-
隐丹参酮(CTS)是中药丹参的有效成分之一,国内外研究证明CTS具有抗肿瘤、抗炎、神经保护、心血管保护、抗纤维化和调节代谢紊乱等药理特性,具有广阔的临床应用前景。抗肿瘤作用是近年来隐丹参酮药理活性研究的热点问题之一[1]。隐丹参酮对肺癌、肝胆癌、胃癌、食管癌、乳腺癌、前列腺癌、胰腺癌、结直肠癌、骨肉瘤癌、黑色素瘤、横纹肌瘤、食管鳞状癌等多种恶性肿瘤表现出一定的抑制活性,其抗肿瘤机理包括抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,调节免疫以及抑制包括STAT3在内的多种信号通路[2-4]。由于CTS中等强度的药理活性和选择性,近年来研究人员对CTS进行了大量结构修饰,期望获得靶点明确且药理活性更强的CTS衍生物,从而开发并应用于临床治疗。本文就隐丹参酮及其衍生物在抗肿瘤方面的作用及其机制进行综述。
-
癌细胞的主要特点是具有无限的增殖能力。研究表明,CTS可以抑制多种肿瘤细胞增殖,包括胰腺癌细胞BxPC-3、慢性髓性白血病细胞K562/ADR、胶质瘤细胞U87、人卵巢癌细胞Hey、前列腺癌细胞DU145、乳腺癌细胞MCF7、食管鳞状细胞癌ESCC等[5]。
-
细胞凋亡又称细胞程序性死亡,对于维持组织稳态和消除不需要或受损细胞起重要作用。研究发现,CTS可以诱导多种肿瘤细胞凋亡,包括骨髓瘤细胞U266、人结肠癌细胞系SW620 Ad300和HCT116、人胃癌细胞MKN-45、肝癌细胞Hepa1-6、非小细胞肺癌细胞A549 和H460 、黑色素瘤细胞A375、横纹肌肉瘤细胞Rh30等[6]。
-
高侵袭性和转移是癌细胞恶性特征,转移是癌症死亡的主要原因。因此,抑制癌细胞转移能有效降低癌症死亡率。研究发现,CTS能够抑制卵巢癌细胞A2780的迁移和侵袭[7]。此外,CTS还可以抑制食管癌细胞EC109、膀胱癌细胞T24、人舌鳞癌细胞CAL27、小鼠结肠癌细胞CT26等多种肿瘤细胞的迁移和侵袭[5]。
-
隐丹参酮不仅能够直接抑制多种肿瘤细胞的生长,还可以诱导机体产生抗肿瘤免疫反应,从而间接发挥抗肿瘤效应。研究发现,隐丹参酮能够通过增加CD4+T细胞的细胞毒作用,抑制人非小细胞肺癌H446细胞和乳腺癌MCF7细胞的生长[8]。此外,隐丹参酮还可以通过诱导小鼠树突状细胞成熟,促进抗原提呈功能,进而诱导T细胞活化增殖,抑制Lewis肺癌细胞的增殖[9]。肿瘤相关巨噬细胞 (TAM) 是肿瘤组织中浸润的巨噬细胞,具有异质性,可分为M1和M2表型。M2表型的TAM能够促进肿瘤生长和转移,相反,M1表型则具有肿瘤抑制和促炎特性。研究发现,隐丹参酮和PD-L1联合治疗能够诱导巨噬细胞向M1极化,从而抑制小鼠肝癌Hepa1-6移植瘤的生长[10]。
-
耐药是导致肿瘤复发和治疗失败的主要原因。研究表明,CTS能够逆转慢性骨髓性白血病细胞K562对伊马替尼的耐药性[11],改善A549细胞对顺铂的耐药性[12]。此外,CTS还可以逆转P-糖蛋白(p-gp)过表达的结肠癌细胞SW620 Ad300对多柔比星和伊立替康的多重耐药[13]。
-
除了具有以上活性之外,CTS还可以与其他不同抗癌药物或细胞因子协同发挥抗肿瘤作用。例如,CTS和紫杉醇的联合用药比单独用药更能有效诱导舌鳞状细胞癌CAL27和SCC-9细胞的凋亡[14]。新近研究发现,CTS与小剂量的抗PD-L1抗体合用对小鼠Lewis 肺癌的生长抑制作用明显优于CTS单独应用[9]。
-
自噬,即Ⅱ型程序性细胞死亡,作为凋亡之外的另一种可以杀死细胞的途径,是一种抑制癌细胞生长的新方法。研究显示,CTS可通过诱导结肠癌SW620 Ad300细胞和A549细胞自噬促进细胞死亡[15-16]。
-
CTS抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,以及调节免疫等作用的机制十分广泛,涉及靶点STAT3、酪氨酸蛋白磷酸酶SHP2、DNA拓扑异构酶和信号通路磷酸酰肌醇3-激酶(PI3K)/丝氨酸/苏氨酸激酶Akt等。
-
STAT3由Janus激酶(JAKs)激活,参与肿瘤增殖、凋亡、血管生成及免疫逃逸等。STAT3在大多数恶性肿瘤中被组成性激活,异常的STAT3信号传导是肿瘤恶性进展的重要过程。当705位酪氨酸残基磷酸化后,STAT3被激活,单体STAT3通过其SH2结构域形成二聚体,并从细胞质转移到细胞核中,调节其靶基因的表达,例如,上调cyclin D1、survivin、Mcl-1、MYC、BCL-XL表达,下调 p53表达,促进肿瘤细胞增殖和存活;上调MMP2/9、Twist1、Vimentin表达,促进肿瘤转移;上调TGF-β、IL-6/10、PD-1、PD-L1、VEGF表达,下调CD80/86、MHCII、TNF、IL-12、CCL5、CXCL10等表达,抑制肿瘤微环境免疫功能[17]。研究发现,CTS能够直接与STAT3的SH2结构域结合,特异性抑制STAT3 Tyr705的磷酸化,抑制STAT3二聚化[18-19],相比之下,姜黄素还能抑制Jak2的表达[20]。在人胰腺癌BxPC-3细胞中,CTS能够抑制BxPC-3细胞的STAT3信号通路进而抑制细胞增殖,诱导细胞凋亡,达到抗肿瘤的作用[21]。另外,CTS作为p-STAT3抑制剂,能够有效阻断IL-6介导的STAT3活化,抑制肿瘤增殖,逆转BCR-ABL激酶非依赖性耐药途径[11]。此外,CTS和紫杉醇联合治疗能够有效地抑制舌鳞状癌TSCC细胞增殖和迁移,其作用机制同样与抑制STAT3信号通路相关[14]。沉默信息转录调控因子3(SIRT3)是一种蛋白质去乙酰化酶,参与癌症、心血管、神经系统等疾病的发展过程。研究发现CTS能够通过抑制STAT3/SIRT3 信号通路抑制人卵巢癌A2780 细胞增殖[22]。 上述研究表明,抑制STAT3信号通路对于CTS抗肿瘤至关重要,且CTS是一种特异性的STAT3抑制剂。
-
