留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究

左峰 霍花 王治国 张国旭 石庆学 张宗鹏

左峰, 霍花, 王治国, 张国旭, 石庆学, 张宗鹏. 18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究[J]. 药学实践与服务, 2021, 39(6): 525-528. doi: 10.12206/j.issn.1006-0111.202009023
引用本文: 左峰, 霍花, 王治国, 张国旭, 石庆学, 张宗鹏. 18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究[J]. 药学实践与服务, 2021, 39(6): 525-528. doi: 10.12206/j.issn.1006-0111.202009023
ZHANG Lianqing, LUO Yan, YANG Ti, YAO Jiachen, LI Wenyan. Mining and research on the adverse event signal of exenatide microspheres based on FAERS database[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
Citation: ZUO Feng, HUO Hua, WANG Zhiguo, ZHANG Guoxu, SHI Qingxue, ZHANG Zongpeng. Synthesis method optimization and biodistribution study of 18F-T807 on TRACERlab FXFN synthesizer[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(6): 525-528. doi: 10.12206/j.issn.1006-0111.202009023

18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究

doi: 10.12206/j.issn.1006-0111.202009023
基金项目: 辽宁省自然科学基金(20170540927)
详细信息
    作者简介:

    左峰,药师,研究方向:临床医学工程技术,Email:zuofeng.medical@qq.com

    通讯作者: 霍花,博士,硕士生导师,研究方向:药物代谢分析,Email:hh_602@sina.com
  • 中图分类号: R981

Synthesis method optimization and biodistribution study of 18F-T807 on TRACERlab FXFN synthesizer

  • 摘要:   目的  优化18F-T807的合成方法,并进行初步生物分布研究。  方法  使用TRACERlab FXFN合成器,以BOC(t-Butyloxy carbonyl)保护的18F-T807前体NPPI-9为起始原料,改进实验条件进行合成,进行质量控制分析和Wistar大鼠生物分布研究。  结果  改进合成条件合成产率由(20.5±6.1)%提高到(25.7±5.8)%,质控符合标准,Wistar大鼠肾、肝、血分布较高,在脑、心、肺摄取最低。  结论  使用改进一锅法合成18F-T807简便易行,产率高,可以满足科研与临床的需求。
  • 隐丹参酮(CTS)是中药丹参的有效成分之一,国内外研究证明CTS具有抗肿瘤、抗炎、神经保护、心血管保护、抗纤维化和调节代谢紊乱等药理特性,具有广阔的临床应用前景。抗肿瘤作用是近年来隐丹参酮药理活性研究的热点问题之一[1]。隐丹参酮对肺癌、肝胆癌、胃癌、食管癌、乳腺癌、前列腺癌、胰腺癌、结直肠癌、骨肉瘤癌、黑色素瘤、横纹肌瘤、食管鳞状癌等多种恶性肿瘤表现出一定的抑制活性,其抗肿瘤机理包括抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,调节免疫以及抑制包括STAT3在内的多种信号通路[2-4]。由于CTS中等强度的药理活性和选择性,近年来研究人员对CTS进行了大量结构修饰,期望获得靶点明确且药理活性更强的CTS衍生物,从而开发并应用于临床治疗。本文就隐丹参酮及其衍生物在抗肿瘤方面的作用及其机制进行综述。

    癌细胞的主要特点是具有无限的增殖能力。研究表明,CTS可以抑制多种肿瘤细胞增殖,包括胰腺癌细胞BxPC-3、慢性髓性白血病细胞K562/ADR、胶质瘤细胞U87、人卵巢癌细胞Hey、前列腺癌细胞DU145、乳腺癌细胞MCF7、食管鳞状细胞癌ESCC等[5]

    细胞凋亡又称细胞程序性死亡,对于维持组织稳态和消除不需要或受损细胞起重要作用。研究发现,CTS可以诱导多种肿瘤细胞凋亡,包括骨髓瘤细胞U266、人结肠癌细胞系SW620 Ad300和HCT116、人胃癌细胞MKN-45、肝癌细胞Hepa1-6、非小细胞肺癌细胞A549 和H460 、黑色素瘤细胞A375、横纹肌肉瘤细胞Rh30等[6]

    高侵袭性和转移是癌细胞恶性特征,转移是癌症死亡的主要原因。因此,抑制癌细胞转移能有效降低癌症死亡率。研究发现,CTS能够抑制卵巢癌细胞A2780的迁移和侵袭[7]。此外,CTS还可以抑制食管癌细胞EC109、膀胱癌细胞T24、人舌鳞癌细胞CAL27、小鼠结肠癌细胞CT26等多种肿瘤细胞的迁移和侵袭[5]

