-
山楂为蔷薇科植物山里红Crataegus pinnatifida Bge. var. major N. E. Br. 或山楂 Crataegus pinnati- fida Bge. 的干燥成熟果实,焦山楂为其炒制品[1]。现代药理研究证明,焦山楂抑菌作用强于生山楂,而某些特定菌群与消化功能密切相关[2]。而山楂炒焦后产生新的物质—类黑素,类黑素是在食品热处理过程中形成的。目前,类黑素的抗菌活性已得到证实。大多数类黑素对微生物作用的研究都是在特定的微生物生长培养基中进行的,这些研究表明类黑素可以刺激微生物生长[3],也可以抑制微生物生长[4-5]。肠道菌群与人体健康密切相关,药物和功能食品可能通过调节肠道微生物来改善胃肠功能,帮助消化[6-7]。双歧杆菌和大肠杆菌是典型的有益菌和有害菌,双歧杆菌常被加入酸奶饮品中帮助消化。乙酸是双歧杆菌的主要代谢物质,随着乙酸的增多,pH值降低从而抑制大肠杆菌的生长繁殖。本实验通过研究山楂,焦山楂以及焦山楂炒制过程中产生的类黑素对大肠杆菌、双歧杆菌以及其代谢物乙酸的影响,探究“山楂炒焦长于消食导滞”的作用机制。
-
低温培养箱(美墨尔特有限公司,德国),生物安全柜(赛默飞世尔科技公司,美国),高压灭菌锅(三洋公司,日本),纯水机(密理博公司,美国),厌氧罐(北京陆桥技术股份有限公司,北京);紫外可见分光光度计(上海佑科仪器仪表有限公司,上海);7890B型气相色谱仪(安捷伦科技有限公司,美国);HP-FFAP型毛细管柱(货号:19091F-413,安捷伦科技有限公司,美国);GM900型非接触红外测温仪(深圳聚茂源科技有限公司,深圳)。
-
MRS固体培养基、PYG液体培养基、厌氧产气袋和厌氧指示剂(北京陆桥技术股份有限公司);蛋白胨、酵母粉(英国OXOID公司);乙酸(98.85%,国药集团化学试剂有限公司,中国);其余试剂均为分析纯。
-
净山楂饮片(四川同善堂中药饮片有限责任公司,批号:180501);双歧杆菌(GDMCC1.1258)、大肠杆菌(ATCC25922)(中国科学院微生物研究所)。
-
参照2015版《中国药典》一部山楂项下制备焦山楂。取生山楂150 g,中火(380~420)℃炒制10 min,至药材表面呈焦黄或焦褐色,内部颜色加深,并具有焦香气味,取出,常温封存,即得。
-
(1)生山楂和焦山楂浸膏的制备
取生山楂和焦山楂各100 g进行水浸提,料液比为1:15,浸提8 h,浸提2次。生山楂和焦山楂浸提液分别在4 ℃下以3 600 r/min离心10 min,取上层清液各1 000 ml。将500 ml上层清液进行蒸发浓缩至胶状,停止加热,余温使其自然干燥,得生山楂浸膏13.75 g,焦山楂浸膏14.02 g。
(2)焦山楂中类黑素的提取
取焦山楂100 g,按照“1.2.2”项中⑴的方法提取得到1 000 ml上层清液。取500 ml上层清液蒸发浓缩得棕褐色浓缩液50 ml,进行大孔树脂吸附,室温吸附流速1.5 ml/min,60%乙醇作为洗脱剂,洗脱至色谱柱上无棕色为止,收集洗脱液500 ml。洗脱液蒸发浓缩至胶状,停止加热,余温使其自然干燥,得焦山楂类黑素浸膏13.12 g。
(3)类黑素的紫外检测
取类黑素浸膏1 g,蒸馏水溶解定容至100 ml,取10 ml溶液,分别定容至50 ml;因波长420 nm处是类黑素的特征吸收波长,测其特征吸收下的吸光度值,焦山楂类黑素浸膏吸光度值为0.492,说明焦山楂中类黑素提取成功。
-
(1)双歧杆菌测试菌菌液的制备
以接种环自双歧杆菌标准菌种管挑取菌种,划线接种至MRS固体培养基,36 ℃厌氧培养48 h,挑取单菌落接种至PYG液体培养基,36 ℃厌氧培养48 h,以生理盐水调整浓度至1.0麦氏浓度,作为受试菌初始菌液,按10:1浓度加入试验体系。
(2)大肠杆菌测试菌液的制备
以接种环自大肠杆菌标准菌种管挑取菌种,划线接种至LB固体培养基(配方:蛋白胨10 g,酵母粉5 g,氯化钠10 g,琼脂粉15 g,加入1 L蒸馏水,以5 mol/L氢氧化钠调节pH至7.0,121 ℃高压灭菌15 min备用),36 ℃有氧培养24 h,挑取单菌落接种至LB液体培养基(配方:蛋白胨10 g,酵母粉5 g,氯化钠10 g,加入1 L蒸馏水,以5 mol/L氢氧化钠调节pH至7.0,121 ℃高压灭菌15 min备用),36 ℃有氧培养6 h,以生理盐水调整浓度至0.5麦氏浓度,作为受试菌初始菌液,按10:1浓度加入试验体系。
