-
盐酸阿霉素是一种基于蒽环类的广谱抗肿瘤药物,能够通过多种机制达到抗肿瘤活性。他能与S期DNA相互作用,抑制核酸合成。此外,作为DNA拓扑异构酶Ⅱ抑制剂,盐酸阿霉素可引起DNA链的断裂[1-5];但由于盐酸阿霉素严重的心脏毒性和肿瘤细胞耐药性阻碍了其在临床实践中的广泛应用。小分子化疗增敏剂能够改善肿瘤的多药耐药,提高化疗药物的疗效。氯尼达明在调节热疗、放射疗法、光动力疗法的活性方面具有潜力[6-7]。氯尼达明作为己糖激酶Ⅱ(HK-Ⅱ)抑制剂,能够抑制肿瘤细胞有氧糖酵解、减少肿瘤细胞的能量供应[8-9]。此外,氯尼达明可以通过破坏跨膜电位而有效地触发线粒体凋亡途径。但它作为单一药物,其抗肿瘤活性有限[10],因此经常与其他抗肿瘤药物联合用作化学增敏剂。有研究报道指出,氯尼达明与盐酸阿霉素的共递送,在体外能够显著增强细胞毒性并降低抗肿瘤药物的给药剂量[11-14],二者在协同治疗肝癌、卵巢癌、乳腺癌等领域已取得显著进展。通过大量的文献调研,我们发现氯尼达明与盐酸阿霉素的最佳协同比例为1∶6,但并未有人专门构建氯尼达明与盐酸阿霉素混合溶液的含量分析方法[13]。因此,本研究采用HPLC法建立针对氯尼达明与盐酸阿霉素联合用药的含量分析测定方法,为二者联合用药的含量检测提供参考。
-
Agilent-1260 Infinity Ⅱ高效液相色谱仪、紫外可见分光光度计[安捷伦科技(中国)有限公司];SECURA125-1CN型十万分之一电子天平、Arium@mini超纯水机(德国赛多利斯)。
-
盐酸阿霉素对照品(99%)、甲醇(色谱纯)、三氟乙酸(TFA,色谱纯)均购自sigma-Aldrich Company;氯尼达明对照品(99%,上海毕得医药科技有限公司);纯净水(杭州娃哈哈集团有限公司)。
-
精密称取氯尼达明和盐酸阿霉素对照品适量,分别用甲醇水溶液(50%)溶解制成20 µg/ml的对照品溶液,在190~400 nm波长内进行扫描,盐酸阿霉素的最大吸收波长为228、253 nm,氯尼达明的最大吸收波长为205 nm。故分别选择253、205 nm作为检测波长,见图1。
-
色谱柱:Agilent 5 HC-C18(2)(4.6 mm×250 mm,5 µm);流动相:甲醇(A)-0.1% TFA水溶液(B);检测波长:205、253 nm;流速: 1.0 ml/min;柱温:35℃;进样量:10 µl;梯度洗脱程序如表1所示。
表 1 梯度洗脱程序
时间(t/ min) 流动相A(%) 流动相B(%) 0 65 35 3 65 35 7 90 10 13 90 10 15 65 35 20 65 35 -
精密称取12 mg 氯尼达明加入50%甲醇水溶液,涡旋震荡并超声溶解后定容至10 ml量瓶中,即得1.2 mg/ml氯尼达明溶液;精密称取10 mg盐酸阿霉素加入50%甲醇水溶液,涡旋震荡溶解后定容至50 ml量瓶中,即得0.2 mg/ml盐酸阿霉素溶液。
-
将“2.3.1”项中的溶液等体积混合后,量取一定体积的50%甲醇水溶液稀释2.5倍,定容于10 ml容量瓶中,即得氯尼达明与盐酸阿霉素质量浓度分别为240 µg/ml和40 µg/ml的混合溶液。
-
按照“2.3.1”项及“2.3.2”项条件,配制以下样品。按照“2.2”项下方法进样检测,考察方法的专属性。如图2所示,实验结果表明,该方法专属性良好,氯尼达明与盐酸阿霉素的色谱峰完全分离。
-
精密量取不同体积“2.3.2”项下制备的混合对照品溶液,置于5 ml量瓶中,加溶剂稀释并定容,最终得到质量浓度为240、180、120、60、30、12、6 µg/ml的氯尼达明溶液,此条件下,盐酸阿霉素的质量浓度分别为40、30、20、10、5、2、1 µg/ml。
按上述“2.2”项下色谱条件进样,以对照品的峰面积(Y)对质量浓度(X)进行线性回归,得氯尼达明回归方程: Y=51.439X+111.46,r=0.9999,证明在本方法下,氯尼达明在6~240 µg/ml 浓度范围内线性良好。得盐酸阿霉素回归方程:Y= 25.142X + 2.1863,r=0.9999,证明在本方法下,盐酸阿霉素在1~40 µg/ml浓度范围内线性良好。
-
取氯尼达明质量浓度为30、60、240 µg/ml的混合对照品溶液,按照“2.2”项下的色谱条件进行日内精密度及日间精密度考察。日内精密度测定方法为样品测定5次,计算日内相对偏差;日间精密度测定方法为样品连续测定5 d,计算日间相对偏差。如表2、表3所示,3种不同浓度的氯尼达明和盐酸阿霉素的日内、日间精密度的RSD值均小于2.0 %,符合精密度要求。
表 2 盐酸阿霉素精密度试验(n=5)
浓度(ρB/µg·ml−1) 日内RSD(%) 日间RSD(%) 5 1.40 1.48 10 0.38 0.92 40 0.11 0.06 表 3 氯尼达明精密度试验(n=5)