    隐丹参酮不仅能够直接抑制多种肿瘤细胞的生长,还可以诱导机体产生抗肿瘤免疫反应,从而间接发挥抗肿瘤效应。研究发现,隐丹参酮能够通过增加CD4+T细胞的细胞毒作用,抑制人非小细胞肺癌H446细胞和乳腺癌MCF7细胞的生长[8]。此外,隐丹参酮还可以通过诱导小鼠树突状细胞成熟,促进抗原提呈功能,进而诱导T细胞活化增殖,抑制Lewis肺癌细胞的增殖[9]。肿瘤相关巨噬细胞 (TAM) 是肿瘤组织中浸润的巨噬细胞,具有异质性,可分为M1和M2表型。M2表型的TAM能够促进肿瘤生长和转移,相反,M1表型则具有肿瘤抑制和促炎特性。研究发现,隐丹参酮和PD-L1联合治疗能够诱导巨噬细胞向M1极化,从而抑制小鼠肝癌Hepa1-6移植瘤的生长[10]

    耐药是导致肿瘤复发和治疗失败的主要原因。研究表明,CTS能够逆转慢性骨髓性白血病细胞K562对伊马替尼的耐药性[11],改善A549细胞对顺铂的耐药性[12]。此外,CTS还可以逆转P-糖蛋白(p-gp)过表达的结肠癌细胞SW620 Ad300对多柔比星和伊立替康的多重耐药[13]

    除了具有以上活性之外,CTS还可以与其他不同抗癌药物或细胞因子协同发挥抗肿瘤作用。例如,CTS和紫杉醇的联合用药比单独用药更能有效诱导舌鳞状细胞癌CAL27和SCC-9细胞的凋亡[14]。新近研究发现,CTS与小剂量的抗PD-L1抗体合用对小鼠Lewis 肺癌的生长抑制作用明显优于CTS单独应用[9]

    自噬,即Ⅱ型程序性细胞死亡,作为凋亡之外的另一种可以杀死细胞的途径,是一种抑制癌细胞生长的新方法。研究显示,CTS可通过诱导结肠癌SW620 Ad300细胞和A549细胞自噬促进细胞死亡[15-16]

    CTS抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,以及调节免疫等作用的机制十分广泛,涉及靶点STAT3、酪氨酸蛋白磷酸酶SHP2、DNA拓扑异构酶和信号通路磷酸酰肌醇3-激酶(PI3K)/丝氨酸/苏氨酸激酶Akt等。

    STAT3由Janus激酶(JAKs)激活,参与肿瘤增殖、凋亡、血管生成及免疫逃逸等。STAT3在大多数恶性肿瘤中被组成性激活,异常的STAT3信号传导是肿瘤恶性进展的重要过程。当705位酪氨酸残基磷酸化后,STAT3被激活,单体STAT3通过其SH2结构域形成二聚体,并从细胞质转移到细胞核中,调节其靶基因的表达,例如,上调cyclin D1、survivin、Mcl-1、MYC、BCL-XL表达,下调 p53表达,促进肿瘤细胞增殖和存活;上调MMP2/9、Twist1、Vimentin表达,促进肿瘤转移;上调TGF-β、IL-6/10、PD-1、PD-L1、VEGF表达,下调CD80/86、MHCII、TNF、IL-12、CCL5、CXCL10等表达,抑制肿瘤微环境免疫功能[17]。研究发现,CTS能够直接与STAT3的SH2结构域结合,特异性抑制STAT3 Tyr705的磷酸化,抑制STAT3二聚化[18-19],相比之下,姜黄素还能抑制Jak2的表达[20]。在人胰腺癌BxPC-3细胞中,CTS能够抑制BxPC-3细胞的STAT3信号通路进而抑制细胞增殖,诱导细胞凋亡,达到抗肿瘤的作用[21]。另外,CTS作为p-STAT3抑制剂,能够有效阻断IL-6介导的STAT3活化,抑制肿瘤增殖,逆转BCR-ABL激酶非依赖性耐药途径[11]。此外,CTS和紫杉醇联合治疗能够有效地抑制舌鳞状癌TSCC细胞增殖和迁移,其作用机制同样与抑制STAT3信号通路相关[14]。沉默信息转录调控因子3(SIRT3)是一种蛋白质去乙酰化酶,参与癌症、心血管、神经系统等疾病的发展过程。研究发现CTS能够通过抑制STAT3/SIRT3 信号通路抑制人卵巢癌A2780 细胞增殖[22]。 上述研究表明,抑制STAT3信号通路对于CTS抗肿瘤至关重要,且CTS是一种特异性的STAT3抑制剂。

