-
舒肝宁注射液是在中国传统医学经典方剂——张仲景《伤寒杂病论》“茵陈蒿汤”基础上进一步研发的纯中药注射剂,由茵陈、栀子、黄芩、板蓝根和灵芝等五味中药材的提取物组合而成,在临床上主要用于治疗急慢性病毒性肝炎、药物性肝炎、胆汁淤积性肝炎等肝脏疾病[1-2]。舒肝宁注射液所含中药种类繁多,化学成分复杂,其改善肝炎的有效成分及相应的作用机制尚不清楚,因此,研究舒肝宁注射液的有效活性成分、作用靶点及其抗炎保肝的作用机制具有重要的科学意义。
中药复方活性成分不明是中药复方药效物质基础研究的瓶颈之一,网络药理学通过将化学成分映射到疾病基因网络中来寻找潜在的生物活性成分,为筛选中药活性成分提供了一种方法。同时以中药成分、靶点和疾病等数据相关信息为基础,构建生物网络,通过网络分析阐释中药的作用机制,对中药复方在临床应用具有重要的意义。
本研究通过检索TCMSP数据库以及相关文献收集舒肝宁注射液的活性成分信息,并在此基础上利用药物靶点分析平台STITCH预测舒肝宁注射液可能的作用靶点,采用Cytoscape构建舒肝宁注射液抗肝炎作用的“活性成分-作用靶点”网络,对这些靶点进行蛋白-蛋白相互作用分析,利用DAVID数据库进行基因功能和信号通路分析,探讨舒肝宁注射液抗炎保肝作用可能的作用机制。
-
通过检索中药系统药理学数据库和分析平台(TCMSP)以及相关文献,分别收集舒肝宁注射液中茵陈、栀子、黄芩、板蓝根和灵芝的主要的化学成分,建立舒肝宁注射液化学成分数据库。在此基础上,考察化学成分生物利用度(OB>30%)、药物相似性(DL>0.18)[3]、化合物含量以及相关生物功能,通过文献筛选舒肝宁注射液中有效的活性成分。
-
主要通过化合物与蛋白互作数据库(STITCH)进行分析,将活性成分输入,选择“人类”物种进行搜索。将搜索得到靶点结果以TSV格式进行保存,筛选结合得分大于0.7的靶点。以“hepatitis”作为疾病关键词,搜寻GeneCards数据库与OMIM数据库中与肝炎相关的靶点。将舒肝宁注射液活性成分作用靶点与肝炎相关疾病靶点取交集,靶点名称以靶点基因名称为准,用于后续靶点网络的构建、蛋白相互作用网络构建、基因功能和信号通路分析等工作。
-
根据舒肝宁注射液中主要有效成分作用的肝炎相关靶点,建立活性成分-肝炎作用靶点之间的相互对应关系。将活性成分和肝炎靶点作为网络中的节点,两者之间的相互作用作为网络中的连接,导入Cytoscape 3.8.2软件中构建舒肝宁注射液“活性成分-作用靶点”网络。并应用内置工具分析有效成分及靶点的网络拓扑参数,包括连接度、介度、及紧密度等,并根据网络拓扑学参数判断核心靶点及发挥药效的主要活性成分。
-
蛋白质相互作用数据库(String)是一种包含已知和预测的蛋白质−蛋白质相互作用的数据库, 其中收集了大量的蛋白质相互作用关系。将舒肝宁注射液与肝炎相关的靶点导入String数据库,获取蛋白间的相互作用关系,将结果保存成TSV格式,保留文件中节点1、节点2和结合得分信息,导入Cytoscape 3.8.2软件中绘制相互作用网络,并对网络进行分析,保存结果。使用Cytoscape 3.8.2软件设置节点大小和颜色反映度(Degree)值的大小,边的粗细用于反映结合得分的大小,获得舒肝宁注射液作用靶点蛋白-蛋白相互作用网络图。
-
生物学信息注释数据库(DAVID)为基因和蛋白提供系统综合的生物功能注释信息,可以对差异基因进行功能和通路富集分析。将舒肝宁注射液作用与肝炎相关的蛋白靶点导入DAVID数据库,选择标识符为标准的基因名称,列表类型设置为基因列表,限定物种为人,对舒肝宁注射液作用靶点进行KEGG通路分析,阈值设置为P<0.01保存结果,并按照涉及的靶点数目多少进行排序,筛选排名靠前的信号通路,采用GraphPad Prism 5.0软件绘图。GO富集分析是指在某一功能层次上统计蛋白或者基因的数目组成的一个有向无环图,包括生物过程(BP)、分子功能(MF)和细胞组分(CC)3个分支。使用Cytoscape 3.8.2软件中的插件对舒肝宁注射液中活性成分作用靶点进行GO分析,阈值设置为P<0.05,筛选靠前的条目,采用GraphPad Prism 5.0软件绘图。
-
通过搜索中药系统药理学数据库和分析平台TCMSP,从茵陈、栀子、黄芩、板蓝根和灵芝中分别收集到53、98、87、169、242个主要的化学成分。对收集到的化学成分,以生物利用度>30%、药物相似性>0.18以及相关文献参考作为筛选标准,获得30个活性成分,黄芩10个、栀子8个、板蓝根7个、茵陈3个、灵芝2个。黄芩含有刺槐黄素、黄芩素、β-谷甾醇、黄连碱、千层纸素A、谷甾醇、黄芩黄酮I、豆甾醇、角鲨烯、汉黄芩素;栀子含有异欧前胡素、β-谷甾醇、藏红花酸、欧前胡素、山奈酚、槲皮素、豆甾醇、角鲨烯;板蓝根含有刺槐黄素、β-谷甾醇、半齿泽兰素、高车前素、甜橙黄酮、谷甾醇、豆甾醇;茵陈含有谷甾醇、芫花素和槲皮素;灵芝含有β-谷甾醇、过氧麦角甾醇。删除重复活性成分后,共得到活性成分20个。
-
通过STITCH软件进行分析,预测舒肝宁注射液中20个活性成分的靶点,预测得到87个蛋白靶点。再通过GeneCards和OMIM数据库中与肝炎有关的基因进行比对,取交集得到83个与肝炎相关的靶点。其中肝炎相关性得分大于10分并且经文献证实的基因有15个,分别为:肿瘤蛋白P53(TP53)、肿瘤坏死因子(TNF)、白细胞介素-10(IL-10)、白细胞介素-6(IL-6)、载脂蛋白E(APOE )、ATP 结合盒亚家族B成员11(ABCB11)、半胱氨酸蛋白酶-8(CASP8)、溶质载体有机阴离子转运蛋白家族成员1B1(SLCO1B1)、细胞色素 P450 2D6(CYP2D6)、UDP-葡萄糖醛酸转移酶 1A7(UGT1A7)、细胞色素 P450 3A4(CYP3A4)、丝裂原活化蛋白激酶8(MAPK8)、UDP-葡萄糖醛酸转移酶 1A3(UGT1A3)、细胞色素 P450 1A2(CYP1A2)、血管内皮生长因子A(VEGFA)。