浓度(ρB/µg·ml−1) 日内RSD(%) 日间RSD(%) 30 0.03 0.19 60 0.13 0.06 240 0.11 0.07 -
根据上述方法配制质量浓度分别为60、10 µg/ml 的氯尼达明、盐酸阿霉素混合溶液,分别在第0、2、4、8、12、24 h时进样,按照“2.2”项下色谱条件,进行含量测定,结果如表4、表5所示,表明氯尼达明与盐酸阿霉素的混合溶液在8 h内稳定。
表 4 氯尼达明在不同时间下的稳定性考察
时间(t/h) RSD(%) 0 0.20 2 0.07 4 0.05 8 0.13 12 0.12 24 0.02 表 5 盐酸阿霉素在不同时间下的稳定性考察
时间(t/h) RSD(%) 0 0.32 2 0.38 4 0.14 8 0.49 12 0.62 24 0.58 -
精密称取6份12 mg 氯尼达明和10 mg 盐酸阿霉素,加入50%甲醇水溶液,分别定容于10 ml和50 ml容量瓶中,即得1.2 mg/ml 氯尼达明溶液和0.2 mg/ml 盐酸阿霉素溶液。
将上述溶液等体积混合后,量取一定体积的50%甲醇水溶液稀释2.5倍,定容于10 ml容量瓶后,即得6份氯尼达明与盐酸阿霉素质量浓度分别为240 µg/ml和40 µg/ml的混合溶液,按“2.2”项下色谱条件进行测定,带入回归方程计算氯尼达明和盐酸阿霉素的含量、回收率和RSD值。结果如表6所示。说明此方法回收率符合要求。
表 6 回收率实验结果(n=6)
成分 原有量
(m/mg)测得量
(m/mg)回收率
(%)平均回收率
(%)RSD
(%)氯尼达明 12.0 11.8 98.3 99.2 2.9 12.1 11.9 98.3 11.9 11.8 99.2 12.4 12.8 98.4 11.8 11.8 100.0 12.1 12.8 105.8 盐酸阿霉素 10.1 9.8 97.0 100.8 1.9 10.1 9.8 97.0 10.0 9.8 98.0 9.9 10.0 101.0 10.1 10.0 99.0 10.1 10.2 101.0 -
氯尼达明极性小,有机相比例的改变对其出峰时间影响较大。对于流动相的选择,本实验曾尝试以乙腈(0.1% TFA)-水(0.1%TFA)、乙腈:水(0.1% 三乙胺,磷酸调pH=3.0)、乙腈:水(0.1%甲酸)作为流动相[15-17],但氯尼达明出峰时间过长且峰对称性差。以甲醇-水(0.1% TFA)作为流动相时,分离效果及峰形较好[18],故分别考察了甲醇与水分别为90∶10、80∶20、70∶30、65∶35等比例下两种化合物的保留时间。结果表明,有机相甲醇比例低于70% 时,氯尼达明出峰时间过长。在溶剂的选择上,本实验尝试以甲醇、甲醇水溶液作为溶剂,当溶剂为甲醇水溶液时,盐酸阿霉素及氯尼达明两组不存在前沿及拖尾现象,且基线较平稳,分离度较好。故在此基础上,为缩短氯尼达明的出峰时间,我们尝试在4~15 min内改变有机相比例,利用梯度洗脱以保证两种化合物出峰完整且保留时间适中。本实验结果表明,选用该梯度洗脱方法同时测定氯尼达明和盐酸阿霉素,在一定浓度范围内线性良好,专属性高,且精密度、回收率、稳定性均符合方法学要求,可以作为同时测定氯尼达明和盐酸阿霉素含量的测定方法。
Content measurement of doxorubicin hydrochloride and lonidamine by HPLC
-
摘要:
目的 建立同时测定盐酸阿霉素(DOX·HCl)与氯尼达明(LND)含量的测定方法。 方法 采用HPLC法,色谱柱为Agilent 5 HC-C18(2)(4.6 mm×250 mm ,5 µm),流动相为甲醇-0.1%TFA水溶液,梯度洗脱,甲醇比例随时间变化为:0~3 min, 65%甲醇;3~7 min, 65%→90%甲醇;7~13 min,90%甲醇;13~15 min,90%→65%甲醇;15~20 min、65%甲醇。采集时间20 min,平衡时间3 min,紫外检测波长205 nm及253 nm,流速1.0 ml/min,柱温35 ℃,进样量:10 µl。 结果 该方法专属性好,盐酸阿霉素在1~40 µg/ml 的浓度范围内线性良好,氯尼达明在6~240 µg/ml的浓度范围内线性良好。该方法之下,两种化合物的精密度、稳定性、回收率均符合要求。 结论 建立了同时检测盐酸阿霉素与氯尼达明含量的液相分析方法,该方法专属性强,准确可靠。 