    含Src同源2结构域蛋白酪氨酸磷酸酶(SHP2)由基因PTPN11编码,PTPN11突变引起SHP2催化活性异常增加。研究发现,肺癌、结肠癌、黑色素瘤、神经母细胞瘤、肝癌和急性髓性白血病等病人均发现有PTPN11突变[23]。SHP2是一种非受体蛋白酪氨酸磷酸酶,参与Ras-Erk、PI3K-Akt、Jak-Stat和NF-κB多条信号通路传导,调控细胞的增殖、迁移和凋亡等过程[24]。研究证明,CTS能与SHP2直接结合,是一个混合型蛋白酪氨酸磷酸酶抑制剂,抑制SHP2 的IC50为22.50μmol/L,抑制SHP1的IC50为39.50μmol/L。用SHP2 siRNA敲减Hela细胞中SHP2后,CTS抑制Hela细胞生长的敏感性降低,提示SHP2是CTS的一个靶点,但是,CTS仍然可以进一步抑制SHP2敲减细胞生长,说明CTS还有其它作用靶点[25]。此外,有研究发现,CTS能够上调胶质瘤细胞 U87 SHP2蛋白酪氨酸磷酸酶活性,抑制STAT3 Tyr705的磷酸化,从而在体内外表现出抑制恶性胶质瘤活性[26]

    DNA拓扑异构酶 (topos),包括DNA拓扑异构酶1(topo1)和DNA拓扑异构酶2(topo2),其中topo2因其在有丝分裂中的关键作用被认为是抗癌治疗的重要靶点[27]。研究表明,CTS能够显著降低前列腺癌PC3细胞中topo 2a的mRNA、蛋白和酶活性水平,并且在裸鼠异种移植模型中表现出良好的抗肿瘤作用[28]

    活性氧与肿瘤的发展密切相关,其过度产生可诱导多种生物学效应,包括抑制细胞增殖、诱导细胞凋亡和自噬等[29]。研究发现,CTS能够促进胃癌MKN-28 细胞ROS的累积,通过调控MAPK和AKT信号通路诱导G2/M周期阻滞[30];通过ROS-线粒体途径,上调cleaved caspases-3、促凋亡蛋白Bax和下调抗凋亡蛋白Bcl-2,从而诱导黑色素瘤细胞凋亡[31];诱导横纹肌肉瘤Rh30细胞ROS产生,激活JNK/p-38,抑制Erk1/2,导致细胞凋亡[32];刺激SW620 Ad300细胞中的ROS产生,诱导p38 MAPK激活,导致NF-κB从细胞质转移到细胞核中,最终导致自噬发生[15];刺激HepG2和MCF-7细胞产生ROS,激活内质网(ER)应激,增强不同抗癌药物或细胞因子(Fas/Apo-1、TNF-α、顺铂、依托泊苷或5-FU)诱导的细胞凋亡[33]

    雄激素受体(AR)和雌激素受体(ER)分别是治疗前列腺癌PCa和乳腺癌的主要靶点。研究发现CTS可以通过抑制AR二聚化有效抑制AR活性,从而抑制AR+ PCa细胞的生长[34];在异种移植动物模型中,CTS可以有效抑制人前列腺癌CWR22Rv1细胞的生长和AR靶基因的表达[35]。此外,CTS还能够抑制乳腺癌细胞的生长,通过竞争性地结合ERα抑制E2诱导的ER转录活性和ER靶基因的表达[36];同时,CTS可以有效地抑制体内异种移植瘤模型中ER信号,发挥抗肿瘤作用[37]

    磷酸肌醇3-激酶(PI3K)/蛋白质丝氨酸苏氨酸激酶(Akt)信号通路参与肿瘤的发生、生长、存活和转移。有研究发现CTS可抑制PI3K/AKT信号通路,增加caspase-3、caspase-9、PARP和Bax的表达,降低Bcl-2、survivin、细胞凋亡抑制蛋白的表达,诱导非小细胞肺癌细胞的凋亡[38-39]。酪氨酸激酶胰岛素生长因子1受体(IGF-1R)在肿瘤细胞的生长、分化和进展中起关键的作用。研究表明,CTS能够通过下调IGF-1R/PI3K/Akt信号通路抑制人肺癌细胞的增殖[40]。此外,有文献报导CTS可以通过调节PI3K/Akt/mTOR信号,抑制结肠癌CT26细胞的侵袭[41]。在裸鼠异种移植实验中,CTS能够显著抑制小鼠体内异种移植物的生长,其作用机制与抑制PI3K/AKT/NF-κB信号通路有关[42]。以上研究表明PI3K/AKT信号通路可能是CTS抗肿瘤的有效信号通路之一。