-
使用Cytoscape构建“活性成分-肝炎作用靶点”网络见图1。网络分析结果显示,度值排名靠前的活性成分有 :刺槐黄素、谷甾醇、黄芩素、木蝴蝶素、汉黄芩素、槲皮素、山奈酚、角鲨烯,度值都为10。提示以上活性成分为舒肝宁注射液抗肝炎的主要活性成分。度值排名靠前的肝炎靶点有:CYP1B1、CYP1A2、CYP1A1、CASP3,度值分别为8、5、5、4;EGFA、NR1I2、ICAM1、PARP1 、CYP2D6、CYP3A4,度值都为2。图中可以看到刺槐黄素、甜橙黄酮、黄芩素、芫花素、异欧前胡素可共同作用于靶点CYP1A2;β-谷甾醇、谷甾醇、黄芩黄酮 I可共同作用于靶点CASP3;刺槐黄素、高车前素、可同时作用于靶点VEGFA,汉黄芩素、槲皮素可共同作用于MCL1,而豆甾醇可同时作用于ABCA1、ABCG8、ABCG5、SLCO1B1、TNF、IL-8、IL-10。同一靶点可对应不同的活性成分,不同靶点也可以对应相同的活性成分,充分体现了舒肝宁注射液多成分、多靶点的作用特点。
-
将蛋白靶点导入STRING 数据库获取蛋白间的相互作用关系,构建的蛋白质相互关系网络详见图2。网络分析结果显示度值排名靠前的靶点有:TNF、TP53、IL-6、AKT1、CASP3、JUN、VEGFA、MAPK3、CXCL8、IL-10,度值分别为33、32、31、23、23、23、22、22、20、19。度值大的靶点提示在网络调控中起着关键作用,度值大的靶点很可能是舒肝宁注射液治疗肝炎的关键靶点。
-
GO富集分析的结果详见图3~图5。其中BP (图3)分析中排名靠前的生物过程依次为细胞过程、生物过程的调控、对化学刺激的反应、对应激的反应、细胞代谢过程调控、生物质量调控、基础代谢过程调控、大分子代谢过程的调控、细胞对刺激的反应、信号处理。CC分析(图4)中排名靠前的细胞组分依次为细胞质、膜结合细胞器、细胞质部分、细胞器部分、细胞内细胞器部分、不溶性组分、细胞器腔、膜封闭腔、细胞器膜、细胞内细胞器腔。 MF分析(图5)中排名靠前的分子功能依次为蛋白结合、催化活性、过度金属离子结合、核苷酸结合、转移酶活性、受体结合、腺苷酸结合、嘌呤核苷结合、核苷结合、嘌呤核苷酸结合。
-
KEGG通路分析结果如图6所示,排名靠前的是TNF (15个靶点) 、IL-17(14个靶点)、MAPK(14个靶点)等信号通路。
-
舒肝宁注射液是茵陈、栀子、黄芩、板蓝根和灵芝等五味中药材的提取物组合而成的一种纯中药注射剂,在临床上被广泛用于治疗急慢性病毒性肝炎、药物性肝炎、胆汁淤积性肝炎、肝硬化和肝功能衰竭等肝脏疾病。研究发现舒肝宁注射液对于肝炎患者治疗效果显著,且不良反应较少,安全有效性高[4],但其抗肝炎保肝的作用机制尚不清楚。
本研究中,通过检索TCMSP获得舒肝宁注射液中的活性成分,根据ADME值对活性成分进行筛选,绘制“活性成分-靶点”网络图,并经过网络分析获得度值排名靠前的活性成分,作为可能为舒肝宁注射中发挥抗炎作用的主要活性成分,结果显示其主要有刺槐黄素、谷甾醇、黄芩素、木蝴蝶素、汉黄芩素、槲皮素、山奈酚、角鲨烯。研究发现,黄芩中的黄芩素、汉黄芩素和千层纸素A可以分别作用NF-κB信号通路的不同阶段发挥抗炎作用[5];栀子中的异欧前胡素,可以通过下调肝纤维化指标,抑制炎症因子的释放,改善肝纤维化的进程[6];山奈酚具有良好的抗炎镇痛作用[7]并且可以通过抑制CHOP分子改善内质网应激诱导的肝细胞损伤[8];槲皮素能通过调控PI3K/AKT/NF-κB信号通路来改善非酒精性脂肪性肝炎大鼠肝组织脂肪变性程度,减轻肝脏炎症[9];板蓝根中的豆甾醇能明显抑制LPS诱导的环氧合酶-2、诱导型一氧化氮合酶mRNA和蛋白水平的提高,抑制前列腺素E2和一氧化氮的释放从而实现其抗炎作用[10];茵陈中的芫花素具一定的清除自由基、抗炎、抑制肿瘤的作用[11]。舒肝宁注射液可能通过以上活性成分发挥其抗肝炎保肝作用。
本研究发现,舒肝宁注射液活性成分作用于83个肝炎靶点,成分靶点网络显示了舒肝宁注射液多成分、多靶点的抗炎保肝作用特点(图1)。蛋白作用网络显示了舒肝宁注射液靶蛋白间存在着相互关系(图2)。靶点的GO分析结果表明,舒肝宁注射液抗炎保肝作用涉及细胞、生物过程的调控、对化学刺激的反应、对应激的反应等过程的调控,涉及细胞质、膜结合细胞器、细胞内细胞器等细胞组分,以及蛋白结合、催化活性、过度金属离子结合、核苷酸结合、转移酶活性等分子功能,是一个复杂的过程(图3~图5)。靶点KEGG通路分析结果显示,舒肝宁注射液抗炎保肝的的靶点主要涉及TNF、IL-17、MAPK等信号通路(图6)。