Abstract:Objective To establish a method for the simultaneous determination of DOX·HCl and LND. Methods HPLC was performed on Agilent 5 HC-C18(2) (4.6 mm × 250 mm, 5 µm) column. The mobile phase was methanol-0.1% TFA aqueous solution, and the gradient elution procedure were: 0 to 3 min, 65% methanol; 3 to 7 min, 65%→90% methanol; 7 to 13 min, 90% methanol; 13 to 15 min, 90%→65% methanol; 15 to 20 min, 65% methanol. The collection time was 20 min, the balance time was 3 min, the UV detection wavelengths were 205 nm and 253 nm. The flow rate was 1.0 ml/min and the column temperature was 35℃. The amount of inlet was 10 µl. Results The method was highly specific, and both DOX·HCl and LND exhibited good linearity in the concentration range of 1-40 µg/ml and 6-240 µg/ml, respectively. The two compounds’ precision, stability, and recovery satisfied the requirements of the method. Conclusion This study established a HPLC method that was suitable for the simultaneous detection of DOX·HCl and LND. This method’s high level of specificity, accuracy, and reliability . -
Key words:
- lonidamine /
- doxorubicin hydrochloride /
- HPLC /
- drug combination /
- gradient elution
-
近年来,随着肿瘤、器官移植和获得性免疫缺陷综合征(AIDS)等导致的免疫功能低下人群的增加,侵袭性真菌感染(IFIs)的发病率和病死率逐年上升[1-2]。念珠菌、隐球菌和曲霉菌是IFIs最主要的致病菌,并且造成的病死率超过90%[3]。在念珠菌属中,白念珠菌(Candida. albicans)是院内血液感染最常见的致病菌原体,其在重症监护病房(ICU)患者中致病率超过17%,病死率高达40%[4-5]。临床上治疗IFIs的抗真菌药物主要包括:多烯类(两性霉素B)、核酸类(5-氟胞嘧啶)、唑类(氟康唑)和棘白菌素类(卡泊芬净)药物(图1)[6-7]。然而,由于临床上出现抗真菌药物严重的耐药性和毒副作用,IFIs的治疗效果相当有限。因此,迫切需要研发全新机制的抗真菌药物。
组蛋白乙酰化修饰(包括组蛋白乙酰化和去乙酰化)是表观遗传学研究的重要组成部分。组蛋白去乙酰化酶(HDACs)将组蛋白和其他蛋白上的赖氨酸末端乙酰基去除,对染色体重塑和基因的表达起着重要作用[8-9]。目前HDAC抑制剂主要集中于抗肿瘤研究方向,且已有多个上市药物应用于肿瘤的治疗。据研究报道,真菌中的HDACs,如烟曲霉[10]、白念珠菌[11-12]、酿酒酵母[13]和新生隐球菌的HDACs[14-15]参与了毒力相关的过程和形态变化。因此,抑制真菌HDACs可能是治疗IFIs的有效策略。
联合药物治疗是提高临床一线药物疗效并克服真菌耐药性的有效策略之一。真菌的耐药性涉及转录调节,其中染色体重塑和组蛋白修饰起主要作用。HDACs调节的组蛋白修饰在应激信号通路中起着至关重要的作用,这可能与真菌对各种环境(包括药物)的应激反应有关[16]。此外,已有研究报道,HDAC抑制剂与唑类药物联用具有协同增效作用[17-18]。例如,HDAC抑制剂MGCD290与氟康唑联用具有协同抗多种临床真菌分离株的作用[19]。
基于此,本研究首先对8个市售的HDAC抑制剂(图2)进行体外协同抗真菌活性测试,筛选结果显示化合物Rocilinostat与氟康唑联用具有优秀的体外协同抗耐药白念珠菌活性。后续考察其与不同唑类药物联用时对不同念珠菌属的体外协同抗真菌活性,以及对正常细胞的毒性作用,以期为抗真菌药物的研发提供依据。