(3)样本药液的处理
准确称取生山楂,焦山楂和类黑素浸膏各10 g,加入100 ml去离子水,超声振荡处理,期间手动震摇数次,直至样本完全溶解,配制10%母液,并经115 ℃高压灭菌处理15 min后4 ℃保存备用。
(4)乙酸含量测定
①样本前处理:将经过微生物培养的溶液1 ml,经过高速离心机4 000 r/min离心,之后再过0.2 µm有机相滤头于进样瓶,样品量大于0.5 ml,或者使用内插管,上机测定。
②标准溶液及标准曲线:称取60.05 g乙酸于100 ml容量瓶,用一级水定容至刻度,摇匀,作为储备标准溶液,浓度为101.33 mmol/L。将标准储备溶液依次稀释1、3、10、20、100、200倍得标准工作溶液。
③色谱条件:洗针液为甲醇,进样量0.5 µl,进样口温度240 ℃;压力6.1219 psi;分流比10:1,流量为1.0 ml;升温程序:初始温度:100 ℃,保持0 min;梯度一:以5 ℃/min升到120 ℃,保持0 min;梯度二:以20 ℃/min升到200 ℃,保持10 min;总运行时间:18 min;检测器(FID)温度:240 ℃;空气流量:300 ml/min;氢气流量:33 ml/min;尾吹氮气流量:20 ml/min;数据采集频率/峰宽:20 Hz/0.01 min。
-
使用SPSS 22.0进行独立样本t检验,数据以平均数±标准差(
$\bar x \pm s$ )表示,P<0.05认为存在显著性差异。 -
乙酸浓度在0.51~101.33 mmol/L线性关系良好。以乙酸峰面积(Y)为纵坐标,乙酸含量(X)为横坐标,绘制标准曲线,得到线性回归方程为Y=3.670 5X−4.300 8,r=0.999 0,残留标准误差为6.644 2,如图1所示。
-
生山楂和焦山楂加速生长期双歧杆菌的生长繁殖,达稳定期后,由于生山楂中多种物质被分解,菌群产生大量代谢废物,于衰亡期加速双歧杆菌的衰亡;由于焦山楂中多种物质被分解,菌群产生大量代谢废物,于衰亡期加速双歧杆菌的衰亡;但因焦山楂中存在类黑素且其他物质较少,衰亡速率慢于生山楂组;类黑素加速生长期双歧杆菌的生长繁殖,但由于无其他物质,其生长速率慢于生山楂组,但在衰亡期中明显改变双歧杆菌生长规律,使生长期延长(生长速率变缓),双歧杆菌衰亡延后,如图2。
-
生山楂促进大肠杆菌生长期前期的生长繁殖,但由于代谢废物的逐渐增加,乙酸堆积,使生长速率逐渐变缓;焦山楂促进大肠杆菌生长期前期的生长繁殖,但由于类黑素及代谢废物的影响使生长期变短,稳定期提前;类黑素对大肠杆菌生长期前期无明显影响,但生长期后期明显促进大肠杆菌的生长繁殖,如图3所示。
-
《中国药典》一部中对焦山楂炮制方法为:取净山楂,中火条件下炒至药材表面焦褐色,内部焦黄色,并具有焦香气味。因无可控工艺参数,焦山楂炮制过程中易出现饮片表面以及内部颜色不均一,山楂炒制成品质量不稳定等情况。结合课题组前期实验,采用分别100、150、200和250 g净山楂为炮制对象,中火条件为(340~380)℃、(380~420)℃和(420~460)℃,炮制时间为8、10、12和14 min;不同质量同一批号的净山楂在不同的中火条件下炮制不同的时间,采用非接触式红外测温仪检测炒制温度,并以炒锅初温和山楂药材炒制末温辅助控温。实验筛选出150 g净山楂中火条件(380~420)℃下炒制10 min,可得到质量稳定,颜色均一的焦山楂。
-
类黑素的提取方法主要是水浸提法,Borrelli等[8]在90 ℃条件下,采用1:6料液比,对咖啡中的类黑素进行水提;Langner等[9]在室温条件下采用1:12料液比,水浸提1 h,提取到土豆类黑素粗制品。类黑素成分复杂,提纯困难。目前,主要的纯化方法有大孔树脂、超滤和凝胶层析等方法。何健[10]等发现X-5大孔树脂是曲霉型豆豉类黑素的最佳吸附树脂。秦礼康等[11]利用S-8树脂分离得到豆豉两个类黑素组分。本实验在水浸提法的基础上进行改良,最终获得最优提取工艺。结果显示类黑色素在420 nm处有较强吸收[12]。
-
实验采用气相色谱法检测菌群代谢物乙酸的含量。参照文献[13-14],结果显示其色谱条件对于本样品分析效果不佳;在柱温选择中,恒温法对乙酸检测效果不理想,峰形不稳定,因此实验采取梯度升温。经反复试验,最终获得正文中的检测参数,分离效果好,可作为本实验乙酸检测条件。