    CTS虽然具有广谱的抗肿瘤活性,但是其药理作用中等,疏水性强且难吸收,口服生物利用度只有2.1%,这些缺点严重阻碍了其开发和应用[43]。近年来,针对CTS存在的问题,人们尝试对CTS进行结构改造,期望获得生物活性高、水溶性好的化合物。刘航[44]等基于CTS是一种STAT3抑制剂,通过对CTS及其骨架类似物进行修饰,设计合成了CTS衍生物62个,其中新化合物46个,通过报告基因法检测发现有27个新化合物对STAT3转录抑制效果优于CTS,IC50最低0.5976 μmol/L。Wang等基于STAT3的药物设计策略,设计合成了一种亲和力和抑制活性更强的新型CTS衍生物LYW-6,该化合物与STAT3结合解离常数Kd约为6.6μmol/L,能够显著抑制STAT3磷酸化、二聚化、核转位以及转录活性。在细胞水平上,LYW-6能选择性抑制高STAT3活性的结肠癌细胞增殖、迁移,促进凋亡,体内可抑制结肠癌的生长和转移,是一个具有开发前景的抗肿瘤活性化合物[45]。为了改善CTS的水溶性,Xu等合成了几种CTS的钠盐衍生物,结果发现这些衍生物比CTS更易溶解,同时保留了CTS的生物活性,其中钠盐衍生物PTS33可以有效地抑制二氢睾酮DHT诱导AR反式激活和PCa细胞生长[46]

    CTS具有广谱的抗肿瘤活性,该活性与抑制肿瘤细胞增殖、迁移和侵袭,诱导细胞凋亡,逆转耐药性,诱导自噬等作用相关。除直接作用于肿瘤细胞外,CTS还可以通过增强CD4+T细胞的细胞毒作用、诱导DC细胞成熟和促使巨噬细胞M1型极化,间接杀伤肿瘤细胞。分子机制研究表明,CTS可直接结合STAT3和SHP2,有效调节JAK/STAT3、NF-κB、PI3K/AKT和IGF-1R等信号通路发挥抗肿瘤作用。隐丹参酮特异性抑制STAT3信号通路,而不抑制STAT家族中的其他蛋白,是其一大特点。因为尽管其他天然产物也有抗肿瘤作用,但不是特异性STAT3抑制剂,例如姜黄素,是一种STAT抑制剂,但在治疗24 h后降低了STAT3的表达。虽然CTS表现出良好的药理活性,但水溶性差和生物利用度低等问题限制了其广泛应用。因此,基于靶点STAT3,以CTS作为先导化合物,设计并合成一系列CTS衍生物,有望开发出新型STAT3抑制剂用于癌症治疗。

  • 图  1  18F-T807(2)的合成方程式

    图  2  TRACERLAB FXFN合成器示意图

    图  3  18F-T807放射性HPLC(A)及UV(B)分离图(峰2为产物峰)

    表  1  TRACERlab FXFN合成器各溶剂瓶预装溶剂

    溶剂瓶溶剂
    1号瓶(V1)1.5mg K2CO3溶于0.5 ml水
    2号瓶(V2)1.5 mg K222溶于1ml乙腈
    3号瓶(V3)1 mg前体溶于1.2 ml DMSO溶剂
    5号瓶(V5)1.5 ml HPLC流动相
    6号瓶(V6)1.5 ml HPLC流动相
    圆底烧瓶2 ml 84%NaHCO3水溶液和30 ml水
    7号瓶(V7)9 ml 0.9%生理盐水
    8号瓶(V8)1 ml 乙醇
    9号瓶(V9)10 ml 水
    下载: 导出CSV

    表  2  18F-T807在正常大鼠体内的分布($ \bar x \pm s $n=5)