1. 材料和方法
1.1 实验试剂与菌株
临床分离的6株唑类耐药白念珠菌(编号:9893,10061,10060,9173,4108和0304103),2株唑类耐药热带念珠菌(编号:5008,10086),1株光滑念珠菌(编号:9073)和1株耳道念珠菌(编号:0029)由海军军医大学附属长征医院提供。菌株活化首先从−80 ℃中挑取菌株冻存液至YEPD液体培养基活化24 h,然后取10 μl菌悬液至1 ml YEPD中,并在30 ℃、200 r/min下培养16 h后待用。HUVEC细胞来源于中国科学院上海细胞库,并在新鲜配置的DMEM完全培养基中培养。
YEPD液体培养基:取10 g酵母浸膏、20 g葡萄糖、20 g蛋白胨溶解于1 000 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,保存于4 ℃条件下备用。RPMI 1640培养基:取10 g RPMI 1640(Gibco)粉末、34.5 g吗啡啉丙磺酸、2 g NaHCO3、2.7 g NaOH溶解于1 000 ml三蒸水中,经0.22 μm的微孔滤膜过滤与灭菌后,置于4 ℃条件下保存和备用。DMEM完全培养基:按照89% DMEM基础培养基+10%胎牛血清+1%的双抗比例混匀制得,混匀后置于4 ℃条件下保存和备用。PBS缓冲液:10 × PBS 100 ml溶解于900 ml三蒸水中,经高压蒸汽灭菌(121 ℃, 15 min)后,置于4 ℃条件下保存和备用。
1.2 仪器
THZ-92A气浴恒温振荡器(上海博迅医疗生物仪器股份有限公司)、MJ-150-I霉菌培养箱(上海一恒科学仪器有限公司)、LW100T生物显微镜(北京测维光电技术有限公司)、HDC-15K高速离心机(上海泰坦科技股份有限公司)、C170二氧化碳培养箱(BINDER GmbH)、infinite M200多功能酶标仪(Tecan Austria GmbH)、高压蒸汽灭菌锅、无菌洁净工作台。
1.3 棋盘式微量液基稀释法
本实验参照美国临床和实验室标准协会(CLSI)公布的M27-A3方案中微量液基稀释法进行。首先,收集活化好的真菌细胞,PBS洗3次后用RPMI 1640培养基制成浓度为1×103 CFU/ml的菌悬液。按照每孔100 μl接种菌悬液至无菌96孔板中,1~9列加入倍半稀释的HDAC抑制剂,A~F行加入倍半稀释的氟康唑,其中G行只加氟康唑,第10列只加化合物,第11列为不加药的阴性对照组,后将96孔板置于35 °C条件下孵育48 h。测定每孔在630 nm处的吸光度A,依据公式:抑制率(%)=(A阳性对照孔−A化合物孔)/(A阳性对照孔−A阴性对照孔)× 100%,计算各孔对应的抑制率。如果某一孔和其左边孔对应的抑制率均大于80%,则该孔对应的化合物和FLC浓度分别作为FIC化合物和FIC氟康唑,利用协同指数公式:FICI =(FIC化合物./MIC80 化合物)+(FIC氟康唑/MIC80 氟康唑),计算各化合物对应的FICI。
1.4 时间-生长曲线实验
收集活化好的白念珠菌0304103稀释在RPMI 1640培养液中,保持菌浓度为1×105 CFU/ml。取5 ml稀释的菌悬液和不同浓度的待测药物加入50 ml的离心管中, DMSO组作为空白对照组和32 μg/ml FLC作为阳性对照。随后将50 ml的离心管置于30 °C条件下振荡培养(200 r/min),在多个时间点吸取不同药物组的真菌混悬液(100 μl)于96孔板上,测量A630值并使用GraphPad Prism 7作图。
1.5 真菌细胞总HDAC酶活性测试实验
收集指数生长期的白念珠菌0304103细胞(湿重为100 mg),然后用3 mg snailase、12 μl 2-巯基乙醇和3 ml snailase反应缓冲液等新鲜配置的真菌裂解液来处理它们,以制备真菌原生质体。真菌原生质体分散在PBS(20 ml)中以获得混悬液,然后往96孔板每孔中加入100 μl的混悬液和不同浓度的化合物Rocilinostat,并在35 °C下培育12 h。接着往每个孔中加入30 μmol/L的HDAC底物,于37°C下孵育6 h。随后添加100 μl HDAC酶促终止溶液并在37°C下孵育2 h。最后,在每个孔中取出100 μl培养物添加到黑板中,用Ex=360 nm,Em=460 nm来监测荧光强度并记录下来用于计算HDAC酶的抑制率。
2. 结果
2.1 化合物Rocilinostat与氟康唑联用具有协同抗真菌活性