Effects of hawthorn and melanoidins on the in-vitro growth of Bifidobacterium and E.coli
-
摘要:
目的 考察山楂饮片及类黑素对双歧杆菌和大肠杆菌体外生长的影响。 方法 参照2015版《中国药典》方法炮制焦山楂,通过大孔吸附树脂提取工艺对焦山楂中的类黑素进行分离提纯,紫外分光光度法检测类黑素;气相色谱法检测生山楂、焦山楂和类黑素对双歧杆菌和大肠杆菌生长期、稳定期和衰亡期乙酸含量的影响。 结果 初期生山楂和焦山楂对细菌的影响大于类黑素,中后期类黑素通过改变乙酸的生成抑制大肠杆菌生长代谢,以及改变双歧杆菌生长代谢规律,促进乙酸生成,调节肠道菌群。 结论 生山楂、焦山楂和类黑素均通过促进肠道菌群生长代谢,促进消化。其中,焦山楂对肠道菌群效果较好。 Abstract:Objective Effect of hawthorn and melanoidins on the in-vitro growth of Bifidobacterium and E.coli. Methods According to methods of the Chinese pharmacopoeia (2015),the charred hawthorn was prepared. The melanoidins in charred hawthorn were separated and purified by the macroporous resin extraction process. Ultraviolet spectrophotometry was used to detect melanoidins. The gas chromatography was used to detect the effects of hawthorn, charred hawthorn and melanoidins on the content of the acetic acid in Bifidobacterium and E.coli during growth, stable and decay period. Results In the early stage, the effects of hawthorn and charred hawthorn on bacteria were greater than melanoidins. In the middle and late stage, melanoidins inhibited the growth and metabolism of E.coli by changing the generation of acetic acid, and contributed to that of Bifidobacterium and also promoted the generation of acetic acid and regulate the intestinal flora. Conclusion Hawthorn, charred hawthorn and melanoidins all promote digestion by promoting the growth and metabolism of intestinal flora. Among them, charred hawthorn has a better effect on intestinal flora. -
Key words:
- melanoidins /
- charred hawthorn /
- gas chromatography /
- Bifidobacterium /
- E.coli
-
生脉注射液临床上常用于辅助治疗心肌梗塞、心源性休克、脓毒症和感染性休克。心肌梗塞引起组织产生大量氧自由基,直接损伤心肌细胞并触发细胞凋亡,免疫介导的炎症损伤会加大心梗范围和心梗损伤[1]。心源性休克激活的炎症反应可诱导产生大量NO,促进细胞凋亡[2]。脓毒血症是由细菌引起的全身性炎症,大量致炎因子破坏机体的免疫平衡,从而导致机体代谢紊乱[3],严重者可能引起感染性休克。本研究特选择抗氧化及抗炎能力作为生物效应指标,考察生脉注射液质量与生物效应之间的相关性。