含Src同源2结构域蛋白酪氨酸磷酸酶(SHP2)由基因PTPN11编码,PTPN11突变引起SHP2催化活性异常增加。研究发现,肺癌、结肠癌、黑色素瘤、神经母细胞瘤、肝癌和急性髓性白血病等病人均发现有PTPN11突变[23]。SHP2是一种非受体蛋白酪氨酸磷酸酶,参与Ras-Erk、PI3K-Akt、Jak-Stat和NF-κB多条信号通路传导,调控细胞的增殖、迁移和凋亡等过程[24]。研究证明,CTS能与SHP2直接结合,是一个混合型蛋白酪氨酸磷酸酶抑制剂,抑制SHP2 的IC50为22.50μmol/L,抑制SHP1的IC50为39.50μmol/L。用SHP2 siRNA敲减Hela细胞中SHP2后,CTS抑制Hela细胞生长的敏感性降低,提示SHP2是CTS的一个靶点,但是,CTS仍然可以进一步抑制SHP2敲减细胞生长,说明CTS还有其它作用靶点[25]。此外,有研究发现,CTS能够上调胶质瘤细胞 U87 SHP2蛋白酪氨酸磷酸酶活性,抑制STAT3 Tyr705的磷酸化,从而在体内外表现出抑制恶性胶质瘤活性[26]。
-
DNA拓扑异构酶 (topos),包括DNA拓扑异构酶1(topo1)和DNA拓扑异构酶2(topo2),其中topo2因其在有丝分裂中的关键作用被认为是抗癌治疗的重要靶点[27]。研究表明,CTS能够显著降低前列腺癌PC3细胞中topo 2a的mRNA、蛋白和酶活性水平,并且在裸鼠异种移植模型中表现出良好的抗肿瘤作用[28]。
-
活性氧与肿瘤的发展密切相关,其过度产生可诱导多种生物学效应,包括抑制细胞增殖、诱导细胞凋亡和自噬等[29]。研究发现,CTS能够促进胃癌MKN-28 细胞ROS的累积,通过调控MAPK和AKT信号通路诱导G2/M周期阻滞[30];通过ROS-线粒体途径,上调cleaved caspases-3、促凋亡蛋白Bax和下调抗凋亡蛋白Bcl-2,从而诱导黑色素瘤细胞凋亡[31];诱导横纹肌肉瘤Rh30细胞ROS产生,激活JNK/p-38,抑制Erk1/2,导致细胞凋亡[32];刺激SW620 Ad300细胞中的ROS产生,诱导p38 MAPK激活,导致NF-κB从细胞质转移到细胞核中,最终导致自噬发生[15];刺激HepG2和MCF-7细胞产生ROS,激活内质网(ER)应激,增强不同抗癌药物或细胞因子(Fas/Apo-1、TNF-α、顺铂、依托泊苷或5-FU)诱导的细胞凋亡[33]。
-
雄激素受体(AR)和雌激素受体(ER)分别是治疗前列腺癌PCa和乳腺癌的主要靶点。研究发现CTS可以通过抑制AR二聚化有效抑制AR活性,从而抑制AR+ PCa细胞的生长[34];在异种移植动物模型中,CTS可以有效抑制人前列腺癌CWR22Rv1细胞的生长和AR靶基因的表达[35]。此外,CTS还能够抑制乳腺癌细胞的生长,通过竞争性地结合ERα抑制E2诱导的ER转录活性和ER靶基因的表达[36];同时,CTS可以有效地抑制体内异种移植瘤模型中ER信号,发挥抗肿瘤作用[37]。
-
磷酸肌醇3-激酶(PI3K)/蛋白质丝氨酸苏氨酸激酶(Akt)信号通路参与肿瘤的发生、生长、存活和转移。有研究发现CTS可抑制PI3K/AKT信号通路,增加caspase-3、caspase-9、PARP和Bax的表达,降低Bcl-2、survivin、细胞凋亡抑制蛋白的表达,诱导非小细胞肺癌细胞的凋亡[38-39]。酪氨酸激酶胰岛素生长因子1受体(IGF-1R)在肿瘤细胞的生长、分化和进展中起关键的作用。研究表明,CTS能够通过下调IGF-1R/PI3K/Akt信号通路抑制人肺癌细胞的增殖[40]。此外,有文献报导CTS可以通过调节PI3K/Akt/mTOR信号,抑制结肠癌CT26细胞的侵袭[41]。在裸鼠异种移植实验中,CTS能够显著抑制小鼠体内异种移植物的生长,其作用机制与抑制PI3K/AKT/NF-κB信号通路有关[42]。以上研究表明PI3K/AKT信号通路可能是CTS抗肿瘤的有效信号通路之一。
-
CTS虽然具有广谱的抗肿瘤活性,但是其药理作用中等,疏水性强且难吸收,口服生物利用度只有2.1%,这些缺点严重阻碍了其开发和应用[43]。近年来,针对CTS存在的问题,人们尝试对CTS进行结构改造,期望获得生物活性高、水溶性好的化合物。刘航[44]等基于CTS是一种STAT3抑制剂,通过对CTS及其骨架类似物进行修饰,设计合成了CTS衍生物62个,其中新化合物46个,通过报告基因法检测发现有27个新化合物对STAT3转录抑制效果优于CTS,IC50最低0.5976 μmol/L。Wang等基于STAT3的药物设计策略,设计合成了一种亲和力和抑制活性更强的新型CTS衍生物LYW-6,该化合物与STAT3结合解离常数Kd约为6.6μmol/L,能够显著抑制STAT3磷酸化、二聚化、核转位以及转录活性。在细胞水平上,LYW-6能选择性抑制高STAT3活性的结肠癌细胞增殖、迁移,促进凋亡,体内可抑制结肠癌的生长和转移,是一个具有开发前景的抗肿瘤活性化合物[45]。为了改善CTS的水溶性,Xu等合成了几种CTS的钠盐衍生物,结果发现这些衍生物比CTS更易溶解,同时保留了CTS的生物活性,其中钠盐衍生物PTS33可以有效地抑制二氢睾酮DHT诱导AR反式激活和PCa细胞生长[46]。
-
CTS具有广谱的抗肿瘤活性,该活性与抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,逆转耐药性,诱导自噬等作用相关。除直接作用于肿瘤细胞外,CTS还可以通过增强CD4+T细胞的细胞毒作用、诱导DC细胞成熟和促使巨噬细胞M1型极化,间接杀伤肿瘤细胞。分子机制研究表明,CTS可直接结合STAT3和SHP2,有效调节JAK/STAT3、NF-κB、PI3K/AKT和IGF-1R等信号通路发挥抗肿瘤作用。隐丹参酮特异性抑制STAT3信号通路,而不抑制STAT家族中的其他蛋白,是其一大特点。因为尽管其他天然产物也有抗肿瘤作用,但不是特异性STAT3抑制剂,例如姜黄素,是一种STAT抑制剂,但在治疗24 h后降低了STAT3的表达。虽然CTS表现出良好的药理活性,但水溶性差和生物利用度低等问题限制了其广泛应用。因此,基于靶点STAT3,以CTS作为先导化合物,设计并合成一系列CTS衍生物,有望开发出新型STAT3抑制剂用于癌症治疗。