    器官放射性摄取率(% ID/g)
    5 min15 min30 min60 min90 min120 min
    2.25±0.182.03±0.861.81±0.541.59±0.621.20±0.571.11±0.38
    2.05±0.581.99±0.661.78±0.311.55±0.251.19±0.741.08±0.36
    5.79±2.585.95±1.175.48±0.665.29±0.714.83±0.844.27±0.86
    2.12±0.912.01±0.561.91±0.191.57±0.731.21±0.521.09±0.23
    7.36±4.015.11±1.213.89±1.993.63±1.823.17±1.682.99±0.98
    肌肉2.34±0.862.57±1.182.44±0.952.19±1.362.04±1.031.51±0.89
    2.58±0.912.67±0.752.02±0.681.99±0.821.52±0.461.27±0.55
    5.56±0.355.41±0.564.73±0.744.57±1.314.22±0.374.01±0.45
    下载: 导出CSV
  • [1] CHO H, CHOI J Y, HWANG M S, et al. Tau PET in Alzheimer disease and mild cognitive impairment[J]. Neurology,2016,87(4):375-383. doi:  10.1212/WNL.0000000000002892
    [2] CHIEN D T, SZARDENINGS A K, BAHRI S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808[J]. J Alzheimers Dis,2014,38(1):171-184.
    [3] WEINER M W, VEITCH D P, AISEN P S, et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception[J]. Alzheimers Dement,2012,8(1suppl):S1-68.
    [4] MACCIONI R B, FARÍAS G, MORALES I, et al. The revitalized tau hypothesis on Alzheimer's disease[J]. Arch Med Res,2010,41(3):226-231. doi:  10.1016/j.arcmed.2010.03.007
    [5] SABRI O, SEIBYL, ROWE C, et al. Use of florbetapir-PET for imaging beta-amyloid pathology[J]. JAMA,2011,305(3):275-283. doi:  10.1001/jama.2010.2008
    [6] OKAMURA N, FURUMOTO S, FODERO-TAVOLETTI M T, et al. Non-invasive assessment of Alzheimer's disease neurofibrillary pathology using 18F-THK5105 PET[J]. Brain,2014,137(Pt6):1762-1771.
    [7] FODERO-TAVOLETTI M T, OKAMURA N, FURUMOTO S, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease[J]. Brain,2011,134(Pt4):1089-1100.
    [8] OKAMURA N, FURUMOTO S, HARADA R, et al. Characterization of 18F-THK-5351, a novel PET tracer for imaging tau pathology in Alzheimer's disease[EB/OL]. 2014
    [9] HONER M, GOBBI L, KNUST H, et al. Preclinical evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as novel PET radiotracers for imaging tau aggregates in alzheimer disease[J]. J Nucl Med,2018,59(4):675-681. doi:  10.2967/jnumed.117.196741
    [10] WONG D F, COMLEY R A, KUWABARA H, et al. Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in alzheimer subjects[J]. J Nucl Med,2018,59(12):1869-1876. doi:  10.2967/jnumed.118.209916
    [11] KUWABARA H, COMLEY R A, BORRONI E, et al. Evaluation of 18F-RO-948 PET for quantitative assessment of tau accumulation in the human brain[J]. J Nucl Med,2018,59(12):1877-1884. doi:  10.2967/jnumed.118.214437
    [12] GAO M Z, WANG M, ZHENG Q H. Fully automated synthesis of [18F]T807, a PET tau tracer for Alzheimer's disease[J]. Bioorg Med Chem Lett,2015,25(15):2953-2957. doi:  10.1016/j.bmcl.2015.05.035
    [13] MARUYAMA M, SHIMADA H, SUHARA T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron,2013,79(6):1094-1108. doi:  10.1016/j.neuron.2013.07.037
    [14] 王治国, 左峰, 张国旭, 等. 新型阿尔茨海默症Tau蛋白PET显像剂18F-T807的合成[J]. 中国医学装备, 2019, 16(2):125-127. doi:  10.3969/J.ISSN.1672-8270.2019.02.034
    [15] HUANG Y Y, CHIU M J, YEN R F, et al. An one-pot two-step automated synthesis of [18F]T807 injection, its biodistribution in mice and monkeys, and a preliminary study in humans[J]. PLoS One,2019,14(7):e0217384. doi:  10.1371/journal.pone.0217384
  • [1] 李锐, 张倩倩, 王瑞冬, 高小峰.  国家集中带量采购政策下样本医院良性前列腺增生治疗药物使用情况分析 . 药学实践与服务, 2025, 43(1): 41-46. doi: 10.12206/j.issn.2097-2024.202408031
    [2] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [3] 詹济华, 颜滢.  低蛋白血症对头孢哌酮血药浓度的影响 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202309040
    [4] 冯婷婷, 张景翔, 王彦, 许维恒, 张俊平.  ANXA3基因及蛋白的研究进展 . 药学实践与服务, 2025, 43(2): 47-50, 74. doi: 10.12206/j.issn.2097-2024.202309023
    [5] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [6] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [7] 何亚伦, 祁智, 常杰.  消胀通便膏在晚期肝癌患者阿片类药物相关性便秘中的应用研究 . 药学实践与服务, 2024, 42(12): 520-523. doi: 10.12206/j.issn.2097-2024.202309009
    [8] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [9] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [10] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [11] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [12] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  3904
  • HTML全文浏览量:  1229
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2021-09-09
  • 网络出版日期:  2021-12-27
  • 刊出日期:  2021-11-25