课题组前期对生脉注射液中11种成分[4]进行了指认并进行了定量,均符合药典标准。药理学实验表明,生脉注射液中人参皂苷、木质素和麦冬皂苷等多种化学成分均在细胞及动物模型上表现出良好的抗炎效果[5-8],且临床研究表明其可以通过抗炎通路发挥对器官损伤的保护作用[9-10]。现今生物效应评价在中药材和中成药质量控制研究中有所应用[11-12],2015版《中国药典》收录了生物活性测定法作为质量控制标准,如洋地黄生物测定法和黄体生成素生物测定法,说明通过生物效应控制药品质量是可行的。
抗炎和抗氧化损伤是生脉注射液产生药理作用的重要机制,但现今的质量标准仅对化学成分进行定性定量分析,不能全面体现其整体的药效活性,为此,本研究尝试通过评价其抗氧化能力以及抗炎活性,建立有效的生脉注射液生物学质量控制方法。
1. 材料
1.1 试剂与药品
二苯基苦基苯肼(DPPH,质量分数≥97%,含10%~20%苯,批号:PRPDE-JO,梯希爱(上海)化成工业发展有限公司);水溶性维生素E (Trolox)、DMEM培养基和磷酸盐缓冲液(PBS)均购自北京Solarbio公司;胎牛血清(FBS,德国PAN Seratech公司);N-硝基-L-精氨酸甲酯(L-NAME)、NO检测试剂盒(上海碧云天生物技术有限公司);无水乙醇(北京化工厂);水(屈臣氏)。
9批次生脉注射液分别由5个不同厂家生产,样品详细情况见表1。
表 1 生脉注射液样品来源、批号及有效成分含量(μg/ml)[4]编号 生产厂家 批号 规格 人参皂苷Rb1 人参皂苷Re 人参皂苷Rg1 五味子醇甲 麦冬皂苷D S1 A 16120401005 10 ml/支 61.16 51.39 84.69 51.43 1.48 S2 B 160502 10 ml/支 101.69 55.61 88.99 73.09 3.42 S3 C 17071014 10 ml/支 56.99 44.87 80.42 36.78 1.68 S4 C 17040423 20 ml/支 63.12 44.51 81.54 39.63 1.28 S5 D 1704252 20 ml/支 77.15 62.10 86.11 29.05 3.62 S6 E 17091302 10 ml/支 85.52 57.74 88.45 33.55 1.40 S7 E 17092903 10 ml/支 80.43 41.52 86.36 37.30 1.33 S8 E 17061103 20 ml/支 74.88 61.06 80.00 35.18 1.72 S9 E 17053005 20 ml/支 79.97 48.54 80.34 44.83 1.59 1.2 主要仪器及设备
电子分析天平(AB265-S,梅托勒-托利多有限公司);超声波清洗仪(B25-12DT,宁波新芝生物科技股份有限公司);TS-2000A脱色摇床(海门市其林贝尔仪器制造有限公司);96孔板、多功能连续波长酶标仪(InfiniteM1000,TECAN公司);低速离心机(SC-3610,安徽中科中佳科学仪器有限公司);二氧化碳培养箱(MCO-15AC,三洋电机株式会社)。
1.3 细胞培养
RAW264.7细胞为小鼠单核巨噬细胞,购于中国医学科学院基础医学研究所细胞中心。培养条件:完全培养基为含10%FBS的DMEM培养基,在37℃含5% CO2的培养箱中培养。每天换液,细胞生长达对数生长期时,传代(传代比例为1:6)并开展实验,实验用细胞控制在10代以内。
2. 方法与结果
2.1 DPPH法评价生脉注射液质量
2.1.1 实验过程
取96孔板,每孔依次加入100 μl初浓度2.0%的受试液、100 μl 0.5 mmol/L DPPH溶液,震荡均匀后避光反应20 min。
测定方法:每孔依次加入100 μl受试液和DPPH溶液,在摇床上振荡均匀,避光反应20 min后,用酶标仪测定波长在517 nm处的吸光度。
2.1.2 方法学考察