Progress on the antitumor activity of cryptotanshinone and its derivatives
-
摘要: 隐丹参酮是中药丹参的有效成分之一,对多种肿瘤显示很好的活性。其抗肿瘤效应包括抑制细胞增殖、诱导肿瘤细胞凋亡、抑制细胞迁移和侵袭、调节机体免疫功能和逆转药物耐药性等。抗肿瘤直接靶点有信号转导和转录激活因子3(STAT3)、酪氨酸蛋白磷酸酶SHP2、DNA拓扑异构酶2(top2) ,其它的作用机制包括诱导活性氧(ROS)产生、调控雌、雄激素受体信号、抑制PI3K/AKT信号通路等。此外,近年来研究人员还设计合成了许多隐丹参酮衍生物,并对其抗肿瘤作用进行了研究。本文主要就隐丹参酮及其衍生物抗肿瘤活性研究进展进行综述,希望能够有助于隐丹参酮及其衍生物在抗肿瘤方面的药物研发。Abstract: Cryptotanshinone is one of the effective components of traditional Chinese medicine salvia miltiorrhiza which shows good activities against a variety of tumors. Its anti-tumor effects include inhibition of tumor cell proliferation, induction of cell apoptosis, inhibition of cell migration and invasion, regulation of immune function and reversal of drug resistance. The direct anti-tumor targets include signal transducer and activator of transcription 3 (STAT3), tyrosine protein phosphatase SHP2, DNA topoisomerase 2, and other mechanisms of action include the induction of reactive oxygen species (ROS) production, regulation of estrogen and androgen receptor signaling, and inhibition of PI3K/AKT signaling pathway. In addition, many cryptotanshinone derivatives have been designed and synthesized to study the antitumor effects. The research progress of the antitumor activity of cryptotanshinone and its derivatives were reviewed in this paper to give references to the anti-tumor drug development of cryptotanshinone and its derivatives.
-
Key words:
- cryptotanshinone /
- derivatives /
- anti-tumor /
- mechanism
-
奥卡西平(oxcarbazepine, OXC)是第二代抗癫痫药物,可用于儿童全面强直-阵挛发作,部分伴或不伴继发性全面发作的一线治疗[1],其具有与传统的抗癫痫药物(AEDs)如苯妥英钠、卡马西平和丙戊酸钠相同的疗效,但其对肝药酶和自身的诱导作用小,药物间相互作用较少,临床上可用于替代传统的AEDs。OXC是卡马西平(carbamazepine, CBZ)的一种10-酮类衍生物,但两者之间的药动学存在差异,OXC的耐受性好且不良反应少[2]。OXC是无活性的前体药物,在体内经过肝脏内细胞溶质芳基酮还原酶的作用转化为具有药理活性的中间代谢产物单羟基卡马西平(monohydroxy carbamazepine, MHD)[3-4]。国际抗癫痫联盟推荐MHD血清浓度的参考范围为3~35 μg/ml[5],有研究表明,当血药浓度高于30 μg/ml时,容易发生药物不良反应,且在许多患者中,不良反应间歇性的发生与MHD浓度的波动有关[6]。在临床用药中也发现OXC服药后的药物浓度个体化差异大,年龄、性别、体重、肝肾功能等均会影响MHD的药动学参数[7],故需要对其血药浓度进行监测。本研究在参考既往研究的基础上[8-12],对色谱条件进行了优化,并简化了血样处理的过程,建立了HPLC法测定OXC活性代谢产物MHD血药浓度的方法,该方法快速、简单、准确、选择性好、灵敏度高,为临床监测血药浓度、调整给药剂量提供了手段。
1. 仪器与材料
1.1 仪器
Agilent 1200高效液相色谱仪(美国Agilent公司);H1850R型台式高速冷冻离心机(湖南湘仪实验室仪器开发有限公司);DHG-9145A型电热恒温鼓风干燥箱(上海恒科仪器有限公司);SHB-B95A型循环水式多用真空泵(郑州长城科工贸有限公司);Discovery DV215CD型分析天平(美国OHAUS公司);Vortex-5型涡旋混合器(江苏海门市其林贝尔仪器制造有限公司)。
1.2 材料
MHD对照品(美国CATO公司);内标:奥硝唑(中国食品药品检定研究院);甲醇、乙腈(色谱纯,上海科丰化学试剂有限公司);空白血浆(医院血库提供);超纯水(实验室自制)。