18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究

doi: 10.12206/j.issn.1006-0111.202009023
    基金项目:  辽宁省自然科学基金(20170540927)
    作者简介:

    左峰,药师,研究方向:临床医学工程技术,Email:zuofeng.medical@qq.com

    通讯作者: 霍花,博士,硕士生导师,研究方向:药物代谢分析,Email:hh_602@sina.com
  • 中图分类号: R981

摘要:   目的  优化18F-T807的合成方法,并进行初步生物分布研究。  方法  使用TRACERlab FXFN合成器,以BOC(t-Butyloxy carbonyl)保护的18F-T807前体NPPI-9为起始原料,改进实验条件进行合成,进行质量控制分析和Wistar大鼠生物分布研究。  结果  改进合成条件合成产率由(20.5±6.1)%提高到(25.7±5.8)%,质控符合标准,Wistar大鼠肾、肝、血分布较高,在脑、心、肺摄取最低。  结论  使用改进一锅法合成18F-T807简便易行,产率高,可以满足科研与临床的需求。

English Abstract

左峰, 霍花, 王治国, 张国旭, 石庆学, 张宗鹏. 18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究[J]. 药学实践与服务, 2021, 39(6): 525-528. doi: 10.12206/j.issn.1006-0111.202009023
引用本文: 左峰, 霍花, 王治国, 张国旭, 石庆学, 张宗鹏. 18F-T807在TRACERlab FXFN合成器上合成方法的优化及生物分布研究[J]. 药学实践与服务, 2021, 39(6): 525-528. doi: 10.12206/j.issn.1006-0111.202009023
ZHANG Lianqing, LUO Yan, YANG Ti, YAO Jiachen, LI Wenyan. Mining and research on the adverse event signal of exenatide microspheres based on FAERS database[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
Citation: ZUO Feng, HUO Hua, WANG Zhiguo, ZHANG Guoxu, SHI Qingxue, ZHANG Zongpeng. Synthesis method optimization and biodistribution study of 18F-T807 on TRACERlab FXFN synthesizer[J]. Journal of Pharmaceutical Practice and Service, 2021, 39(6): 525-528. doi: 10.12206/j.issn.1006-0111.202009023
  • 阿尔茨海默症(Alzheimer's disease,AD)是常见的神经系统变性疾病之一,是一种持续性神经功能障碍,也是痴呆最常见的病因,其发生可导致进行性记忆减退、认知障碍、人格改变等症状。65岁以上患病率约5%,85岁以上患病率高于20%,是老年人死亡的主要原因之一[1-3]。AD的病理特征主要是老年斑(senile plaques,SP)、神经纤维缠结(neurofibrillary tangles,NFTs)和广泛神经元缺失。tau蛋白是一种微管相关蛋白,过度磷酸化tau蛋白是造成神经纤维缠结的主要原因,且AD患者病情严重程度与tau蛋白具有明显相关性。因此,tau蛋白显像剂的研究逐渐受到关注[4-5]

    近年来,研究者们研发了多种tau蛋白的PET显像剂,如“THK系列”(包括18F-THK5105、18F-THK523、18F-THK5117、18F-THK5351)[6-8],“RO系列”(包括18F-RO6958548、11C-RO6931643、11C-RO6924963)[9-11],“T系列”(包括18F-T807、18F-T808)[12]以及11C-PBB3[13]等。其中“T系列”18F-T807和18F-T808是由Simens公司开发的tau蛋白的分子探针。

    课题组在参考相关文献的基础上[14-15],使用GE公司的TRACERlab FXFN氟多功能合成模块(图1),以18F-T807前体(BOC保护)NPPI-95(1)为原料,使用改进一锅法自动合成了18F-T807(2),提高了产品产率,并开展初步的正常大鼠生物分布实验,探索其分布特征。