表1列出了HDAC抑制剂单独使用或与氟康唑联合使用的体外抗真菌活性筛选结果。MIC80为抑制80%真菌细胞生长的最低药物浓度。实验结果表明,8个HDAC抑制剂单独使用对耐药白念珠菌均无直接的抗真菌活性(MIC80>64 μg/ml);而化合物Rocilinostat(FICI=0.039)和伏立诺他(FICI=0.125)与FLC联用时均表现出良好的协同抗真菌活性。其中,化合物Rocilinostat的协同活性最佳,值得进一步研究。
表 1 单用HDAC抑制剂或者与氟康唑联用对白念珠菌0304103的体外抗真菌活性(μg/ml)抑制剂 抑制剂 氟康唑 FICI 单用 联用 单用 联用 伏立诺他 >64 4 >64 4 0.125 Rocilinostat >64 2 >64 0.5 0.039 T3516 >64 64 >64 64 2 T6016 >64 64 >64 64 2 T6421 >64 32 >64 32 1 T2157 >64 32 >64 32 1 T1726 >64 64 >64 64 2 T3358 >64 32 >64 64 1.5 注: FICI值≤ 0.5表示协同,FICI值> 4表示拮抗;0.5<FICI<4表示不相关。 2.2 Rocilinostat与氟康唑或伏立康唑联用对多种白念珠菌的抗真菌活性
为进一步考察Rocilinostat是否具广谱的抗真菌作用,挑选9株临床分离的念珠菌属菌株进行协同抗真菌活性测试。如表2所示,Rocilinostat与FLC联合使用时,对两株耐FLC的白念珠菌(C. albicans 9173,FICI=0.094; C. albicans 4108, FICI=0.5)和对FLC敏感的光滑念珠菌(C. glabrata 9073)表现出协同增效作用,而对热带念珠菌(C. tropicis)和耳道念珠菌(C. auris)没有协同抗真菌活性。当Rocilinostat与伏立康唑(VRC)联用时,对耐VRC的白念珠菌(C. albicans 10060, FICI=0.033)表现出优异的协同抗真菌活性 (表3)。
表 2 Rocilinostat与氟康唑单用或联用对多种念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 氟康唑 Rocilinostat 氟康唑 9893 >64 >64 64 64 2 10061 >64 >64 64 64 2 10060 >64 >64 64 64 2 9173 >64 >64 4 2 0.094 4108 >64 >64 32 32 0.5 10186 >64 >64 64 64 2 5008 >64 >64 64 8 1.125 9073 32 4 32 8 0.375 0029 64 32 >64 32 1 表 3 Rocilinostat与伏立康唑单用或联用对白念珠菌菌株的体外抗真菌活性[MIC80 (μg/ml)]菌株 单用 联用 FICI Rocilinostat 伏立康唑 Rocilinostat 伏立康唑 0304103 >64 >64 32 2 0.531 10061 >64 >64 32 0.125 0.502 10060 >64 >64 2 0.125 0.033 2.3 Rocilinostat与氟康唑联用有效抑制真菌的生长
为进一步考察化合物Rocilinostat的协同抗真菌活性,我们又开展了时间-生长曲线实验。从图3结果可以看出,高浓度的氟康唑或Rocilinostat单独使用对真菌生长无抑制作用,而Rocilinostat与不同浓度的氟康唑联用能够有效抑制真菌的生长,且呈浓度依赖趋势 (图3中抑制剂为Rocilinostat)。
2.4 Rocilinostat对真菌细胞的选择性作用
采用HUVEC(人脐静脉内皮细胞)对化合物Rocilinostat进行细胞毒性的评价。结果如表4显示,化合物Rocilinostat对正常细胞表现出低毒性,IC50值为52.17 μmol/L (22.60 μg/ml),相当于其发挥协同抗耐药真菌(C. albicans 0304103)活性MIC80值的44倍,表明Rocilinostat对真菌细胞具有较强的选择性作用。此外,我们还测试了化合物Rocilinostat对真菌总HDAC酶的抑制活性,结果表明,Rocilinostat对真菌HDAC酶抑制活性(IC50=0.41 μmol/L)优于泛HDAC抑制剂伏立诺他(IC50=1.03 μmol/L)。
表 4 Rocilinostat对正常细胞的毒性和真菌总HDAC酶活性IC50 (μmol/L)化合物 HUVEC 白念珠菌(总HDAC酶) Rocilinostat 52.17 0.41 伏立诺他 — 1.03 注: “—”表示没有测试。 3. 讨论
