留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重要提示

《药学实践与服务》杂志不接收生物战剂、毒剂相关内容的稿件。对于涉军信息类论文如需投稿,请务必投稿前电话或邮箱咨询。联系电话:021-81871323,邮箱:yxsjzzs@163.com。敬请谅解,谢谢配合!

《药学实践与服务》编辑部

免责声明

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校稿时微信绑定的邮件是通过yxsjzzs@163.com发送的,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开!

载抗肿瘤药物纳米靶向给药系统的研究进展

陈婷 鲁莹

陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
引用本文: 陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.
Citation: CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.

载抗肿瘤药物纳米靶向给药系统的研究进展

Study on targeted nanoparticles for anticancer therapy

  • 摘要: 利用纳米微粒作为小分子抗肿瘤药物靶向传递系统的研究正在快速的发展和进行中,将抗肿瘤药物用各种不同材料的纳米微粒包裹,可以有助于提高其水溶性,增加肿瘤组织中的药物分布,以及加强抗肿瘤活性,同时减小对其他组织器官的非特异性毒性。此类研究主要集中在如何使得抗肿瘤药物在靶向肿瘤组织部位释放传递以及限制其对健康组织器官的影响,本文从当今常见纳米载药系统的类型以及肿瘤细胞靶向、肿瘤微环境靶向以及肿瘤转移灶靶向等多方面综述载抗肿瘤药物纳米微粒传递系统的研究进展。
  • [1] Dreher MR, Liu W, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers[J]. Natl Cancer Inst,2006,98(5):335.
    [2] Nomura T, Koreeda N, Yamashita F, et al. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissueisolated tumors[J]. Pharm Res,1998,15(1):128.
    [3] Soundararajan A, Bao A, Phillips WT, et al.[186Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model [J]. Nucl Med Biol,2009,36(5):515.
    [4] Rosenthal E, Poizot-Martin I, Saint-Marc T, et al. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma[J]. Am J Clin Oncol,2002,25(1): 57.
    [5] Rawat M, Singh D, Saraf S,et al. Nanocarriers: promising vehicle for bioactive[J]. Biol Pharm Bull,2006,29(9):1790.
    [6] Zhan CY, Gu B, Xie C,et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect[J]. J Control Release,2010,143(1):136.
    [7] Manchester M,Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging[J]. Adv Drug Deliv Rev,2006,58(14):1505.
    [8] Singh P,Destito G,Schneemann A,et al. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting[J]. J Nanobiotechnology,2006,4:2.
    [9] Matsumura Y,Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res,1986, 46(12):6387.
    [10] Thierry B. Drug nanocarriers and functional nanoparticles: applications in cancer therapy[J]. Curr Drug Deliv,2009,6(4):391.
    [11] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nat Rev Cancer ,2005,5(3): 161.
    [12] Sapra P,Tyaqi P,Allen TM.Ligand-targeted liposomes for cancer treatment[J]. Curr Drug Deliv,2005, 2(4):369.
    [13] Sapra P,Moase EH,Ma J,et al. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for lipo-somal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab' fragments[J]. Clin Cancer Res,2004,10(3):1100.[14] Sugano M,Eqilmez NK,Yokota SJ,et al. Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice[J]. Cancer Res.2000, 60,(24):6942.[15] Goren D,Horowitz AT,Zalipsky S, et al. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies[J]. Br J Cancer,1996, 74(11):1749.[16] Heidel JD,Yu Z,Liu JY,et al. Administration in non-human primates ofescalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA[J]. Proc Natl Acad Sci USA,2007,104(14):5715.[17] Karmali PP,Kotamraju VR,Kastantin M,et al. Targeting of albumin-embedded paclitaxel nanoparticles to tumors[J]. J Nanomedicine,2009, 5(1): 73.[18] Agemy L,Suqahara KN,Kotamraju VR,et al. Nanoparticle-induced vascular blockade in human prostate cancer[J]. Blood,2010,116(15):2847.[19] Blasi F, Carmeliet P. uPAR: a versatile signaling orchestrator[J]. Nat Rev Mol. Cell Biol,2002,3(12):932.[20] Nguyen DX,Bos PD,Massague J. Metastasis: from dissemination to organ specific colonization[J]. Nat Rev Cancer,2009,9(4):274.[21] Garg A,Tisdale AW,Haidari E,et al. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide[J]. Int J Pharm,2009,366(1-2):201.[22] Elazar V,Adwan H,Buerle T,et al. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis[J]. Int J Cancer,2010, 126(7):1749.[23] Galanzha EI, Kim JW,Zhaorov VP.Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells[J]. J Biophotonics,2009, 2(12):725.[24] Schluep T,Cheng J,Khin KT,et al. Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice[J]. Cancer Chemother Pharmacol,2006,57(5):654.[25] Schluep T,Hwang J,Hildebrandt IJ,et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements[J]. Proc Natl Acad Sci USA, 2009,106(27):11394.
  • [1] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2025, 43(1): 10-16. doi: 10.12206/j.issn.2097-2024.202404008
    [2] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2025, 43(12): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [3] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2025, 43(1): 26-29, 40. doi: 10.12206/j.issn.2097-2024.202404034
    [4] 周娇, 郑建雨, 王思真, 杨峰.  mRNA肿瘤疫苗非病毒递送系统研究进展 . 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
    [5] 宋天豪, 许维恒, 王彦, 陈莉.  肝癌肿瘤微环境的研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202504126
    [6] 魏莱, 董国强, 盛春泉.  靶向SARS-CoV-2主蛋白酶的PROTAC设计、合成与蛋白降解活性研究 . 药学实践与服务, 2025, 43(5): 235-241, 258. doi: 10.12206/j.issn.2097-2024.202503063
    [7] 贾婷婷, 张立超.  纳米技术在烧伤局部抗感染中的应用 . 药学实践与服务, 2025, 43(11): 529-532, 539. doi: 10.12206/j.issn.2097-2024.202305055
    [8] 李锐, 张倩倩, 王瑞冬, 高小峰.  国家集中带量采购政策下样本医院良性前列腺增生治疗药物使用情况分析 . 药学实践与服务, 2025, 43(1): 41-46. doi: 10.12206/j.issn.2097-2024.202408031
    [9] 柯刚, 董清科, 肖世容, 龚茜, 李荣, 汪代杰.  基于网络药理学探讨参苓白术散治疗肿瘤恶病质的作用机制 . 药学实践与服务, 2025, 43(5): 242-250. doi: 10.12206/j.issn.2097-2024.202208115
    [10] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [11] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(8): 400-403. doi: 10.12206/j.issn.2097-2024.202408053
    [12] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2025, 43(3): 136-142, 150. doi: 10.12206/j.issn.2097-2024.202310043
    [13] 陈明, 王晨佳, 唐原君, 汪硕闻, 范国荣.  新型靶向抗肿瘤药物呋喹替尼的治疗药物监测方法构建及其临床应用 . 药学实践与服务, 2025, 43(12): 1-4. doi: 10.12206/j.issn.2097-2024.202412043
    [14] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [15] 宋泽成, 陈林林, 鲁仁义, 刘梦肖, 王彦.  脓毒症治疗的研究进展 . 药学实践与服务, 2024, 42(11): 457-460, 502. doi: 10.12206/j.issn.2097-2024.202405059
    [16] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [17] 邹思, 吴岩斌, 吴锦忠, 吴建国, 黄家兴.  虎奶菇菌核多糖功能化纳米硒抗疲劳功效研究 . 药学实践与服务, 2024, 42(10): 426-432. doi: 10.12206/j.issn.2097-2024.202206072
    [18] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [19] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [20] 马兹芬, 许维恒, 金煜翔, 薛磊.  食管癌的靶向治疗与免疫治疗研究进展 . 药学实践与服务, 2024, 42(6): 231-237. doi: 10.12206/j.issn.2097-2024.202306008
  • 加载中
计量
  • 文章访问数:  4109
  • HTML全文浏览量:  444
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-09
  • 修回日期:  2011-05-08

载抗肿瘤药物纳米靶向给药系统的研究进展

摘要: 利用纳米微粒作为小分子抗肿瘤药物靶向传递系统的研究正在快速的发展和进行中,将抗肿瘤药物用各种不同材料的纳米微粒包裹,可以有助于提高其水溶性,增加肿瘤组织中的药物分布,以及加强抗肿瘤活性,同时减小对其他组织器官的非特异性毒性。此类研究主要集中在如何使得抗肿瘤药物在靶向肿瘤组织部位释放传递以及限制其对健康组织器官的影响,本文从当今常见纳米载药系统的类型以及肿瘤细胞靶向、肿瘤微环境靶向以及肿瘤转移灶靶向等多方面综述载抗肿瘤药物纳米微粒传递系统的研究进展。

English Abstract

陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
引用本文: 陈婷, 鲁莹. 载抗肿瘤药物纳米靶向给药系统的研究进展[J]. 药学实践与服务, 2011, 29(3): 176-178,196.
CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.
Citation: CHEN Ting, LU Ying. Study on targeted nanoparticles for anticancer therapy[J]. Journal of Pharmaceutical Practice and Service, 2011, 29(3): 176-178,196.
参考文献 (13)

目录

    /

    返回文章
    返回