    图  1  18F-T807(2)的合成方程式

    • 18F-T807前体(BOC保护)NPPI-95(江苏华益公司);强阴离子交换固相萃取柱(QMA柱)、K222、碳酸钾水溶液、乙腈、(德国ABX公司);乙醇(国药化学试剂);盐酸(国药分析质检中心);DMSO(北京百灵威);Ultimate C18柱(美国Waters: 4.6 mm×250 mm,5 μm);富18O水(日本大阳日酸株式会社);0.22 μm MILLEX-GS液体滤膜、0.2 μm Millex-25空气滤膜(德国默克);0.7 mm×40 mm针头(西班牙BD Microlance);Wistar大鼠(北部战区总医院实验动物科)。溶剂乙醇为色谱纯,其余均为分析纯。

      TRACERlab FXFN(美国GE)配备半制备VP 250×16高效液相色谱(德国MN)和紫外检测器及放射性检测器;正电子示踪剂质量控制薄层扫描仪(美国Bioscan),配塑料闪烁体晶体探测器;分析用HPLC(北京优联);GC-7900气相色谱(北京天美);CRC 25R活度计(美国Capintec),合成条件满足药品生产质量管理规范(GMP)的要求。

    • 合成开始前,合成器各溶剂瓶预装溶剂如表1图2所示。

      表 1  TRACERlab FXFN合成器各溶剂瓶预装溶剂

      溶剂瓶溶剂
      1号瓶(V1)1.5mg K2CO3溶于0.5 ml水
      2号瓶(V2)1.5 mg K222溶于1ml乙腈
      3号瓶(V3)1 mg前体溶于1.2 ml DMSO溶剂
      5号瓶(V5)1.5 ml HPLC流动相
      6号瓶(V6)1.5 ml HPLC流动相
      圆底烧瓶2 ml 84%NaHCO3水溶液和30 ml水
      7号瓶(V7)9 ml 0.9%生理盐水
      8号瓶(V8)1 ml 乙醇
      9号瓶(V9)10 ml 水

      图  2  TRACERLAB FXFN合成器示意图

      18F-T807自动化合成主要有以下几步:①18F-离子的柱分离纯化及蒸馏干燥。②T807前体的18F-离子亲核取代反应。③18F-T807的HPLC分离纯化。④18F-T807 C18柱溶剂转换与再纯化。

      自动合成的具体步骤如下:

      (1)共2.5 ml含18F-离子的18O水由MINItrace加速器经由18O(p, n)18F反应制备,轰击束流45μA,轰击时间40 min,18F-离子混合液由氦气作为载气经过TARGET管线传输到TRACERlab FXFN合成模块的锥形瓶内。

      (2)V10、V11号阀门开启,18F-离子及18O水混合液中的18F-离子在真空泵抽取下被QMA柱(由1 ml乙醇,2 ml水活化)捕获滞留,18O水回收进入18O水回收瓶。

      (3)V1、V13、V24号阀门开启,V1号瓶内的K2CO3溶液流经V1、V10、QMA柱、V11、V13,将18F-离子交换抽入反应瓶。

      (4)关V1、V13号阀门,开启V2号阀门将V2号瓶内穴醚K222乙腈溶剂抽入反应管,18F-离子进入穴醚形成复合物。

      (5)关V2号阀门,开启V20号阀门混合液在氦气吹拂下于85 ℃共沸蒸馏8 min,然后加热到110 ℃,在氦气吹拂下共沸蒸馏4 min除水。

      (6)开启V3、V19号阀门,在氦气推动下V3号瓶内的前体流入反应管,V3、V19、V24号阀门关闭,反应管加热到140 ℃,反应10 min。

      (7)反应瓶降温到50 ℃,开V24、V25号阀门恢复大气压。

      (8)反应后混合液经由V5、V6号瓶内的共3 ml HPLC流动相(25%乙醇水溶液,调整pH至2.0)冲洗到V26号阀门下的中转瓶内,然后打开V26、V12号阀门,在氦气压力下经由Fluid进入HPLC进样环,在Fluid控制下进样环旋转,产物进入HPLC半制备柱,Eluent1号瓶内流动相以5 ml/min的流速通过柱子分离。流动相以紫外(UV,λ=254 nm)和放射计数器监测。图318F-T807的HPLC及UV图。

      图  3  18F-T807放射性HPLC(A)及UV(B)分离图(峰2为产物峰)

