913008);国家重点基础研究发展计划(2013CB531602);国家科技部科技重大专项(2011ZX09102-002-01);上海市科技重点项目(10431902200).

摘要: 目的 介绍秀丽隐杆线虫(Caenorhabditis elegans)作为模式生物宿主在抗感染研究中的应用,为秀丽隐杆线虫在抗感染研究领域的进一步应用提供参考。 方法 参阅近年来国内、外相关文献,对其进行分析、整合及归纳。 结果 发现秀丽隐杆线虫具有生长周期短、成本低等特点,被广泛用于病原微生物致病机制的研究以及抗感染药物的研发。 结论 秀丽隐杆线虫在病原微生物致病机制研究和抗感染药物研发中有广阔的应用前景。

English Abstract

胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
引用本文: 胡淦海, 李德东, 赵兰雪, 王彦, 姜远英. 秀丽隐杆线虫在抗感染研究中的应用[J]. 药学实践与服务, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
Citation: HU Ganhai, LI Dedong, ZHAO Lanxue, WANG Yan, JIANG Yuanying. Application of Caenorhabditis elegans in anti-infective research[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(1): 5-8. doi: 10.3969/j.issn.1006-0111.2014.01.002
参考文献 (39)

目录

    /

    返回文章
    返回