舒肝宁注射液作用的肝炎靶点中, PPI 网络分析结果和“活性成分-靶点”网络分析结果中度值排名前十、肝炎相关性得分大于10分并且有文献证实的基因共有8个分别为:CYP1A2、CYP2D6、CYP3A4、IL-10、IL-6、TNF、TP53、VEGFA,提示以上靶点可能为舒肝宁注射液抗肝炎的主要靶点。TP53是一个抑癌基因,编码的蛋白质对各种细胞应激作出反应,以调节靶基因的表达,从而诱导细胞周期停滞、凋亡、衰老、DNA修复或代谢变化。TP53突变与乙型肝炎相关的肝细胞癌密切相关[12]。也有研究发现TP53突变与肝细胞癌的免疫微环境失调有关,会导致肝细胞癌免疫应答下调[13]。IL-10编码的蛋白质是一种细胞因子,主要由单核细胞产生,少部分由淋巴细胞产生。该细胞因子在免疫调节和炎症中具有多效作用,被认为在乙型肝炎病毒感染的免疫学中起重要作用[14]。IL-6编码的细胞因子在炎症和B细胞成熟中起作用。该蛋白质主要在急性和慢性炎症的部位产生,在那里它被分泌到血清中,并通过IL-6受体α诱导转录炎症反应,其中包括经典的NF-κB信号通路,通过控制一系列生长因子和细胞因子的表达在肝脏炎症反应中起着至关重要的作用[15]。CYP1A2、CYP3A4 和CYP2D6基因编码的蛋白质属于细胞色素P450超家族酶的成员,可催化药物代谢、合成胆固醇、类固醇和其他脂类的许多反应。这类蛋白质定位于内质网,可代谢多达25%的常用处方药。有研究发现自身免疫性肝炎患者中,CYP2D6可作为LKM-1的主要靶自身抗原,在肝细胞质膜上异常表达,引发自身免疫性反应[16]。CYP1A2 则被发现其基因多态性在吸烟者和 HBsAg血清阴性个体中是与肝细胞癌易感性相关的[17]。VEGFA是PDGF/VEGF生长因子家族的成员,它编码一种肝素结合蛋白,以二硫键连接的同源二聚体形式存在。丙型肝炎病毒感染的主要并发症是诱发肝纤维化。有文献报道VEGFA的mRNA和蛋白质表达水平与丙型肝炎病毒相关肝纤维化进展之间相关,并且丙型肝炎病毒患者的VEGFA在mRNA和蛋白质的表达明显高于对照组,而且晚期肝纤维化阶段的患者表现出最高的VEGFA mRNA和蛋白质水平[18]。舒肝宁注射液的活性成分可能通过对以上靶点相互作用,实现其抗肝炎保肝的作用机制。
舒肝宁注射液筛选得到的肝炎靶点所富集的通路中,肿瘤坏死因子(TNF)通路参与多种生物过程的调节,包括细胞增殖、分化、凋亡、脂质代谢和凝血过程。研究显示TNF通路相关基因的变异与乙型肝炎病毒的清除有关[19],TNF-α/JNK信号通路也与孟鲁司特改善刀豆素A诱导的小鼠自身免疫性肝炎的作用相关[20]。IL-17介导的信号通路与自身免疫性肝病的治疗相关,通过影响组织微环境可促进肝脏炎症和自身免疫[21]。女性失代偿性急性乙型肝炎患者中,IFN-γ和IL-4下调的伴有增强的肝IL-17阳性细胞增多可以加速破坏性免疫,以增强病毒清除。靶向涉及IL-17的通路的治疗可预防肝移植或失代偿性急性乙型肝炎患者的死亡[22]。MAPK8、MAPK3编码的蛋白质是 MAP 激酶家族的成员,MAP激酶,也称为细胞外信号调节激酶,在信号级联反应中起作用,该级联调节响应各种细胞外信号的各种细胞过程,例如增殖、分化和细胞周期进程。有文献研究了宿主遗传因素在乙肝疫苗抗乙型肝炎病毒感染长期免疫中的作用,发现MAPK8的变异影响了宿主anti-HBs的峰值水平[23]。并且有研究发现micro RNA-155通过MAPK信号通路,通过靶向SOCS1,调节酒精性肝炎大鼠的肝星状细胞的增殖、凋亡和细胞周期进展[24]。舒肝宁注射液活性成分可能作用于以上靶点及信号通路实现其抗炎保肝作用。
综上所述,网络药理学分析显示舒肝宁注射液的20种活性成分作用于83个蛋白靶点,其中刺槐黄素、谷甾醇、黄芩素、木蝴蝶素、汉黄芩素、槲皮素、山奈酚、角鲨烯为舒肝宁注射液治疗肝炎的主要活性成分,CYP1A2、CYP2D6、CYP3A4、IL-10、IL-6、TNF、TP53、VEGFA为舒肝宁注射液治疗肝炎的主要靶点,舒肝宁注射液可能通过以上活性成分和蛋白靶点相互作用,实现其抗肝癌作用,并通过TNF、IL-17、MAPK等信号通路改善肝炎患者症状。本研究表明舒肝宁注射液作用机制涉及多种过程、分子和通路,体现了舒肝宁注射液多成分-多靶点-多途径的作用特点。本研究为舒肝宁注射液抗炎保肝作用分子机制的进一步研究提供了思路和方法。
Study on the mechanism of anti-inflammatory and hepatoprotective effects of Shuganning injection based on network pharmacology
-
摘要:
目的 构建舒肝宁注射液活性成分-作用靶点和蛋白相互作用网络,探讨舒肝宁注射液抗炎保肝作用机制。 方法 通过TCMSP数据库获取舒肝宁注射液中茵陈、栀子、黄芩、板蓝根和灵芝的主要活性成分;利用GeneCard和OMIM数据库筛选舒肝宁注射液活性成分对应靶点中与肝炎相关靶点;采用Cytoscape构建活性成分-作用靶点网络;应用String数据库和Cytoscape软件绘制蛋白相互作用网络;通过DAVID数据库对靶点进行GO及KEGG通路分析。 结果 筛选得到舒肝宁注射液活性成分20个,共83个作用靶点。GO分析表明,舒肝宁注射液主要影响细胞过程和生物过程的调控,以及对化学刺激和应激的反应等作用。KEGG通路分析显示,舒肝宁注射液抗炎保肝作用的靶点主要涉及TNF、IL-17、MAPK等信号通路。 结论 舒肝宁注射液的抗炎保肝作用具有多成分、多靶点、多通路的特点,可能通过调节TNF、IL-17、MAPK等通路发挥作用。 