考察内容:①线性关系:分别吸取样品编号为S9的药液,用纯水定容得到浓度为8%的生脉注射液受试液。逐级稀释,测定其吸光度并计算该浓度下的平均吸光度。以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线,得到的线性关系方程为Y=-0.2081X+1.2209(r=0.9996)(图1-A),表明生脉注射液具有较强的DPPH自由基清除能力且具有浓度依赖性,体积浓度和平均吸光度具有良好的线性关系,在0%~2.0%范围内线性关系良好。②精密度:取样品S9,配制得到浓度2.0%的受试液,设置平行复孔,按照“2.1.1”项下操作测定吸光度,计算其吸光度的RSD值为2.25%(见表2),表明该方法满足方法学精密度要求。③重复性:取样品S9,配制得到浓度2.0%的受试液,设置平行复孔,按照"2.1.1“项下操作测定吸光度,计算其平均吸光度的RSD值为2.21%(见表2),表明该方法满足方法学重复性要求。④稳定性:取样品S9,分别于0、4、8、24、48和72 h,配制得到浓度2.0%的受试液,设置平行复孔,按照“2.1.1”项下操作测定吸光度,计算其平均吸光度的RSD值为2.47%(见表3),表明该方法在72 h内稳定性良好。
表 2 1.0%生脉注射液对DPPH清除作用的精密度和重复性考察编号 精密度试验 重复性试验 吸光度 均值 RSD(%) 吸光度 均值 RSD(%) 1 1.063 4 1.087 9 2.25 1.138 9 1.135 6 2.22 2 1.115 6 1.175 6 3 1.098 3 1.135 7 4 1.114 3 1.096 7 5 1.064 9 1.129 2 6 1.070 9 1.137 7 表 3 1.0%生脉注射液对DPPH的清除作用的稳定性时间 吸光度 均值 RSD(%) 0 1.038 5 1.078 8 2.47 4 1.105 7 8 1.072 2 24 1.080 5 48 1.065 7 72 1.110 0 2.1.3 生脉注射液抗氧化生物活性的质量评价
精密称定Trolox,加入100 μl无水乙醇溶解,纯水定容,得到初浓度为15.46 mmol/L的Trolox溶液。将其逐级稀释,按照“2.1.1“项下操作测定并计算平均吸光度,以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线。得到的线性关系方程为Y=–0.0789X+1.1674(r=0.9951)(见图1-B),表明Trolox清除DPPH能力在作用浓度0.43~5.56 mmol/L范围内具有良好线性关系。
将9批次生脉注射液清除DPPH自由基的结果与Trolox比较,折算得到各批次生脉注射液相当于水溶性Trolox的作用浓度(见图1-C)。结果表明,终浓度1.0%的各批次生脉注射液清除自由基能力相对于Trolox作用浓度范围为1.2~1.9 mmol/L,在清除自由基即抗氧化能力方各批次不存在较大差异。
2.2 Griess试剂盒评价生脉注射液的抗炎活性
2.2.1 Griess试剂盒测定生脉注射液抑制NO释放能力
使用完全培养基配制为1.2%的生脉注射液样品溶液,及初浓度100μg/ml的LPS样品溶液。
取对数生长期的RAW264.7细胞,制备成2×106个/ml的细胞悬液,以每孔100 μl注入96孔板。培养24 h后,弃去培养基,每孔加入100 μl样品溶液和100 μl的LPS溶液,孵育24 h后吸取50 μl上清液,按照Griess试剂盒说明书操作,用酶标仪测定波长540 nm处的吸光度。
2.2.2 方法学考察
考察内容:①线性关系:精密吸取样品编号为S6的药液,用完全培养基制成浓度为4.0%的溶液。逐级稀释,测定吸光度并计算该浓度下的平均吸光度。以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线。得到线性方程为Y=–0.033ln(X)+0.243(r=0.9961)(见图2-A),表明生脉注射液具有良好的NO分泌抑制能力并具有浓度依赖性,终浓度和平均吸光度之间具有良好的线性关系,在0.2%~2.0%范围内线性关系良好。②精密度:取样品S6,配制得到浓度为1.2%的受试液,设置平行复孔,按照“2.1.1“项下操作测定吸光度,计算其吸光度的RSD值为1.71%(见表4),表明该法满足方法学精密度要求。③重复性:取样品S6,配制得到浓度为1.2%的受试液,设置平行复孔,按照“2.1.1“项下操作测定吸光度,计算其平均吸光度的RSD值为2.79%(见表4),表明该法满足方法学重复性要求。④稳定性:取样品S6,分别于0、4、8、24和48 h时,配制得到浓度1.2%的溶液,设置平行复孔,按照“2.1.1”项下操作测定吸光度,计算其平均吸光度的RSD值为2.66%(见表5),表明该方法在48 h内稳定性良好。