2. 实验方法
2.1 色谱条件
色谱柱:ZORBAX Eclipse XDB-C18(150 mm×4.6 mm,5 μm),预柱为Eclipse XDB-C18(4.6 mm×12.5 mm,5 μm);流动相:水-乙腈(80:20,V/V);流速:1.0 ml/min;柱温:35 ℃;进样量:10 μl;双波长检测:在192 nm处检测MHD,318 nm处检测奥硝唑。
2.2 溶液及血浆样品的配制
2.2.1 储备液的配制
精密称取MHD对照品10 mg于10 ml的量瓶中,用甲醇溶解配制成浓度为1 mg/ml的储备液,置于−20 ℃下保存。
2.2.2 内标工作液的配制
精密称取奥硝唑1.4 mg于10 ml的量瓶中,用甲醇溶解配制成浓度为140 μg/ml的内标工作液,置于−20 ℃下保存。
2.2.3 血浆标准曲线和质控样品的配制
分别精密量取适量储备液,用甲醇稀释成20、50、100、200、300、400、500 μg/ml浓度梯度的标准对照溶液。取以上6个标准对照溶液,加入适量空白血浆,得2、5、10、20、30、40、50 μg/ml系列浓度的血浆标准曲线样品。同法配制相应的低、中、高浓度的血浆质控样品(QC),使得MHD对应的浓度分别为5、15、40 μg/ml。
2.3 血浆样品的预处理
取200 μl血浆样品,加入200 μl内标工作液、400 μl甲醇,涡旋混合30 s,10 ℃条件下13 000 r/min离心10 min,取上清液直接进样。
3. 结果
3.1 专属性试验
通过考察6份不同生物来源的空白血浆样品色谱图、空白血浆样品加入MHD对照品和内标的色谱图,以及临床实际用药后的患者血浆样品色谱图,以此反映方法的专属性。由图1可见,在本实验条件下,被测物MHD与内标的色谱峰分离良好,且血浆中的内源性物质不干扰测定。MHD和内标的保留时间分别为9.5 min和6.1 min。
3.2 标准曲线与线性范围
取上述浓度为2、5、10、20、30、40、50 μg/ml的血浆标准曲线样品按“2.3”项下方法处理。经HPLC法分析,以测得OXC的峰面积与内标峰面积之比(Y)作为纵坐标,以血浆MHD浓度(X)为横坐标,得到回归方程为:Y=0.047 1X+0.022 2(r=0.998 6)。线性范围:根据标准曲线,MHD血药浓度在2~50 μg/ml范围内线性关系良好,其定量下限浓度为2 μg/ml。
3.3 日内、日间精密度和准确度
配制定量下限、低、中、高(2、5、15、40 μg/ml)4种浓度的QC样品各6个,按“2.3”项下方法处理后测定,连续测定3 d,以当天的标准曲线计算QC样品的测定浓度,计算日内、日间精密度以及准确度。经测定,MHD的日内、日间精密度RSD均小于15%,准确度在95.57%~100.59%之间,均符合生物样品的测定要求,结果见表1。
表 1 单羟基卡马西平日内、日间精密度和准确度(n=6)理论浓度
(μg/ml)实测浓度
(μg/ml)RSD(%) RE(%) 日内精密度 日间精密度 2 1.85±0.16 8.64 12.21 −3.63 5 4.93±0.24 4.86 7.68 −4.43 15 14.32±0.37 6.86 6.16 −3.11 40 41.80±1.26 3.03 5.33 0.59 3.4 提取回收率
配制低、中、高(5、15、40 μg/ml)3种浓度的QC样品各6个,按“2.3”项下方法处理。同时另取18份空白血浆,除了不加系列对照品溶液和内标外,按“2.3”项下方法处理,在获得的上清液中加入MHD和内标溶液至相应浓度。进样分析,以每一浓度中2种不同处理方法的峰面积比值计算提取回收率。经测定,本法中MHD的平均提取回收率在89.62%~95.32%之间;内标的平均提取回收率为98.76%,符合生物学样品的分析要求,结果见表2。
表 2 单羟基卡马西平、MHD和内标提取回收率试验结果(n=6)化合物 浓度(μg/ml) 提取回收率(%) MHD 5 89.62±4.82 15 94.67±6.76 40 95.32±4.90 内标 140 98.76±5.92 3.5 稳定性试验
3.5.1 室温稳定性试验
取低、中、高(5、15、40 μg/ml)3种浓度的QC样品各5份,测定即时血药浓度,并在室温条件下放置4 h和10 h后测定样品血药浓度,求得RSD和RE值。经测定MHD血浆样品在室温下放置10 h后仍稳定,RSD均小于4.47%,RE值在1.50%~2.98%之间,结果见表3。
表 3 奥卡西平代谢产物单羟基卡马西平稳定性试验结果 (n=5)储存条件 理论浓度(μg/ml) 实测浓度(μg/ml) RSD(%) RE(%) 室温10 h 5 5.15±0.19 3.60 2.98 15 15.39±0.69 4.47 2.62 40 40.60±0.40 0.98 1.50 冻融3次 5 5.47±0.15 2.83 9.41 15 15.79±0.32 2.06 5.24 40 40.75±1.10 2.71 1.86 处理后36 h 5 5.39±0.27 5.09 7.74 15 15.66±0.58 3.70 4.39 40 39.46±1.80 4.57 −1.34 −20 ℃,30 d 5 5.16±0.23 4.39 3.19 15 14.62±0.39 2.64 −2.53 40 40.37±0.58 1.44 0.93 3.5.2 冻融稳定性试验
取低、中、高(5、15、40 μg/ml)3种浓度的QC样品各5份,测定即时血药浓度,并于−20 ℃冰箱中冷冻保存24 h后室温下解冻1 h后测定,反复冻融3次,求得RSD和RE值。经测定MHD血浆样品反复冻融3次后仍能保持稳定,RSD均小于2.83%,RE值在1.86%~9.41%之间,结果见表3。
3.5.3 处理后的血浆样品在自动进样器中储存的稳定性试验