Abstract:Objective To explore the anti-inflammatory and hepatoprotective mechanism of Shuganning injection through establishing the active ingredients-targets network and protein interactions network. Methods The main active ingredients of Artemisiae scopariae, Fructus gardenia, Radix scutellariae, Radix isatidis and Ganoderma in Shuganning injection were obtained by TCMSP; GeneCards and OMIM were used to screen the hepatitis-related targets among the corresponding targets of the active ingredient of Shuganning injection; The Cytoscape software was used to construct the active ingredient-targets network of Shuganning injection. The protein interactions network was constructed using the String database and Cytoscape software. The GO and KEGG pathways involved in the targets were analyzed by DAVID database. Results The results showed that 20 active ingredients and 83 targets of Shuganning injection were involved. GO analysis showed that Shuganning injection mainly affected the regulation of cellular processes and biological processes, as well as the response to chemical stimulation and stress. KEGG pathway analysis showed that the targets of the anti-inflammatory and hepatoprotective effect of Shuganning injection mainly involved in signaling pathways such as TNF, IL-17, and MAPK. Conclusion The anti-inflammatory and hepatoprotective effect of Shuganning injection have the characteristics of multiple components, multiple targets and multiple pathways, which may play a role by regulating pathways such as TNF、IL-17 and MAPK . -
1. 电离辐射的危害
随着全球经济的高速发展和科技的不断进步,核工业在军事、医疗等领域得到全面发展,但伴随而来的是对从业人员和附近居民造成严重的辐射危害。
辐射是指能量以电磁波或粒子的形式向外传播的现象,可分为电离辐射和非电离辐射。拥有足够高能量而使原子电离的辐射为电离辐射,它包括X射线、α射线、β射线、γ射线等,具有潜在的致癌性。非电离辐射能量较低,不会电离物质而会使物质内粒子运动,包括红外线、紫外线和微波等[1]。
辐射可引起全身性的放射病,几乎所有系统、器官均可发生病理性改变,其中以神经系统、消化系统和造血器官的改变最为明显,会诱发心血管疾病、糖尿病甚至癌突变。辐射对机体的损伤可分为急性和慢性放射性损伤。短时间内接受高剂量的照射,可引起机体的急性损伤,常见于核事故和放射治疗患者。剂量低于1 Gy时少数会出现轻微症状,剂量在1~10 Gy时,会出现造血型急性放射病;剂量超过10 Gy,会出现高致死率[2]。而长期接受超剂量的全身或局部照射,可引起慢性放射病,如皮肤损伤、造血障碍、白细胞减少、生育功能受损等。此外,辐射还能直接导致视力下降、视网膜脱落,诱发孕妇流产、不育、畸胎、儿童发育不足等[3]。
2 抗辐射天然产物的作用机制[4]
抗辐射药物是指在辐射前或后给予药物预防或治疗,可减轻或修复辐射损伤的药物。现有的抗辐射化学合成药物主要包括细胞因子、含硫化合物和激素类药物[5],因其毒副作用较大而应用受限,近年来天然产物因其毒副作用小、多成分多靶点的独特优势受到广泛的关注。目前认为抗辐射天然产物的作用机制主要有以下4个方面。
2.1 防护DNA损伤
辐射损伤可破坏DNA分子的结构与功能,导致DNA碱基破坏、DNA分子间交联、DNA双链或单链断裂、糖基破坏等。此外,辐射还可导致细胞周期改变以及DNA合成抑制,直接影响细胞增殖。抗辐射天然产物可通过减轻或抑制辐射致细胞周期的缩短,避免或修复DNA损伤而起辐射防护作用。
2.2 清除自由基
人体产生的80%自由基是由水分子组成的。辐射可引起水分子生成强活性的氧化自由基,主要包括·OH、