表 4 1.2%生脉注射液对LPS刺激264.7细胞分泌NO的精密度和重复性考察编号 精密度试验 重复性试验 吸光度 均值 RSD(%) 吸光度 均值 RSD(%) 1 0.276 0 0.272 9 1.71 0.272 9 0.285 0 2.79 2 0.272 3 0.281 1 3 0.265 0 0.289 0 4 0.276 1 0.291 6 5 0.275 0 0.290 6 表 5 1.2%生脉注射液对LPS刺激264.7细胞分泌NO的稳定性考察时间 吸光度 均值 RSD(%) 0 0.264 5 0.262 3 2.66 2 0.273 6 4 0.257 4 24 0.257 4 48 0.258 6 2.2.3 生脉注射液抗炎生物活性的质量评价
精密称定eNOS抑制剂L-NAME,逐级稀释,按照“2.1.1“项下操作,测定并计算平均吸光度,以终浓度为横坐标(X),平均吸光度为纵坐标(Y),绘制标准曲线。得到线性关系方程为Y=–0.052ln(X)+0.152(r=0.9957)(见图2-B),表明L-NAME抑制NO分泌能力在0.05~0.55 mmol/L范围内具有良好线性关系。
将9批次生脉注射液抑制NO分泌能力的结果与L-NAME比较,折算得到各批次生脉注射液相对于L-NAME的作用浓度(见图2-C)。
结果显示,除S2和S8样品外,终浓度0.6%的各批次生脉注射液对应的L-NAME浓度范围均在0.06~0.16 mmol/L范围内,表明在抑制NO分泌能力即抗炎能力方面S2和S8与其他样品存在较大差异。其中S2对应的L-NAME浓度远高于其他样品,其抗炎活性远高于其他样品组,推测这可能与化学成分含量差异有关,需要后续的实验加以证实。
3. 讨论
3.1 实验方法及阳性对照药的选择
测定抗氧化活性常用的方法有氧化自由基吸收能力(ORAC)、二苯基苦基苯肼(DPPH)法和总抗氧化能力检测(ABTS)法等,本实验首先采用DPPH法测定抗氧化能力,该方法操作简便,常用于体外评价化合物的抗氧化活性,其中Trolox和维生素C是常用的抗氧化剂对照药[13-14],但相较之下,Trolox可通过清除自由基产生抗氧化机制,且具有剂量依赖性[15],而维生素C稳定性较Trolox差,所以该方法选择了该药作为阳性对照。内皮型一氧化氮合酶(eNOS)诱导产生NO是NO产生的重要途径[16],L-NAME作为eNOS抑制剂,选择其作为对照药可以更加直观地评价药物对细胞产生NO的抑制能力。
3.2 结果分析
参考2015版药典生物测定方法,该试验通过测定生脉注射液的抗炎和抗氧化能力,初步建立了生脉注射液的生物效应质量控制方法,该方法不仅能满足方法学要求,而且可以克服现行质量控制方法的局限性,还可以有效的评价中药复方制剂在治疗过程中产生的效应强度,实现“质-量-效”的有效结合[17]。
4. 展望
中药复方是一个组分复杂,不仅化学成分复杂,未知组分众多,而且其可能通过不同成分的配伍产生作用机制,即其药理机制不是单一化学成分能够阐明的,因此,仅对中药复方的化学成分进行评价难以对其成分及作用进行全面阐述。生物效应质量控制方法能对中药复方的整体组分药效进行把控,从药理活性方面评价中药复方质量,弥补现有质控方法的不足。在生物效应质控方法建立过程中,应注意以下问题:①质控方法应根据药效及药理机制研究选择合适的生物效应指标,充分反映该药的药理活性特征;②选择的对照药应具有足够的专属性、关联性和可测性,能够充分准确地反映药物的生物效应[18-20]。参考已有的生物质量控制研究[11,21]并对生脉注射液可能的药理活性进行筛选,对此进行考察。重点考察其方法学验证,结果显示该方法可行性高,方法学符合生物效应评价要求,可以反映生脉注射液的整体生物效应。但抗炎活性的测定实验要求较高的实验操作,且该方法对中药复方的整体生物活性进行测定,并未对可能产生药理活性的化学组分和含量进行探究和测定,可能产生药理活性的化学成分及作用机制尚不明确,值得后续的探讨。
-
