留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

作为基因输送载体的壳聚糖衍生物研究进展

李晏

李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
引用本文: 李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.
Citation: LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.

作为基因输送载体的壳聚糖衍生物研究进展

Research progress of chitosan derivatives as gene delivery vector

  • 摘要: 壳聚糖作为基因载体,目前存在的主要问题是还不能达到足够高的表达效率。其中主要原因是壳聚糖在pH 7.4的生理环境下溶解度较差,壳聚糖与DNA形成的复合物在生理环境下的稳定性较差,缺乏细胞靶向性。本文综述了作为基因输送载体的壳聚糖衍生物研究进展,为进一步研究和开发壳聚糖衍生物提供依据和参考。
  • [1] Brus C, Petersen H, Aigner A, et al. Efficiency of polyethylenimines and polyethyleniminegraft-poly (ethylene glycol) block copolymers to protect oligonucleotides against enzymatic degradation[J]. Eur.J Pharm Biopharm, 2004, (57): 427.
    [2] Fischer D, Osburg B, Petersen H, et al. Effect of poly(ethyleneimine) molecular weight and pegylation on organ distribution and pharmacokinetics of polyplexes with oligodeoxynucleotides in mice[J]. Drug Metab Dispos,2004, (32): 983.
    [3] Mao S, Neu M, Germershaus O, et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes[J]. Bioconjug Chem, 2006 ,(17) : 1209.
    [4] Kunath K, von Harpe A, Petersen H, et al. The structure of PEG-modified poly(ethylene imines) influences biodistribution and pharmacokinetics of their complexes with NF-kappaB decoy in mice[J].Pharm Res,2002, (19) : 810.
    [5] Zhang Y, Chen J, Zhang Y, et al. A novel PEGylation of chitosan nanoparticles for gene delivery[J].Biotechnol Appl Biochem, 2007 ,(46) :197.
    [6] Zhang H, Mardyani S, Chan WC, et al.Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics[J]. Biomacromolecules,2006, (7) :1568.
    [7] Kim TH, Nah JW, Cho MH, et al. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles[J]. J Nanosci Nanotechnol,2006, (6) :2796.
    [8] Park IK, Kim TH, Park YH, et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier[J]. J Control Release,2001,(76): 349.
    [9] Mansouri S, Cuie Y, Winnik , et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy[J].Biomaterials,2006, (27) :2060..
    [10] Jiang H, Kwon J, Kim E, et al. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting[J]. J Control Release, 2008, (131) :150.
    [11] Schaffer DV, Lauffenburger DA, Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery[J]. J Biol Chem,1998, (273) :28004.
    [12] Benns JM, Choi JS, Mahato RI, et al. pH sensitive cationic polymer gene delivery vehicle: N-Acpoly( L-histidine)-graft-poly(L-lysine) comb shaped polymer[J]. Bioconjug Chem,2000, (11): 637.
    [13] Li W, Nicol F, Szoka Jr FC, GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery[J]. Adv Drug Deliv Rev, 2004, (56) :967.
    [14] Wagner E, Effects of membrane-active agents in gene delivery[J].J Control Release, 1998, (53) :155.
    [15] Jones RA, Cheung CY, Black FE, et al. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pHsensitive disruption of endosomal vesicles[J]. Biochem J, 2003, (372) :65.
    [16] Kim TH, Kim SI, Akaike T, et al. Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes[J].J Control Release, 2005, (105) :354.
    [17] Thanou M, Florea BI, Geldof M, et al. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines[J]. Biomaterials, 2002, (23): 153.
    [18] Mao S, Shuai X, Unger F, et al. Synthesis, characterization and cytotoxicity of poly (ethylene glycol)-graft-trimethyl chitosan block copolymers[J]. Biomaterials, 2005,(26) : 6343.
    [19] Satoh T, Kano H, Nakatani M, et al. 6-Amino-6-deoxy chitosan. Sequential chemical modifications at the C-6 positions of N-phthaloylchitosan and evaluation as a gene carrier[J].Carbohydr Res,. 2006, (341) : 2406.
    [20] Park IK, Ihm JE, Park YH, et al. Galactosylated chitosan(GC)-graftpoly(vinyl pyrrolidone) (PVP) as hepatocytetargeting DNA carrier: preparation and physicochemical characterization of GCgraft-PVP/DNA complex (1) [J]. J Control Release,2003, (86) : 349.
    [21] Wong K, Sun G, Zhang X, et al. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo[J].Bioconjug Chem,2006, (17) : 152.
    [22] Kurisawa M, Yokoyama M, Okano T, Transfection efficiency increases by incorporating hydrophobicmonomer units into polymeric gene carriers[J].J Control Release,2000, (68) : 1.
    [23] Kim YH, Gihm SH, Park CR, et al. Structural characteristics of size-controlled self aggregates of deoxycholic acidmodified chitosan and their application as a DNA delivery carrier[J].Bioconjugate Chem,2001 ,(12) : 932.
    [24] Liu WG, Zhang X, Sun SJ, et al. N-alkylated chitosan as a potential nonviral vector for gene transfection[J]. Bioconjugate Chem,2003, (14) : 782.
    [25] Hu F, Zhao M, Yuan H, et al. A novel chitosan oligosaccharidestearic acid micelles for gene delivery: properties and in vitro transfection studies[J]. Int J Pharm,2006,(315) : 158.
    [26] Mao Z, Ma L, Yan J, et al. The gene transfection efficiency of thermoresponsive N, N, N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer[J]. Biomaterials,2007, (28) : 4488.
  • [1] 桂明珠, 李静, 李志玲.  儿童伏立康唑的血药浓度与CYP2C19、CYP2C9和CYP3A5基因多态性的相关性研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402020
    [2] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [3] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
    [4] 姚瑞阳, 于海征, 李耀盺, 张磊.  丹参FBXL 基因家族的鉴定和表达模式分析 . 药学实践与服务, 2024, 42(11): 461-470. doi: 10.12206/j.issn.2097-2024.202407034
    [5] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
  • 加载中
计量
  • 文章访问数:  2340
  • HTML全文浏览量:  192
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-20
  • 修回日期:  2010-10-21

作为基因输送载体的壳聚糖衍生物研究进展

摘要: 壳聚糖作为基因载体,目前存在的主要问题是还不能达到足够高的表达效率。其中主要原因是壳聚糖在pH 7.4的生理环境下溶解度较差,壳聚糖与DNA形成的复合物在生理环境下的稳定性较差,缺乏细胞靶向性。本文综述了作为基因输送载体的壳聚糖衍生物研究进展,为进一步研究和开发壳聚糖衍生物提供依据和参考。

English Abstract

李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
引用本文: 李晏. 作为基因输送载体的壳聚糖衍生物研究进展[J]. 药学实践与服务, 2011, 29(1): 8-10,61.
LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.
Citation: LI Yan. Research progress of chitosan derivatives as gene delivery vector[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(1): 8-10,61.
参考文献 (26)

目录

    /

    返回文章
    返回