${\rm{O}}^-_2 $ 、H2O2、·NO等,其中,·OH氧化性最强,可导致组织细胞产生脂质过氧化物[6]。人体由于自由基的产生造成的破坏主要有3个方面:破坏细胞膜;使血清抗蛋白酶失去活性;损伤基因导致细胞变异,如自由基和生物大分子的结合,导致DNA主链断裂或碱基破坏,通过氧化性降解使得多糖链断裂,形成脱氢自由基,破坏细胞膜上的多糖结构[7]。现代研究表明,大多数抗辐射天然产物具有清除多种自由基作用,能降低氧化酶活性,抑制细胞过氧化物的产生。2.3 保护免疫系统
辐射主要损伤骨髓、胸腺和脾脏等免疫器官以及淋巴细胞等。崔玉芳等[8]发现辐射对免疫系统的损伤主要表现为两个特点——早期损伤严重和后期恢复缓慢。在辐射早期脾脏T、B淋巴细胞数量迅速减少,丝裂原反应明显降低,而在受照射1年后,小鼠的免疫组织和外周血淋巴细胞凋亡率与正常水平相比仍较高,小鼠T淋巴细胞免疫功能仍未恢复。促进淋巴细胞增殖,抑制胸腺和脾脏细胞凋亡等是抗辐射损伤的有效途径。
2.4 保护造血系统
造血组织是辐射的敏感组织,机体受到辐射后,造血细胞会出现功能低下甚至死亡现象,其中,造血干细胞、粒系祖细胞、红系祖细胞是辐射攻击的主要靶细胞,外周血细胞的数量随着照射剂量的增加而减少,其形态和功能也会随之发生改变[1]。因此,改善造血微环境,促进白细胞增殖,修复骨髓造血功能等有助于保护造血系统,修复辐射损伤。
3. 抗辐射天然产物
3.1 多糖类化合物
天然多糖包括植物多糖、动物多糖和微生物多糖。它们是一类具有免疫调节、抗肿瘤、抗辐射、抗炎、抗疲劳、抗衰老作用的生物大分子[9]。关于多糖的抗辐射作用的机制尚不清楚,一般认为与多糖的抗氧化,对造血系统的保护,引起免疫系统的效应增强以及诱导产生某些细胞因子等作用有关。
3.1.1 植物多糖
研究表明,大多数植物多糖有较为显著的抗辐射作用,能提高辐射诱导损伤的防护能力,改善辐射诱导的氧化损伤。其辅助保护辐射损伤的作用机制复杂,一般推测与其修复DNA损伤、消除自由基、增强免疫功能等有关[10]。张乃珣等[11]研究发现,酸性黑木耳多糖(AAP)和红松球果多酚的联合使用可以有效地清除体内自由基,降低自由基对体内DNA造成的损伤,显著提高对60Co γ射线诱导氧化损伤的防护能力。此外,白海娜等[12]发现原花青素与黑木耳多糖(AAP-4)同样有协同防护辐射诱导氧化损伤的作用。徐俊杰等[13]研究山药多糖对低强度连续微波辐射致小鼠免疫系统功能损伤的保护作用,发现正常动物组与辐射损伤组相比,不同剂量(200、400、800 mg/kg)的山药多糖可提高巨噬细胞的吞噬指数、T淋巴细胞的增殖刺激指数和血清IgG水平,并降低血清IL-4水平。表明山药多糖能明显改善低强度连续微波辐射对小鼠免疫系统的损害。胡淼等[14]报道,预先给药黑大蒜多糖(150~600 mg/kg)可减轻X射线辐射对小鼠免疫器官和全血白细胞、血小板的影响,提高脾脏的代偿性造血增殖能力,提高抗氧化酶水平,具有较好的辐射防护作用。Zhang等[15]发现大黄多糖(RTP)通过调控Nrf2及其下游蛋白HO-1,显著降低细胞凋亡和炎症因子,从而显著改善辐射诱导的肠道损伤。
3.1.2 动物多糖
国内外学者从动物体内提取出不同种类的多糖,尤其是海洋动物,如虾蟹动物的甲壳质、河蚌多糖、鲍鱼多糖等,具有抗肿瘤、抗病毒、抗氧化、抗辐射等生物活性[16]。
3.1.3 微生物多糖
研究发现微生物中,尤其生活在高压、高辐射环境中的藻类,其多糖有着较为特殊的结构与生理特性,大多有较好的抗辐射效果。Kim等[17]在探讨低分子量岩藻多糖(LMF)对中波紫外线诱导的光老化的保护作用时发现,持续15周的中高剂量(2.0、1.0 mg/cm2)LMF治疗可对受到中波紫外线照射的小鼠光老化起到明显的保护作用,可抑制皱纹形成,皮肤水肿以及中性粒细胞在光老化病灶上的聚集。杨凯业等[18]报道称铁皮石斛多糖、褐藻多糖、灵芝多糖、竹荪多糖在50 mg/L的质量浓度下的复合作用可抑制紫外线辐射诱导的皮肤细胞光老化作用。
3.2 多酚类化合物
植物多酚是广泛存在于植物体内的一类次生代谢产物,包括黄酮类、花色苷类和酚酸类。研究表明,多酚类化合物含有多个酚羟基,具有显著的清除自由基能力,能减轻自由基对机体的伤害,从而起到辐射防护作用[19]。
Lekmine[20]等评价用阿尔及利亚南部特有植物Astragalus gombiformis Pomel地上部分制备的丁醇提取物的药理活性,采用防晒系数(SPF)等评价Astragalus gombiformis Pomel的光保护作用和抗氧化能力,结果表明提取物(SPF=37.78±0.85,SPF值>30的皮肤保护产品被认为是有效的紫外线辐射过滤器)具有良好的紫外线吸收能力,推测主要与其中的黄酮类和酚酸类化合物(主要为水飞蓟素、迷迭香酸、槲皮苷和山柰酚)的紫外吸收能力和抗氧化防御能力有关,具有潜在的辐射防护能力。
3.2.1 黄酮类化合物
黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物,其基本母核为2-苯基色原酮。黄酮类化合物是一类从中草药中提取的天然产物,被认为是一种有效的抗氧化剂,可以调控炎症介质的调节酶或转录因子,通过与DNA的相互作用影响氧化应激,增强基因组稳定,具有神经保护和辐射保护作用[21]。