本研究从市售的8个HDAC抑制剂中筛选出协同活性最佳的化合物Rocilinostat。进一步研究发现Rocilinostat与氟康唑联用对白念珠菌和光滑念珠菌具有协同增效作用。此外,化合物Rocilinostat与伏立康唑联用对临床分离的耐药白念珠菌株同样具有优秀的抗真菌活性。更值得关注的是,化合物Rocilinostat对正常细胞表现出低毒性,其对真菌细胞具有很好的选择性。因此,HDAC抑制剂Rocilinostat可以作为一种低毒、有效的唑类抗真菌药物增效剂,为抗真菌药物的发展提供了新的研究基础。
-
表 1 梯度洗脱程序
时间(t/ min) 流动相A(%) 流动相B(%) 0 65 35 3 65 35 7 90 10 13 90 10 15 65 35 20 65 35 表 2 盐酸阿霉素精密度试验(n=5)
浓度(ρB/µg·ml−1) 日内RSD(%) 日间RSD(%) 5 1.40 1.48 10 0.38 0.92 40 0.11 0.06 表 3 氯尼达明精密度试验(n=5)
浓度(ρB/µg·ml−1) 日内RSD(%) 日间RSD(%) 30 0.03 0.19 60 0.13 0.06 240 0.11 0.07 表 4 氯尼达明在不同时间下的稳定性考察
时间(t/h) RSD(%) 0 0.20 2 0.07 4 0.05 8 0.13 12 0.12 24 0.02 表 5 盐酸阿霉素在不同时间下的稳定性考察
时间(t/h) RSD(%) 0 0.32 2 0.38 4 0.14 8 0.49 12 0.62 24 0.58 表 6 回收率实验结果(n=6)
成分 原有量
(m/mg)测得量
(m/mg)回收率
(%)平均回收率
(%)RSD
(%)氯尼达明 12.0 11.8 98.3 99.2 2.9 12.1 11.9 98.3 11.9 11.8 99.2 12.4 12.8 98.4 11.8 11.8 100.0 12.1 12.8 105.8 盐酸阿霉素 10.1 9.8 97.0 100.8 1.9 10.1 9.8 97.0 10.0 9.8 98.0 9.9 10.0 101.0 10.1 10.0 99.0 10.1 10.2 101.0 -
[1] LU J Q, LI R, MU B S, et al. Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma[J]. Eur J Med Chem, 2022, 230:114093. doi: 10.1016/j.ejmech.2021.114093 [2] SCHIRONE L, D’AMBROSIO L, FORTE M, et al. Mitochondria and doxorubicin-induced cardiomyopathy: a complex interplay[J]. Cells, 2022, 11(13):2000. doi: 10.3390/cells11132000 [3] KITAKATA H, ENDO J, IKURA H, et al. Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. ferroptosis[J]. Int J Mol Sci, 2022, 23(3):1414. doi: 10.3390/ijms23031414 [4] WANG J, TANG W, YANG M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy[J]. Biomaterials, 2021, 273:120784. doi: 10.1016/j.biomaterials.2021.120784 [5] TIAN W, XIE X J, CAO P L. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways[J]. Biomed Pharmacother, 2020, 121:109139. doi: 10.1016/j.biopha.2019.109139 [6] HUANG Y X, SUN G H, SUN X D, et al. The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment[J]. Cancers, 2020, 12(11):3332. doi: 10.3390/cancers12113332 [7] SHUTKOV I A, OKULOVA Y N, TYURIN V Y, et al. Ru(Ⅲ) complexes with lonidamine-modified ligands[J]. Int J Mol Sci, 2021, 22(24):13468. doi: 10.3390/ijms222413468 [8] CHENG G, ZHANG Q, PAN J, et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis[J]. Nat Commun, 2019, 10(1):2205. doi: 10.1038/s41467-019-10042-1 [9] NATH K, GUO L L, NANCOLAS B, et al. Mechanism of antineoplastic activity of lonidamine[J]. Biochim Biophys Acta BBA Rev Cancer, 2016, 1866(2):151-162. doi: 10.1016/j.bbcan.2016.08.001 [10] COHEN-EREZ I, ISSACSON C, LAVI Y, et al. Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models[J]. ACS Appl Mater Interfaces, 2019, 11(36):32670-32678. doi: 10.1021/acsami.9b09886 [11] PENG Y, LU J Q, LI R, et al. Glucose and triphenylphosphonium co-modified redox-sensitive liposomes to synergistically treat glioma with doxorubicin and lonidamine[J]. ACS Appl Mater Interfaces, 2021, 13(23):26682-26693. doi: 10.1021/acsami.1c02404 [12] ZHAO Y, PENG Y, YANG Z Z, et al. pH-redox responsive cascade-targeted liposomes to intelligently deliver doxorubicin prodrugs and lonidamine for glioma[J]. Eur J Med Chem, 2022, 235:114281. doi: 10.1016/j.ejmech.2022.114281 [13] LI H Z, XU W, LI F, et al. Amplification of anticancer efficacy by co-delivery of doxorubicin and lonidamine with extracellular vesicles[J]. Drug Deliv, 2022, 29(1):192-202. doi: 10.1080/10717544.2021.2023697 [14] LIU Y Q, ZHANG X J, ZHOU M J, et al. Mitochondrial-targeting lonidamine-doxorubicin nanoparticles for synergistic chemotherapy to conquer drug resistance[J]. ACS Appl Mater Interfaces, 2017, 9(50):43498-43507. doi: 10.1021/acsami.7b14577 [15] GRIPPA E, GATTO M T, LEONE M G, et al. Analysis of lonidamine in rat serum and testis by high performance liquid chromatography[J]. Biomed Chromatogr, 2001, 15(1):1-8. doi: 10.1002/bmc.14 [16] 杨学礼, 张红蕾, 杨瑜涛, 等. HPLC法测定DNA纳米运输系统载药阿霉素的含量[J]. 药物分析杂志, 2019, 39(7):1239-1243. doi: 10.16155/j.0254-1793.2019.07.10 [17] 朱站站, 王绍仙, 王亚伦, 等. 载阿霉素PEG-PLGA纳米粒的制备及优化[J]. 广州化工, 2022, 50(7):85-87. doi: 10.3969/j.issn.1001-9677.2022.07.026 [18] 陈希, 黄佳, 葛雨欣, 等. 甲醇-水为流动相的HPLC法检测抗肿瘤药物盐酸阿霉素[J]. 嘉兴学院学报, 2021, 33(6):90-93. doi: 10.3969/j.issn.1671-3079.2021.06.016 -