[1] 国家药典委员会. 中华人民共和国药典2015年版(一部)[S]. 北京: 中国医药科技出版社, 2015: 31. [2] 赵重博, 吴建华, 曾媛媛, 等. 山楂饮片体外抗菌实验研究[J]. 现代中医药, 2017, 37(3):82-83, 88. [3] JEMMALI M. Influence of the maillard reaction products on some bacteria of the intestinal flora[J]. J Appl Bacteriol, 1969, 32(2): 151-155. [4] EINARSSON H, SNYGG B G, ERIKSSON C. Inhibition of bacterial growth by maillard reaction products[J]. J Agric Food Chem,1983,31(5):1043-1047. doi: 10.1021/jf00119a031 [5] STECCHINI M, GIAVEDONI P, SARAIS I, et al. Antimicrobial activity of maillard reaction products against Aeromonas hydrophila[J]. Ital J Food Sci,1993,5(2):147-150. [6] CHANG C J, LIN C S, LU C C, et al. Corrigendum: Ganoder- ma lucidum reduces obesity in mice by modulating the composition of the gut Microbiota[J]. Nat Commun,2017,8:16130. doi: 10.1038/ncomms16130 [7] 吴建华, 孙净云. 山楂有机酸部位对胃肠运动的影响[J]. 陕西中医, 2009, 30(10):1402-1403. doi: 10.3969/j.issn.1000-7369.2009.10.104 [8] BORRELLI R C, VISCONTI A, MENNELLA C, et al. Chemical characterization and antioxidant properties of coffee melanoidins[J]. J Agric Food Chem,2002,50(22):6527-6533. doi: 10.1021/jf025686o [9] LANGNER E, NUNES F M, POŻAROWSKI P, et al. Melanoi- dins isolated from heated potato fiber (Potex) affect human colon cancer cells growth via modulation of cell cycle and proliferation regulatory proteins[J]. Food Chem Toxicol,2013,57:246-255. doi: 10.1016/j.fct.2013.03.042 [10] 何健, 黄占旺, 史杰, 等. 大孔树脂对曲霉型豆豉类黑精的精制研究[J]. 食品科学, 2007, 28(4):156-159. doi: 10.3321/j.issn:1002-6630.2007.04.034 [11] 秦礼康, 丁霄霖. 陈窖豆豉粑类黑精提取及骨架肽段氨基酸组成分析[J]. 食品科学, 2006, 27(1):125-129. doi: 10.3321/j.issn:1002-6630.2006.01.028 [12] RUFIÁN-HENARES J A, MORALES F J. Antimicrobial activity of melanoidins[J]. J Food Qual,2007,30(2):160-168. doi: 10.1111/j.1745-4557.2007.00112.x [13] 宋菲. 香菇多糖对双歧杆菌和大肠杆菌体外生长的影响[J]. 中国医学创新, 2013, 10(24):145-147. doi: 10.3969/j.issn.1674-4985.2013.24.070 [14] 王广, 马淑霞, 胡新俊, 等. 党参多糖对双歧杆菌和大肠埃希菌体外生长的影响[J]. 中国微生态学杂志, 2010, 22(3):199-201. -