金银花素(5,7-二羟基黄酮)是从蜂胶、蜂蜜和几种植物中提取的一种黄酮类化合物。Mansour等[22]发现给药金银花素(50 mg/kg)可提高受5 Gy红外线照射雄性Wister大鼠大脑中丙二醛(MDA)水平和半胱氨酸蛋白酶-3(caspase-3)活性,这提示金银花素具有辐射致脑损伤的神经保护作用。Kale等[23]通过组织病理评估,显示槲皮素可显著减少辐射诱导的神经元变性和炎症浸润,揭示了槲皮素对辐射致脑损伤的神经保护作用。
Li等[24]证实芹菜素(4′,5,7-三羟基黄酮)能够一定程度上修复UVB诱导的人表皮角质形成细胞(HEKs)的毛细血管扩张性共济失调的异常突变,从而抑制HEKs细胞凋亡和坏死,表明芹菜素对中波紫外线损伤的HEKs具有新型的保护作用。Prasad等[25]报道水飞蓟宾(silibinin)可以防止中波紫外线诱导的胸腺嘧啶二聚体的形成,通过增加抑癌基因p53水平进而促进DNA修复和(或)启动受损细胞的凋亡。
曲克芦丁(TRX)是一种黄酮类化合物,广泛存在于茶叶、咖啡、谷类食品、各种水果和蔬菜中,具有抗辐射作用,Panat[26]对其清除自由基的能力和抗细胞凋亡活性进行了系统的研究。TRX能清除超氧物、NO和其他模型稳定的自由基,从而保护受辐照的细胞。
有些英国科学家研究发现,每天喝两杯绿茶、吃一个橘子,就可以帮助“电脑族”们抵御计算机辐射[27]。而儿茶素类化合物作为茶叶中的主要功能成分,具有显著的抗辐射作用。茶树中儿茶素类化合物主要包括,儿茶素、表儿茶素、没食子儿茶素、表没食子儿茶素、儿茶素没食子酸酯、表儿茶素没食子酸酯、没食子儿茶素没食子酸酯及表没食子儿茶素没食子酸酯8种单体。其中,表没食子儿茶素没食子酸酯生理活性较为突出,具有抗氧化性和抗细胞凋亡活性,可预防不同刺激对组织的损伤。Korystova等[28]研究发现在对辐射诱导的大鼠主动脉损伤的预防作用中,发现红茶比绿茶更加有效,即使浓度低于1 g/100 ml的红茶也能够有效预防红外线对主动脉造成的损伤。红茶中的儿茶素含量明显低于绿茶,但两种茶中的黄酮醇含量几乎相等。儿茶素、表没食子儿茶素和表没食子儿茶素没食子酸酯可增加大鼠主动脉的氧化应激,而黄酮醇可降低辐射诱导的氧化应激。因此,红茶药效的提高是由于儿茶素含量的降低使黄酮醇的正向调节作用更大程度地得到发挥所致。
3.2.2 酚酸类化合物
酚酸类化合物系指具有多羟基的芳香羧酸类化合物,主要以糖、酯以及有机酸的形式存在于植物中,现代研究表明酚酸类化合物能够清除体内多种自由基,具有良好的抗氧化活性和潜在的辐射防护作用。
Milton等[29]报道,鱼腥草细胞培养物的甲醇提取物因细胞产生酚类次生代谢物而具有潜在的光保护作用,结果显示鱼腥草细胞的甲醇提取物(310~2500 g/ml)能够显著提高受紫外线照射的3T3-Swiss白化成纤维细胞活力。提取物的LC-MS化学分析表明,其总酚和总酚酸含量(主要为没食子酸和毛蕊花苷)较高,具有特征的紫外吸收峰(第一和第二波段的峰值分别为294和330 nm),能够抵消紫外线对皮肤的有害影响。
Abozaid等[30]报道肉桂酸纳米颗粒可作为一种辐射诱导胰腺炎的氧化还原信号通路的调节剂,首先用I-精氨酸和γ射线诱导大鼠患急性胰腺炎,口服肉桂酸纳米颗粒(CA-NPs)后,急性胰腺炎的严重程度及血清淀粉酶和脂肪酶水平均降低。同时,胰腺组织的MDA水平显著降低,谷胱甘肽的消耗显著恢复,caspase-3水平降低,可明显改善胰腺组织损伤或凋亡。因此,肉桂酸纳米颗粒对辐射诱导的急性胰腺炎具有较好的治疗潜力。Liu等[31]研究发现姜黄素(Cur)对长波紫外线辐射诱导的人皮肤成纤维细胞(HDFs)光老化具有一定的保护作用。Zhang等[32]发现白藜芦醇通过激活Sirtuin1 (Sirt1,组蛋白去乙酰化酶家族成员之一,可减轻炎症损伤)减轻辐射诱导的小鼠肠道损伤。周瑞芳等[33]研究表明,丹酚酸B可减轻γ射线辐射诱导的造血系统损伤和骨髓细胞的DNA及蛋白质的减少,恢复小鼠免疫系统的辐射损伤,具有显著的抗γ射线辐射作用。
3.2.3 花色苷
花色苷是花青素和糖以糖苷键结合而成的一种化合物,广泛存在于植物的花、果实、茎、叶和根器官的细胞液中,起到保护植物抗氧化的作用。其抗氧化和消除自由基能力可防护不同射线辐射,能够发挥独特的生理效应。
Fernandes等[34]发现花色苷家族成员(矢车菊色苷、锦葵色苷及其衍生色素)具有促进皮肤维持健康的活性,研究表明大部分化合物能够抑制金黄色葡萄球菌和铜绿假单孢菌菌株的生长繁殖,减少HEKs和HDF活性氧的产生,抑制皮肤降解酶的活性且无细胞毒性作用,具有一定的紫外线过滤作用。
Targhi等[35]研究黑桑花色苷对大鼠肝组织和骨髓细胞的辐射防护作用,以 60Co γ射线远距放射(3 Gy和6 Gy)建立大鼠辐射损伤模型,随后腹腔注射200 mg/kg的黑桑花色苷,结果显示黑桑花色苷可降低大鼠肝脏MDA和SOD的水平,降低γ射线照射对大鼠骨髓细胞和肝脏的遗传毒性和细胞毒性,有潜在的辐射保护作用。
3.3 皂苷类化合物
皂苷(saponin)类化合物是苷元为三萜或螺旋甾烷类化合物的一类糖苷,存在于人参、桔梗、刺五加等许多中草药中,在增强免疫、抗肿瘤、抗炎等方面具有显著的生物活性。研究表明人参皂苷的抗辐射机制与清除自由基、抗氧化活性,与其对心血管系统、免疫系统的保护作用以及对细胞凋亡的抑制作用有关[36]。
Wen[37]等研究黄芪甲苷对中波紫外线诱导的大鼠真皮成纤维细胞早衰的抗光老化作用,结果显示黄芪甲苷不仅能通过激活细胞外调解蛋白激酶ERK和丝裂原活化蛋白激酶p38信号抑制中波紫外线诱导的胶原-I的降解,还通过激活细胞自噬增加胶原-I的积累,从而保护中波紫外线诱导的光老化细胞,表明黄芪甲苷在抗光老化治疗中的潜在优势。