      (9)18F-T807溶液通过V18号阀门进入圆底瓶,圆底瓶内装有2 ml 84% NaHCO3水溶液和30 ml无菌注射用水。然后经V21、V15、V17号阀门,产物溶液通过V15、V17号阀门间的C18柱(以5 ml乙醇和10 ml水活化),产物会被捕获滞留在柱子上,然后打开V9阀门,用V9号瓶内10 ml水冲洗柱子到废液瓶(WASTE)内,然后C18柱经由V8号瓶内的1 ml乙醇冲洗进入V15阀门下的产品瓶,再经由V7号瓶内装有9 ml生理盐水再次冲洗。

      (10)手动打开V22和V16号阀门,18F-T807在氦气压力下经过0.22μm液体滤膜过滤进入分装热室的收集瓶。

    • 对3批连续生产的产物进行了质量控制。质控项目包括澄明度、pH、核素半衰期、核素纯度、放化纯度、K222和残留溶剂、细菌内毒素、无菌测试,测试结果均符合标准要求。

    • 选择健康雄性Wistar大鼠30只,分为6组,每组5只,实验前6 h禁食禁水,每只通过尾静脉注入0.2 ml(约7.4 MBq)的18F-T807后,分别在5、15、30、60、90、120 min断头处死,取出脑、心、肝、肺、肾、肌肉、骨和血,去污、称重、计数,数据经衰减校正后计算放射性摄取率(每克组织的放射性摄取剂量占注射剂量的百分比)。

    • 18F-T807有多种合成方法,本文在参考相关文献报道基础上,优化反应条件,改变前体用量为1 mg,同时使用HPLC分离条件为25%乙醇水溶液, pH调整至2.0,在线脱BOC保护。C18柱溶剂转换与再纯化,应用经改进的合成方法使合成产率由(20.5±6.1)%提高到(25.7±5.8)%,总反应时间为70 min。

      连续3批产品,其质量控制结果如下:肉眼观察溶液无色透明,6 h后pH值为7,半衰期满足要求,不包含长半衰期核素(t1/2>5天),核素纯度大于99.5%,HPLC和TLC分析结果,即化学纯度和放化纯度合格,流动相是50%甲醇/水(HCl调节pH至2,),流速1.3 ml/min,紫外检测波长为254 nm,TLC条件为NH3H2O-甲醇-CH2Cl2 (1∶5∶94),气相色谱结果显示残留的丙酮、乙腈、DMSO等溶剂均在检测线下,细菌内毒素实验(鲎试剂法)合格,无菌检查合格。各项结果表明产品符合人体使用标准。

      正常大鼠18F-T807在体内的生物分布如表2所示,可见大部分器官在给药5 min后摄取率最高,其中肾、肝、血的摄取率较高,超过5.56%ID/g(%ID/g为放射性摄取率,即各器官的每克放射性摄取值),在肌肉、骨骼摄取率相对较低,因此推断18F-T807主要是经过肝肾排出体外。18F-T807的脑、心、肺摄取率最低,120 min已降低至本底水平(1.08% ID/g),各器官的放射性摄取率随时间的推移逐渐降低,但清除较慢,在120 min 时大部分器官仍有较高的摄取率。

      表 2  18F-T807在正常大鼠体内的分布($ \bar x \pm s $n=5)

      器官放射性摄取率(% ID/g)
      5 min15 min30 min60 min90 min120 min
      2.25±0.182.03±0.861.81±0.541.59±0.621.20±0.571.11±0.38
      2.05±0.581.99±0.661.78±0.311.55±0.251.19±0.741.08±0.36
      5.79±2.585.95±1.175.48±0.665.29±0.714.83±0.844.27±0.86
      2.12±0.912.01±0.561.91±0.191.57±0.731.21±0.521.09±0.23
      7.36±4.015.11±1.213.89±1.993.63±1.823.17±1.682.99±0.98
      肌肉2.34±0.862.57±1.182.44±0.952.19±1.362.04±1.031.51±0.89
      2.58±0.912.67±0.752.02±0.681.99±0.821.52±0.461.27±0.55
      5.56±0.355.41±0.564.73±0.744.57±1.314.22±0.374.01±0.45
    • 在TRACERlab FXFN合成器上使用优化条件的一锅法自动合成了18F-T807,提高了产品产率。合成后进行的各种质量控制检测均显示产品符合质控标准。初步的正常大鼠生物分布实验,显示了其不同时间放射性摄取率的分布情况,为应用该产品开展人体显像提供了重要基础。

参考文献 (15)

目录

/

返回文章
返回