取低、中、高3个浓度水平的血浆QC样品(5、15、40 μg/ml)各5份,测定即时血药浓度,然后放置在自动进样器内12 h、36 h后再次测定,求得RSD和RE值。经测定处理后的MHD血浆样品在进样器内放置36 h仍能保持稳定,RSD均小于5.09%,RE值在−1.34%~7.74%之间,结果见表3。
3.5.4 长期稳定性试验
取低、中、高3个浓度水平的血浆质控样品(5、15、40 μg/ml)各5份,测定即时血药浓度,并置于−20 ℃冰箱中冻存30 d后取出解冻后测定,求得RSD和RE值。经测定MHD血浆样品在−20 ℃冰箱中冻存30 d后仍能保持稳定,RSD均小于4.39%,RE值在−2.53%~3.19%之间,结果见表3。
4. 讨论
目前,有关MHD的检测方法的文献很多,其中,高效液相色谱法和高效液相色谱-质谱联用法都有报道,后者虽有灵敏度高、专属性强的特点,但其仪器昂贵,且需专业人员进行操作,很难在大部分的医疗机构普及[13-15]。另外,国内外文献报道中多使用固液萃取法或液液萃取法进行血样的前处理,但这种处理过程相对复杂、耗时,且经济成本较高[11, 16]。本方法采用甲醇沉淀蛋白进行血样的前处理,建立了HPLC法测定人血浆中MHD血药浓度的方法,整个过程操作简单、快速,样品分析时间较短,适用于临床大量样品的连续检测。
文献报道的流动相有乙腈-10 mmol/L磷酸二氢钾溶液(33∶67,V/V)[12]、水-乙腈(65∶35,V/V)[17]、水-甲醇-乙腈(64∶30∶6,V/V/V)[18]等。本方法采用了水-乙腈,按不同的配比进行试验,发现当水-乙腈的比例为80∶20时,色谱峰的峰形、出峰时间及分离度最佳。文献采用卡马西平[17]、苯巴比妥[19]和奥硝唑[20]等作为内标,本研究通过筛选发现奥硝唑的保留时间为6.1 min,不仅与MHD的保留时间相近,又能与其有很好的分离,且其性质稳定,满足内标的要求。
本实验建立的测定人血浆中OXC活性代谢产物MHD的HPLC法,MHD线性回归方程中的r=0.998 6,说明血药浓度在2~50 μg/ml范围内具有良好的线性关系,日内、日间精密度RSD均小于15%,准确度在95.57%~100.59%之间,MHD及内标的平均提取回收率在89.62%~98.76%之间。血浆样品的稳定性试验证明,在室温放置10 h、反复冻融、处理后放置进样器36 h以及低温保存30 d的情况下,样品未见明显降解,仍能保持稳定。本研究建立的HPLC法操作快速简单,精密度、回收率高,稳定性好,专属性强,不受血浆中内源性物质的干扰,结果准确可靠,且灵敏度高,适用于奥卡西平临床血药浓度的监测。
目前癫痫治疗主要以药物治疗为主,奥卡西平是第二代抗癫痫药物,我国诸多癫痫病专家也建议将其作为癫痫部分性发作和全面强直阵挛发作的首选药物[21]。但奥卡西平使用过程中可能出现瘙痒、荨麻疹、血管性水肿等超敏反应,包括Stevens Johnson综合征中毒性表皮坏死松解症[22]等,还可引起低钠血症、头晕、胃肠道不适等不良反应,有文献报道,其疗效及不良反应可能与血药浓度密切相关[23],因此开展奥卡西平血药浓度的测定,能提高药物治疗的疗效,同时可以有效避免或减少可能产生的药物不良反应,提高癫痫患者服药的依从性。本研究建立了测定人血浆中MHD血药浓度的方法,应用于临床,为临床个体化给药提供依据,值得临床推广使用。
-
[1] YUAN D P, LONG J, LU Y, et al. The forecast of anticancer targets of cryptotanshinone based on reverse pharmacophore-based screening technology[J]. Chin J Nat Med,2014,12(6):443-448. [2] CHEN L, ZHENG S Z, SUN Z G, et al. Cryptotanshinone has diverse effects on cell cycle events in melanoma cell lines with different metastatic capacity[J]. Cancer Chemother Pharmacol,2011,68(1):17-27. doi: 10.1007/s00280-010-1440-8 [3] PARK I J, YANG W K, NAM S H, et al. Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma[J]. Apoptosis,2014,19(4):615-628. doi: 10.1007/s10495-013-0929-0 [4] JI Y B, LIU Y C, XUE N N, et al. Cryptotanshinone inhibits esophageal squamous-cell carcinoma in vitro and in vivo through the suppression of STAT3 activation[J]. Onco Targets Ther,2019,12:883-896. doi: 10.2147/OTT.S187777 [5] WU Y H, WU Y R, LI B, et al. Cryptotanshinone: a review of its pharmacology activities and molecular mechanisms[J]. Fitoterapia,2020,145:104633. doi: 10.1016/j.fitote.2020.104633 [6] LI H Y, GAO C D, LIU C, et al. A review of the biological activity and pharmacology of cryptotanshinone, an important active constituent in Danshen[J]. Biomed Pharmacother,2021,137:111332. doi: 10.1016/j.biopha.2021.111332 [7] JIANG G Q, LIU J, REN B Y, et al. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro[J]. J Ethnopharmacol,2017,205:33-40. doi: 10.1016/j.jep.2017.04.026 [8] MAN Y H, YANG L, ZHANG D X, et al. Cryptotanshinone inhibits lung tumor growth by increasing CD4+ T cell cytotoxicity through activation of the JAK2/STAT4 pathway[J]. Oncol Lett,2016,12(5):4094-4098. doi: 10.3892/ol.2016.5123 [9] LIU S, HAN Z, TRIVETT A L, et al. Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma[J]. Cancer Immunol Immunother,2019,68(7):1059-1071. doi: 10.1007/s00262-019-02326-8 [10] HAN Z, LIU S, LIN H S, et al. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses[J]. Cancer Immunol Immunother,2019,68(7):1073-1085. doi: 10.1007/s00262-019-02338-4 [11] DONG B W, LIANG Z R, CHEN Z R, et al. Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation[J]. Sci China Life Sci,2018,61(9):999-1009. doi: 10.1007/s11427-018-9324-y [12] XIA C, BAI X P, HOU X Y, et al. Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 pathway[J]. Cell Physiol Biochem,2015,37(2):816-824. doi: 10.1159/000430398 [13] HU T, TO K K, WANG L, et al. Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltior-rhiza[J]. Phytomedicine,2014,21(11):1264-1272. doi: 10.1016/j.phymed.2014.06.013 [14] WANG Y, LU H L, LIU Y D, et al. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway[J]. Biomed Pharmacother,2017,95:1388-1396. doi: 10.1016/j.biopha.2017.09.062 [15] XU Z Y, JIANG H, ZHU Y H, et al. Cryptotanshinone induces ROS-dependent autophagy in multidrug-resistant colon cancer cells[J]. Chem Biol Interact,2017,273:48-55. doi: 10.1016/j.cbi.2017.06.003 [16] HAO W H, ZHANG X N, ZHAO W W, et al. Cryptotanshinone induces pro-death autophagy through JNK signaling mediated by reactive oxygen species generation in lung cancer cells[J]. Anticancer Agents Med Chem,2016,16(5):593-600. doi: 10.2174/1871520615666150907093036 [17] ZOU S L, TONG Q Y, LIU B W, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer,2020,19(1):145. doi: 10.1186/s12943-020-01258-7 [18] SHIN D S, KIM H N, SHIN K D, et al. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells[J]. Cancer Res,2009,69(1):193-202. doi: 10.1158/0008-5472.CAN-08-2575 [19] CHEN L D, LV D Y, CHEN X F, et al. Biosensor-based active ingredients recognition system for screening STAT3 ligands from medical herbs[J]. Anal Chem,2018,90(15):8936-8945. doi: 10.1021/acs.analchem.8b01103 [20] BLASIUS R, REUTER S, HENRY E, et al. Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells[J]. Biochem Pharmacol,2006,72(11):1547-1554. doi: 10.1016/j.bcp.2006.07.029 [21] GE Y Q, YANG B, CHEN Z, et al. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway[J]. Mol Med Rep,2015,12(5):7782-7788. doi: 10.3892/mmr.2015.4379 [22] YANG Y F, CAO Y, CHEN L H, et al. Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells[J]. Cancer Med,2018,7(9):4610-4618. doi: 10.1002/cam4.1691 [23] YUAN X R, BU H, ZHOU J P, et al. Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application[J]. J Med Chem,2020,63(20):11368-11396. doi: 10.1021/acs.jmedchem.0c00249 [24] YU B, LIU W, YU W M, et al. Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies[J]. Mol Cancer Ther,2013,12(9):1738-1748. doi: 10.1158/1535-7163.MCT-13-0049-T [25] LIU W, YU B, XU G, et al. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11)[J]. J Med Chem,2013,56(18):7212-7221. doi: 10.1021/jm400474r [26] LU L, ZHANG S L, LI C X, et al. Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation[J]. Cell Death Dis,2017,8(5):e2767. doi: 10.1038/cddis.2017.174 [27] HECK M M, EARNSHAW W C. Topoisomerase II: a specific marker for cell proliferation[J]. J Cell Biol,1986,103(6):2569-2581. doi: 10.1083/jcb.103.6.2569 [28] KIM E J, KIM S Y, KIM S M, et al. A novel topoisomerase 2a inhibitor, cryptotanshinone, suppresses the growth of PC3 cells without apparent cytotoxicity[J]. Toxicol Appl Pharmacol,2017,330:84-92. doi: 10.1016/j.taap.2017.07.007 [29] MOLONEY J N, COTTER T G. ROS signalling in the biology of cancer[J]. Semin Cell Dev Biol,2018,80:50-64. doi: 10.1016/j.semcdb.2017.05.023 [30] LIU C, SUN H N, LUO Y H, et al. Cryptotanshinone induces ROS-mediated apoptosis in human gastric cancer cells[J]. Oncotarget,2017,8(70):115398-115412. doi: 10.18632/oncotarget.23267 [31] YE T H, ZHU S R, ZHU Y X, et al. Cryptotanshinone induces melanoma cancer cells apoptosis via ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion[J]. Biomed Pharmacother,2016,82:319-326. doi: 10.1016/j.biopha.2016.05.015 [32] CHEN W X, LIU L, LUO Y, et al. Cryptotanshinone activates p38/JNK and inhibits Erk1/2 leading to caspase-independent cell death in tumor cells[J]. Cancer Prev Res (Phila),2012,5(5):778-787. doi: 10.1158/1940-6207.CAPR-11-0551 [33] PARK I J, KIM M J, PARK O J, et al. Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells[J]. Apoptosis,2012,17(3):248-257. doi: 10.1007/s10495-011-0680-3 [34] WU C Y, HSIEH C Y, HUANG K E, et al. Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function[J]. Int J Cancer,2012,131(6):1423-1434. doi: 10.1002/ijc.27343 [35] XU D F, LIN T H, LI S S, et al. Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells[J]. Cancer Lett,2012,316(1):11-22. doi: 10.1016/j.canlet.2011.10.006 [36] PAN Y H, SHI J F, NI W T, et al. Cryptotanshinone inhibition of mammalian target of rapamycin pathway is dependent on oestrogen receptor alpha in breast cancer[J]. J Cell Mol Med,2017,21(9):2129-2139. doi: 10.1111/jcmm.13135 [37] LI S H, WANG H T, HONG L, et al. Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling[J]. Cancer Biol Ther,2015,16(1):176-184. doi: 10.4161/15384047.2014.962960 [38] KIM S A, KANG O H, KWON D Y. Cryptotanshinone induces cell cycle arrest and apoptosis of NSCLC cells through the PI3K/Akt/GSK-3β pathway[J]. Int J Mol Sci,2018,19(9):2739. doi: 10.3390/ijms19092739 [39] YE Y T, ZHONG W, SUN P, et al. Apoptosis induced by the methanol extract of Salvia miltiorrhiza Bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway[J]. J Ethnopharmacol,2017,200:107-116. doi: 10.1016/j.jep.2016.12.051 [40] ZHANG J T, WEN G L, SUN L H, et al. Cryptotanshinone inhibits cellular proliferation of human lung cancer cells through downregulation ofIGF-1R/PI3K/Akt signaling pathway[J]. Oncol Rep,2018,40(5):2926-2934. [41] ZHANG L, CHEN C, DUANMU J X, et a. Cryptotanshinone inhibits the growth and invasion of colon cancer by suppressing inflammation and tumor angiogenesis through modulating MMP/TIMP system, PI3K/Akt/mTOR signaling and HIF-1α nuclear translocation[J]. Int Immunopharmacol,2018,65:429-437. doi: 10.1016/j.intimp.2018.10.035 [42] KE F Y, WANG Z, SONG X L, et al. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells[J]. Drug Des Devel Ther,2017,11:1753-1766. doi: 10.2147/DDDT.S132488 [43] ZHANG J, HUANG M, GUAN S, et al. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza[J]. J Pharmacol Exp Ther,2006,317(3):1285-1294. doi: 10.1124/jpet.105.100701 [44] 刘航. 隐丹参酮衍生物的设计, 合成及其对STAT3转录活性的影响[D]. 福州: 福建中医药大学, 2021. [45] WANG H, LIU Z, GUAN L N, et al. LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppres-ses colorectal cancer growth and metastasis[J]. Pharmacol Res,2020,153:104661. doi: 10.1016/j.phrs.2020.104661 [46] XU D F, LIN T H, ZHANG C X, et al. The selective inhibitory effect of a synthetic tanshinone derivative on prostate cancer cells[J]. Prostate,2012,72(7):803-816. doi: 10.1002/pros.21474 -

计量
- 文章访问数: 5575
- HTML全文浏览量: 3220
- PDF下载量: 29
- 被引次数: 0