Wang等[38]分析柴胡皂苷-d (SSd)对肝癌细胞自噬活性和放射敏感性的影响,SSd通过抑制mTOR磷酸化促进肝癌细胞自噬,增加辐射诱导的肝癌细胞凋亡并且抑制肝癌细胞的增殖,为肝癌的放射增敏治疗提供了一种可能的途径。
Kim等[39]研究知母皂苷A-III(TA-III)对中波紫外线诱导的HEKs和HDF侵袭效应的保护作用时发现,TA-III在非细胞毒性剂量下(50 nmol/L)以剂量依赖的方式抑制中波紫外线诱导的环氧合酶-2(COX-2)、基质金属蛋白酶-9(MMP-9)转录和蛋白表达水平,降低中波紫外线诱导的原代皮肤细胞的侵袭,组织肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)和COX-2在HEKs中的过度表达,表明其具有光保护剂的开发潜力。
3.4 其他
除了上述多糖类、多酚类以及皂苷类化合物,天然产物中的许多其他化合物同样具有良好的辐射防护作用,包括维生素类、蛋白类、无机成分、稀有元素等。
Rostami等[40]研究发现预先摄入硒和维生素E能够对X射线辐射引起的遗传损害起到一定的防护作用。段一凡等[41]报道茶叶籽不饱和脂肪酸对中波紫外线诱导的HEKs损伤具有保护作用。Jaisin等[42]研究发现胡椒碱(10~40 µmol/L)预处理可抑制中波紫外线诱导的炎症信号通路,减弱HEKs的细胞毒性并且抑制其凋亡。这提示胡椒碱的抗炎作用能保护HEKs免受中波紫外线辐射的损伤,可作为一种紫外线辐射诱导皮肤炎症的有效治疗手段。
4. 结语
近年来,国内外越来越重视辐射损伤的防护,抗辐射药物的寻找也变得十分紧迫。而与传统的化学合成药物相比,天然来源的药物具有活性高、选择性强、毒副作用小等优点,作为抗辐射药物有着广阔的开发前景。但是抗辐射天然产物的筛选方法耗时耗力,因此建立高通量、高专属性的抗辐射天然产物筛选方法意义重大。此外,对已有的天然产物进行结构改造,以期获得抗辐射活性更高或毒副作用更小的衍生物以及提高抗辐射天然产物的提取纯化效率等皆是未来抗辐射天然产物研究的重点和难点。
-
-
[1] 陈明泉, 李谦, 张琼华, 等. 舒肝宁注射液治疗急慢性病毒性肝炎的临床疗效观察[J]. 肝脏, 2007, 12(3):194-196. doi: 10.3969/j.issn.1008-1704.2007.03.014 [2] 张瑾. 舒肝宁注射液对顺铂中毒小鼠肝脏损伤的保护作用[J]. 中国药房, 2016, 27(7):920-922. doi: 10.6039/j.issn.1001-0408.2016.07.17 [3] 汝锦龙. 中药系统药理学数据库和分析平台的构建和应用[D]. 咸阳: 西北农林科技大学, 2015. [4] 王艳春, 王建强. 舒肝宁注射液临床应用研究进展[J]. 中国药物警戒, 2020, 17(8):543-548. doi: 10.19803/j.1672-8629.2020.08.20 [5] 刘媛媛, 刘陶, 吴玉梅, 等. 基于雌激素受体调节Nrf2-ARE通路的黄芩中抗氧化成分的筛选[J]. 中国药理学通报, 2019, 35(6):822-827. doi: 10.3969/j.issn.1001-1978.2019.06.017 [6] 朱悦. 异欧前胡素激活LXRα/β介导HMGB1-NLRP3炎症信号通路改善肝纤维化进程的研究[D]. 延吉: 延边大学, 2021. [7] 陈丹. 山奈酚的抗炎镇痛作用及其机制研究[D]. 南京: 南京中医药大学, 2021. [8] 郭媛媛, 任锋, 张向颖, 等. 山奈酚对内质网应激诱导的肝细胞损伤的保护及机制[J]. 世界华人消化杂志, 2014, 22(35):5400-5407. [9] 刘鸣昊, 张丽慧, 马庆亮, 等. 槲皮素对非酒精性脂肪性肝炎大鼠的影响[J]. 中成药, 2019, 41(8):1820-1825. doi: 10.3969/j.issn.1001-1528.2019.08.014 [10] PANDITH H, ZHANG X B, THONGPRADITCHOTE S, et al. Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway[J]. J Ethnopharmacol,2013,147(2):434-441. doi: 10.1016/j.jep.2013.03.033 [11] 樊江波, 黄琳红. 益母草活性成分芫花素对小鼠凝血及抗炎作用的研究[J]. 西安交通大学学报(医学版), 2019, 40(1):158-161. [12] GAO Q, ZHU H W, DONG L Q, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell,2019,179(5):1240. doi: 10.1016/j.cell.2019.10.038 [13] LONG J Y, WANG A Q, BAI Y, et al. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma[J]. EBioMedicine,2019,42:363-374. doi: 10.1016/j.ebiom.2019.03.022 [14] TOK Y T, ŞENER A G, GÖKMEN A A, et al. Investigation of regulatory T cells and secreted immunomodulatory cytokine IL-10 levels in patients with hepatitis B[J]. Mikrobiyol Bul,2020,54(2):266-278. doi: 10.5578/mb.69340 [15] HE G B, KARIN M. NF-κB and STAT3 - key players in liver inflammation and cancer[J]. Cell Res,2011,21(1):159-168. doi: 10.1038/cr.2010.183 [16] MIZUTANI T, SHINODA M, TANAKA Y, et al. Autoantibodies against CYP2D6 and other drug-metabolizing enzymes in autoimmune hepatitis type 2[J]. Drug Metab Rev,2005,37(1):235-252. doi: 10.1081/DMR-200028798 [17] CHEN X P, WANG H J, XIE W M, et al. Association of CYP1A2 genetic polymorphisms with hepatocellular carcinoma susceptibility: a case-control study in a high-risk region of China[J]. Pharmacogenet Genomics,2006,16(3):219-227. doi: 10.1097/01.fpc.0000194424.20393.c6 [18] SALUM G M, BADER EL DIN N G, IBRAHIM M K, et al. Vascular endothelial growth factor expression in hepatitis C virus-induced liver fibrosis: a potential biomarker[J]. J Interferon Cytokine Res,2017,37(7):310-316. doi: 10.1089/jir.2016.0127 [19] DU T, GUO X H, ZHU X L, et al. Association of TNF-alpha promoter polymorphisms with the outcomes of hepatitis B virus infection in Chinese Han population[J]. J Viral Hepat,2006,13(9):618-624. doi: 10.1111/j.1365-2893.2006.00731.x [20] EL-KASHEF D H, ABDELRAHMAN R S. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway[J]. Toxicol Appl Pharmacol,2020,393:114931. doi: 10.1016/j.taap.2020.114931 [21] ZHANG H Y, BERNUZZI F, LLEO A, et al. Therapeutic potential of IL-17-mediated signaling pathway in autoimmune liver diseases[J]. Mediators Inflamm,2015,2015:436450. [22] CHANG M L, YEH C T, CHIEN R N, et al. Overt acute hepatitis B deteriorates in females: destructive immunity with an exaggerated interleukin-17 pathway[J]. Front Immunol,2021,12:631976. doi: 10.3389/fimmu.2021.631976 [23] HENNIG B J, FIELDING K, BROXHOLME J, et al. Host genetic factors and vaccine-induced immunity to hepatitis B virus infection[J]. PLoS One,2008,3(3):e1898. doi: 10.1371/journal.pone.0001898 [24] OFFICE F E. Retraction: microRNA-155 modulates hepatic stellate cell proliferation, apoptosis, and cell cycle progression in rats with alcoholic hepatitis via the MAPK signaling pathway through targeting SOCS1[J]. Front Pharmacol,2022,12:840009. doi: 10.3389/fphar.2021.840009 -